mirror of
https://github.com/f4exb/sdrangel.git
synced 2024-11-26 17:58:43 -05:00
198 lines
5.9 KiB
C++
198 lines
5.9 KiB
C++
///////////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2015 F4EXB //
|
|
// written by Edouard Griffiths //
|
|
// //
|
|
// This program is free software; you can redistribute it and/or modify //
|
|
// it under the terms of the GNU General Public License as published by //
|
|
// the Free Software Foundation as version 3 of the License, or //
|
|
// //
|
|
// This program is distributed in the hope that it will be useful, //
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
|
// GNU General Public License V3 for more details. //
|
|
// //
|
|
// You should have received a copy of the GNU General Public License //
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef INCLUDE_DSP_PHASEDISCRI_H_
|
|
#define INCLUDE_DSP_PHASEDISCRI_H_
|
|
|
|
#include "dsp/dsptypes.h"
|
|
|
|
class PhaseDiscriminators
|
|
{
|
|
public:
|
|
/**
|
|
* Reset stored values
|
|
*/
|
|
void reset()
|
|
{
|
|
m_m1Sample = 0;
|
|
m_m2Sample = 0;
|
|
}
|
|
|
|
/**
|
|
* Scaling factor so that resulting excursion maps to [-1,+1]
|
|
*/
|
|
void setFMScaling(Real fmScaling)
|
|
{
|
|
m_fmScaling = fmScaling;
|
|
}
|
|
|
|
/**
|
|
* Standard discriminator using atan2. On modern processors this is as efficient as the non atan2 one.
|
|
* This is better for high fidelity.
|
|
*/
|
|
Real phaseDiscriminator(const Complex& sample)
|
|
{
|
|
Complex d(std::conj(m_m1Sample) * sample);
|
|
m_m1Sample = sample;
|
|
return (std::atan2(d.imag(), d.real()) / M_PI) * m_fmScaling;
|
|
}
|
|
|
|
/**
|
|
* Discriminator with phase detection using atan2 and frequency by derivation.
|
|
* This yields a precise deviation to sample rate ratio: Sample rate => +/-1.0
|
|
*/
|
|
Real phaseDiscriminatorDelta(const Complex& sample, long double& magsq, Real& fmDev)
|
|
{
|
|
Real fltI = sample.real();
|
|
Real fltQ = sample.imag();
|
|
magsq = fltI*fltI + fltQ*fltQ;
|
|
|
|
Real curArg = atan2_approximation2((float) fltQ, (float) fltI);
|
|
fmDev = (curArg - m_prevArg) / M_PI;
|
|
m_prevArg = curArg;
|
|
|
|
if (fmDev < -1.0f) {
|
|
fmDev += 2.0f;
|
|
} else if (fmDev > 1.0f) {
|
|
fmDev -= 2.0f;
|
|
}
|
|
|
|
return fmDev * m_fmScaling;
|
|
}
|
|
|
|
/**
|
|
* Alternative without atan at the expense of a slight distorsion on very wideband signals
|
|
* http://www.embedded.com/design/configurable-systems/4212086/DSP-Tricks--Frequency-demodulation-algorithms-
|
|
* in addition it needs scaling by instantaneous magnitude squared and volume (0..10) adjustment factor
|
|
*/
|
|
Real phaseDiscriminator2(const Complex& sample)
|
|
{
|
|
