1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-15 21:01:45 -05:00
sdrangel/plugins/channelrx/demodnfm/nfmdemodsink.cpp
2019-11-23 07:40:36 +01:00

385 lines
13 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <complex.h>
#include <QTime>
#include <QDebug>
#include "util/stepfunctions.h"
#include "util/db.h"
#include "audio/audiooutput.h"
#include "dsp/dspengine.h"
#include "dsp/dspcommands.h"
#include "dsp/devicesamplemimo.h"
#include "device/deviceapi.h"
#include "nfmdemodreport.h"
#include "nfmdemodsink.h"
const double NFMDemodSink::afSqTones[] = {1000.0, 6000.0}; // {1200.0, 8000.0};
const double NFMDemodSink::afSqTones_lowrate[] = {1000.0, 3500.0};
NFMDemodSink::NFMDemodSink() :
m_channelSampleRate(48000),
m_channelFrequencyOffset(0),
m_audioSampleRate(48000),
m_audioBufferFill(0),
m_audioFifo(48000),
m_ctcssIndex(0),
m_sampleCount(0),
m_squelchCount(0),
m_squelchGate(4800),
m_squelchLevel(-990),
m_squelchOpen(false),
m_afSquelchOpen(false),
m_magsq(0.0f),
m_magsqSum(0.0f),
m_magsqPeak(0.0f),
m_magsqCount(0),
m_afSquelch(),
m_squelchDelayLine(24000),
m_messageQueueToGUI(nullptr)
{
m_agcLevel = 1.0;
m_audioBuffer.resize(1<<14);
applySettings(m_settings, true);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
}
NFMDemodSink::~NFMDemodSink()
{
}
void NFMDemodSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
{
Complex ci;
for (SampleVector::const_iterator it = begin; it != end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if (m_interpolatorDistance < 1.0f) // interpolate
{
while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
else // decimate
{
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
}
}
void NFMDemodSink::processOneSample(Complex &ci)
{
qint16 sample;
double magsqRaw; // = ci.real()*ci.real() + c.imag()*c.imag();
Real deviation;
Real demod = m_phaseDiscri.phaseDiscriminatorDelta(ci, magsqRaw, deviation);
Real magsq = magsqRaw / (SDR_RX_SCALED*SDR_RX_SCALED);
m_movingAverage(magsq);
m_magsqSum += magsq;
if (magsq > m_magsqPeak)
{
m_magsqPeak = magsq;
}
m_magsqCount++;
m_sampleCount++;
// AF processing
if (m_settings.m_deltaSquelch)
{
if (m_afSquelch.analyze(demod * m_discriCompensation))
{
m_afSquelchOpen = m_afSquelch.evaluate(); // ? m_squelchGate + m_squelchDecay : 0;
if (!m_afSquelchOpen) {
m_squelchDelayLine.zeroBack(m_audioSampleRate/10); // zero out evaluation period
}
}
if (m_afSquelchOpen)
{
m_squelchDelayLine.write(demod * m_discriCompensation);
if (m_squelchCount < 2*m_squelchGate) {
m_squelchCount++;
}
}
else
{
m_squelchDelayLine.write(0);
if (m_squelchCount > 0) {
m_squelchCount--;
}
}
}
else
{
if ((Real) m_movingAverage < m_squelchLevel)
{
m_squelchDelayLine.write(0);
if (m_squelchCount > 0) {
m_squelchCount--;
}
}
else
{
m_squelchDelayLine.write(demod * m_discriCompensation);
if (m_squelchCount < 2*m_squelchGate) {
m_squelchCount++;
}
}
}
m_squelchOpen = (m_squelchCount > m_squelchGate);
if (m_settings.m_audioMute)
{
sample = 0;
}
else
{
if (m_squelchOpen)
{
if (m_settings.m_ctcssOn)
{
Real ctcss_sample = m_ctcssLowpass.filter(demod * m_discriCompensation);
if ((m_sampleCount & 7) == 7) // decimate 48k -> 6k
{
if (m_ctcssDetector.analyze(&ctcss_sample))
{
int maxToneIndex;
if (m_ctcssDetector.getDetectedTone(maxToneIndex))
{
if (maxToneIndex+1 != m_ctcssIndex)
{
if (getMessageQueueToGUI())
{
NFMDemodReport::MsgReportCTCSSFreq *msg = NFMDemodReport::MsgReportCTCSSFreq::create(m_ctcssDetector.getToneSet()[maxToneIndex]);
getMessageQueueToGUI()->push(msg);
}
m_ctcssIndex = maxToneIndex+1;
}
}
else
{
if (m_ctcssIndex != 0)
{
if (getMessageQueueToGUI())
{
NFMDemodReport::MsgReportCTCSSFreq *msg = NFMDemodReport::MsgReportCTCSSFreq::create(0);
getMessageQueueToGUI()->push(msg);
}
m_ctcssIndex = 0;
}
}
}
}
}
if (m_settings.m_ctcssOn && m_ctcssIndexSelected && (m_ctcssIndexSelected != m_ctcssIndex))
{
sample = 0;
}
else
{
if (m_settings.m_highPass) {
sample = m_bandpass.filter(m_squelchDelayLine.readBack(m_squelchGate)) * m_settings.m_volume;
} else {
sample = m_lowpass.filter(m_squelchDelayLine.readBack(m_squelchGate)) * m_settings.m_volume * 301.0f;
}
}
}
else
{
if (m_ctcssIndex != 0)
{
if (getMessageQueueToGUI())
{
NFMDemodReport::MsgReportCTCSSFreq *msg = NFMDemodReport::MsgReportCTCSSFreq::create(0);
getMessageQueueToGUI()->push(msg);
}
m_ctcssIndex = 0;
}
sample = 0;
}
}
m_audioBuffer[m_audioBufferFill].l = sample;
m_audioBuffer[m_audioBufferFill].r = sample;
++m_audioBufferFill;
if (m_audioBufferFill >= m_audioBuffer.size())
