CubicSDR/src/util/ThreadBlockingQueue.h

272 lines
8.6 KiB
C
Raw Normal View History

// Copyright (c) Charles J. Cliffe
// SPDX-License-Identifier: GPL-2.0+
#pragma once
#include <deque>
#include <mutex>
#include <thread>
#include <cstdint>
#include <stddef.h>
#include <condition_variable>
#include <typeinfo>
#define MIN_ITEM_NB (1)
//use this timeout constant in either pop() or push() calls to indicate
// a non-blocking operation, so respectively equivalent to try_pop() and try_push()
#define NON_BLOCKING_TIMEOUT (100)
//use this timeout constant in either pop() or push() calls to indicate
//an indefnite timeout duration.
#define BLOCKING_INFINITE_TIMEOUT (0)
class ThreadQueueBase {
};
/** A thread-safe asynchronous blocking queue */
template<typename T>
class ThreadBlockingQueue : public ThreadQueueBase {
typedef typename std::deque<T>::value_type value_type;
typedef typename std::deque<T>::size_type size_type;
public:
/*! Create safe blocking queue. */
ThreadBlockingQueue() {
//at least 1 (== Exchanger)
m_max_num_items = MIN_ITEM_NB;
};
//Copy constructor
ThreadBlockingQueue(const ThreadBlockingQueue& sq) {
std::lock_guard < std::mutex > lock(sq.m_mutex);
m_queue = sq.m_queue;
m_max_num_items = sq.m_max_num_items;
}
/*! Destroy safe queue. */
~ThreadBlockingQueue() {
std::lock_guard < std::mutex > lock(m_mutex);
}
/**
* Sets the maximum number of items in the queue. Real value is clamped
* to 1 on the lower bound.
* \param[in] nb max of items
*/
void set_max_num_items(unsigned int max_num_items) {
std::lock_guard < std::mutex > lock(m_mutex);
if (max_num_items > m_max_num_items) {
//Only raise the existing max size, never reduce it
//for simplification sake at runtime.
m_max_num_items = max_num_items;
m_cond_not_full.notify_all();
}
}
/**
* Pushes the item into the queue. If the queue is full, waits until room
* is available, for at most timeout microseconds.
* \param[in] item An item.
* \param[in] timeout a max waiting timeout in microseconds for an item to be pushed.
* by default, = 0 means indefinite wait.
* \param[in] errorMessage an error message written on std::cout in case of the timeout wait
* \return true if an item was pushed into the queue, else a timeout has occured.
*/
bool push(const value_type& item, std::uint64_t timeout = BLOCKING_INFINITE_TIMEOUT,const char* errorMessage = "") {
std::unique_lock < std::mutex > lock(m_mutex);
if (timeout == BLOCKING_INFINITE_TIMEOUT) {
m_cond_not_full.wait(lock, [this]() // Lambda funct
{
return m_queue.size() < m_max_num_items;
});
} else if (timeout <= NON_BLOCKING_TIMEOUT && m_queue.size() >= m_max_num_items) {
// if the value is below a threshold, consider it is a try_push()
return false;
}
else if (false == m_cond_not_full.wait_for(lock, std::chrono::microseconds(timeout),
[this]() { return m_queue.size() < m_max_num_items; })) {
std::cout << "WARNING: Thread 0x" << std::hex << std::this_thread::get_id() << std::dec <<
" executing {" << typeid(*this).name() << "}.push() has failed with timeout > " <<
(timeout * 0.001) << " ms, message: " << errorMessage << std::endl;
return false;
}
m_queue.push_back(item);
m_cond_not_empty.notify_all();
return true;
}
/**
* Try to pushes the item into the queue, immediatly, without waiting. If the queue is full, the item
* is not inserted and the function returns false.
* \param[in] item An item.
*/
bool try_push(const value_type& item) {
std::lock_guard < std::mutex > lock(m_mutex);
if (m_queue.size() >= m_max_num_items) {
return false;
}
m_queue.push_back(item);
m_cond_not_empty.notify_all();
return true;
}
/**
* Pops item from the queue. If the queue is empty, blocks for timeout microseconds, or until item becomes available.
* \param[in] timeout The number of microseconds to wait. O (default) means indefinite wait.