Real ip = sample.real() - m_m2Sample.real();
|
|
Real qp = sample.imag() - m_m2Sample.imag();
|
|
Real h1 = m_m1Sample.real() * qp;
|
|
Real h2 = m_m1Sample.imag() * ip;
|
|
|
|
m_m2Sample = m_m1Sample;
|
|
m_m1Sample = sample;
|
|
|
|
//return ((h1 - h2) / M_PI_2) * m_fmScaling;
|
|
return (h1 - h2) * m_fmScaling;
|
|
}
|
|
|
|
/**
|
|
* Second alternative
|
|
*/
|
|
Real phaseDiscriminator3(const Complex& sample, long double& magsq, Real& fltVal)
|
|
{
|
|
Real fltI = sample.real();
|
|
Real fltQ = sample.imag();
|
|
double fltNorm;
|
|
Real fltNormI;
|
|
Real fltNormQ;
|
|
//Real fltVal;
|
|
|
|
magsq = fltI*fltI + fltQ*fltQ;
|
|
fltNorm = std::sqrt(magsq);
|
|
|
|
fltNormI= fltI/fltNorm;
|
|
fltNormQ= fltQ/fltNorm;
|
|
|
|
fltVal = m_fltPreviousI*(fltNormQ - m_fltPreviousQ2);
|
|
fltVal -= m_fltPreviousQ*(fltNormI - m_fltPreviousI2);
|
|
fltVal += 2.0f;
|
|
fltVal /= 4.0f; // normally it is /4
|
|
|
|
m_fltPreviousQ2 = m_fltPreviousQ;
|
|
m_fltPreviousI2 = m_fltPreviousI;
|
|
|
|
m_fltPreviousQ = fltNormQ;
|
|
m_fltPreviousI = fltNormI;
|
|
|
|
return fltVal * m_fmScaling;
|
|
}
|
|
|
|
private:
|
|
Complex m_m1Sample;
|
|
Complex m_m2Sample;
|
|
Real m_fmScaling;
|
|
Real m_fltPreviousI;
|
|
Real m_fltPreviousQ;
|
|
Real m_fltPreviousI2;
|
|
Real m_fltPreviousQ2;
|
|
Real m_prevArg;
|
|
|
|
float atan2_approximation1(float y, float x)
|
|
{
|
|
//http://pubs.opengroup.org/onlinepubs/009695399/functions/atan2.html
|
|
//Volkan SALMA
|
|
|
|
const float ONEQTR_PI = M_PI / 4.0;
|
|
const float THRQTR_PI = 3.0 * M_PI / 4.0;
|
|
float r, angle;
|
|
float abs_y = std::fabs(y) + 1e-10f; // kludge to prevent 0/0 condition
|
|
if ( x < 0.0f )
|
|
{
|
|
r = (x + abs_y) / (abs_y - x);
|
|
angle = THRQTR_PI;
|
|
}
|
|
else
|
|
{
|
|
r = (x - abs_y) / (x + abs_y);
|
|
angle = ONEQTR_PI;
|
|
}
|
|
angle += (0.1963f * r * r - 0.9817f) * r;
|
|
if ( y < 0.0f )
|
|
return( -angle ); // negate if in quad III or IV
|
|
else
|
|
return( angle );
|
|
|
|
|
|
}
|
|
|
|
#define PI_FLOAT 3.14159265f
|
|
#define PIBY2_FLOAT 1.5707963f
|
|
// |error| < 0.005
|
|
float atan2_approximation2( float y, float x )
|
|
{
|
|
if ( x == 0.0f )
|
|
{
|
|
if ( y > 0.0f ) return PIBY2_FLOAT;
|
|
if ( y == 0.0f ) return 0.0f;
|
|
return -PIBY2_FLOAT;
|
|
}
|
|
float atan;
|
|
float z = y/x;
|
|
if ( std::fabs( z ) < 1.0f )
|
|
{
|
|
atan = z/(1.0f + 0.28f*z*z);
|
|
if ( x < 0.0f )
|
|
{
|
|
if ( y < 0.0f ) return atan - PI_FLOAT;
|
|
return atan + PI_FLOAT;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
atan = PIBY2_FLOAT - z/(z*z + 0.28f);
|
|
if ( y < 0.0f ) return atan - PI_FLOAT;
|
|
}
|
|
return atan;
|
|
}
|
|
};
|
|
|
|
#endif /* INCLUDE_DSP_PHASEDISCRI_H_ */
|