{
uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill);
if (res != m_audioBufferFill)
{
qDebug("NFMDemodSink::feed: %u/%u audio samples written", res, m_audioBufferFill);
qDebug("NFMDemodSink::feed: m_audioSampleRate: %u m_channelSampleRate: %d", m_audioSampleRate, m_channelSampleRate);
}
m_audioBufferFill = 0;
}
}
void NFMDemodSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "NFMDemodSink::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset;
if ((channelFrequencyOffset != m_channelFrequencyOffset) ||
(channelSampleRate != m_channelSampleRate) || force)
{
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
}
if ((channelSampleRate != m_channelSampleRate) || force)
{
m_interpolator.create(16, channelSampleRate, m_settings.m_rfBandwidth / 2.2);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) channelSampleRate / (Real) m_audioSampleRate;
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
}
void NFMDemodSink::applySettings(const NFMDemodSettings& settings, bool force)
{
qDebug() << "NFMDemodSink::applySettings:"
<< " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
<< " m_rfBandwidth: " << settings.m_rfBandwidth
<< " m_afBandwidth: " << settings.m_afBandwidth
<< " m_fmDeviation: " << settings.m_fmDeviation
<< " m_volume: " << settings.m_volume
<< " m_squelchGate: " << settings.m_squelchGate
<< " m_deltaSquelch: " << settings.m_deltaSquelch
<< " m_squelch: " << settings.m_squelch
<< " m_ctcssIndex: " << settings.m_ctcssIndex
<< " m_ctcssOn: " << settings.m_ctcssOn
<< " m_highPass: " << settings.m_highPass
<< " m_audioMute: " << settings.m_audioMute
<< " m_audioDeviceName: " << settings.m_audioDeviceName
<< " force: " << force;
if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force)
{
m_interpolator.create(16, m_channelSampleRate, settings.m_rfBandwidth / 2.2);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_channelSampleRate / (Real) m_audioSampleRate;
}
if ((settings.m_fmDeviation != m_settings.m_fmDeviation) || force)
{
m_phaseDiscri.setFMScaling((8.0f*m_audioSampleRate) / static_cast<float>(settings.m_fmDeviation)); // integrate 4x factor
}
if ((settings.m_afBandwidth != m_settings.m_afBandwidth) || force)
{
m_bandpass.create(301, m_audioSampleRate, 300.0, settings.m_afBandwidth);
m_lowpass.create(301, m_audioSampleRate, settings.m_afBandwidth);
}
if ((settings.m_squelchGate != m_settings.m_squelchGate) || force)
{
m_squelchGate = (m_audioSampleRate / 100) * settings.m_squelchGate; // gate is given in 10s of ms at 48000 Hz audio sample rate
m_squelchCount = 0; // reset squelch open counter
}
if ((settings.m_squelch != m_settings.m_squelch) ||
(settings.m_deltaSquelch != m_settings.m_deltaSquelch) || force)
{
if (settings.m_deltaSquelch)
{ // input is a value in negative centis
m_squelchLevel = (- settings.m_squelch) / 100.0;
m_afSquelch.setThreshold(m_squelchLevel);
m_afSquelch.reset();
}
else
{ // input is a value in deci-Bels
m_squelchLevel = std::pow(10.0, settings.m_squelch / 10.0);
m_movingAverage.reset();
}
m_squelchCount = 0; // reset squelch open counter
}
if ((settings.m_ctcssIndex != m_settings.m_ctcssIndex) || force) {
setSelectedCtcssIndex(settings.m_ctcssIndex);
}
m_settings = settings;
}
void NFMDemodSink::applyAudioSampleRate(unsigned int sampleRate)
{
qDebug("NFMDemodSink::applyAudioSampleRate: %u m_channelSampleRate: %d", sampleRate, m_channelSampleRate);
m_ctcssLowpass.create(301, sampleRate, 250.0);
m_bandpass.create(301, sampleRate, 300.0, m_settings.m_afBandwidth);
m_lowpass.create(301, sampleRate, m_settings.m_afBandwidth);
m_squelchGate = (sampleRate / 100) * m_settings.m_squelchGate; // gate is given in 10s of ms at 48000 Hz audio sample rate
m_squelchCount = 0; // reset squelch open counter
m_ctcssDetector.setCoefficients(sampleRate/16, sampleRate/8.0f); // 0.5s / 2 Hz resolution
if (sampleRate < 16000) {
m_afSquelch.setCoefficients(sampleRate/2000, 600, sampleRate, 200, 0, afSqTones_lowrate); // 0.5ms test period, 300ms average span, audio SR, 100ms attack, no decay
} else {
m_afSquelch.setCoefficients(sampleRate/2000, 600, sampleRate, 200, 0, afSqTones); // 0.5ms test period, 300ms average span, audio SR, 100ms attack, no decay
}
m_discriCompensation = (sampleRate/48000.0f);
m_discriCompensation *= sqrt(m_discriCompensation);
m_phaseDiscri.setFMScaling(sampleRate / static_cast<float>(m_settings.m_fmDeviation));
m_audioFifo.setSize(sampleRate);
m_squelchDelayLine.resize(sampleRate/2);
m_audioSampleRate = sampleRate;
}