* \param[in] errorMessage an error message written on std::cout in case of the timeout wait
* \return true if get an item from the queue, false if no item is received before the timeout.
*/
bool pop(value_type& item, std::uint64_t timeout = BLOCKING_INFINITE_TIMEOUT, const char* errorMessage = "") {
std::unique_lock < std::mutex > lock(m_mutex);
if (timeout == BLOCKING_INFINITE_TIMEOUT) {
m_cond_not_empty.wait(lock, [this]() // Lambda funct
{
return !m_queue.empty();
});
} else if (timeout <= NON_BLOCKING_TIMEOUT && m_queue.empty()) {
// if the value is below a threshold, consider it is try_pop()
return false;
}
else if (false == m_cond_not_empty.wait_for(lock, std::chrono::microseconds(timeout),
[this]() { return !m_queue.empty(); })) {
std::cout << "WARNING: Thread 0x" << std::hex << std::this_thread::get_id() << std::dec <<
" executing {" << typeid(*this).name() << "}.pop() has failed with timeout > " <<
(timeout * 0.001) << " ms, message: " << errorMessage << std::endl;
return false;
}
item = m_queue.front();
m_queue.pop_front();
m_cond_not_full.notify_all();
return true;
}
/**
* Tries to pop item from the queue.
* \param[out] item The item.
* \return False is returned if no item is available.
*/
bool try_pop(value_type& item) {
std::lock_guard < std::mutex > lock(m_mutex);
if (m_queue.empty()) {
return false;
}
item = m_queue.front();
m_queue.pop_front();
m_cond_not_full.notify_all();
return true;
}
/**
* Gets the number of items in the queue.
* \return Number of items in the queue.
*/
size_type size() const {
std::lock_guard < std::mutex > lock(m_mutex);
return m_queue.size();
}
/**
* Check if the queue is empty.
* \return true if queue is empty.
*/
bool empty() const {
std::lock_guard < std::mutex > lock(m_mutex);
return m_queue.empty();
}
/**
* Check if the queue is full.
* \return true if queue is full.
*/
bool full() const {
std::lock_guard < std::mutex > lock(m_mutex);
return (m_queue.size() >= m_max_num_items);
}
/**
* Remove any items in the queue.
*/
void flush() {
std::lock_guard < std::mutex > lock(m_mutex);
m_queue.clear();
m_cond_not_full.notify_all();
}
/**
* Swaps the contents.
* \param[out] sq The ThreadBlockingQueue to swap with 'this'.
*/
void swap(ThreadBlockingQueue& sq) {
if (this != &sq) {
std::lock_guard < std::mutex > lock1(m_mutex);
std::lock_guard < std::mutex > lock2(sq.m_mutex);
m_queue.swap(sq.m_queue);
std::swap(m_max_num_items, sq.m_max_num_items);
if (!m_queue.empty()) {
m_cond_not_empty.notify_all();
}
if (!sq.m_queue.empty()) {
sq.m_cond_not_empty.notify_all();
}
if (!m_queue.full()) {
m_cond_not_full.notify_all();
}
if (!sq.m_queue.full()) {
sq.m_cond_not_full.notify_all();
}
}
}
/*! The copy assignment operator */
ThreadBlockingQueue& operator=(const ThreadBlockingQueue& sq) {
if (this != &sq) {
std::lock_guard < std::mutex > lock1(m_mutex);
std::lock_guard < std::mutex > lock2(sq.m_mutex);
m_queue = sq.m_queue
m_max_num_items = sq.m_max_num_items;
if (!m_queue.empty()) {
m_cond_not_empty.notify_all();
}
if (!m_queue.full()) {
m_cond_not_full.notify_all();
}
}
return *this;
}
private:
//TODO: use a circular buffer structure ? (fixed array + modulo)
std::deque<T> m_queue;
mutable std::mutex m_mutex;
std::condition_variable m_cond_not_empty;
std::condition_variable m_cond_not_full;
size_t m_max_num_items = MIN_ITEM_NB;
};
/*! Swaps the contents of two ThreadBlockingQueue objects. (external operator) */
template<typename T>
void swap(ThreadBlockingQueue<T>& q1, ThreadBlockingQueue<T>& q2) {
q1.swap(q2);
}