CubicSDR/src/PrimaryGLContext.cpp

217 lines
5.2 KiB
C++
Raw Normal View History

#include "PrimaryGLContext.h"
#include "wx/wxprec.h"
#ifndef WX_PRECOMP
#include "wx/wx.h"
#endif
#if !wxUSE_GLCANVAS
#error "OpenGL required: set wxUSE_GLCANVAS to 1 and rebuild the library"
#endif
#include "CubicSDR.h"
#include "CubicSDRDefs.h"
#include <algorithm>
wxString glGetwxString(GLenum name) {
const GLubyte *v = glGetString(name);
if (v == 0) {
// The error is not important. It is GL_INVALID_ENUM.
// We just want to clear the error stack.
glGetError();
return wxString();
}
return wxString((const char*) v);
}
static void CheckGLError() {
GLenum errLast = GL_NO_ERROR;
for (;;) {
GLenum err = glGetError();
if (err == GL_NO_ERROR)
return;
if (err == errLast) {
wxLogError
(wxT("OpenGL error state couldn't be reset."));
return;
}
errLast = err;
wxLogError
(wxT("OpenGL error %d"), err);
}
}
PrimaryGLContext::PrimaryGLContext(wxGLCanvas *canvas) :
wxGLContext(canvas) {
SetCurrent(*canvas);
glEnable(GL_CULL_FACE);
glEnable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
CheckGLError();
}
void PrimaryGLContext::PlotIQ(std::vector<float> &i_points, std::vector<float> &q_points) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glPushMatrix();
glTranslatef(0.0f, 0.5f, 0.0f);
if (q_points.size()) {
// glScalef(10.0f, 1.0f, 1.0f);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, GL_FLOAT, 0, &q_points[0]);
glDrawArrays(GL_LINE_STRIP, 0, q_points.size() / 2);
glDisableClientState(GL_VERTEX_ARRAY);
} else {
glBegin(GL_LINE_STRIP);
glColor3f(1.0f, 1.0f, 1.0f);
glVertex3f(-1.0f, 0.0f, 0.0f);
glVertex3f(1.0f, 0.0f, 0.0f);
glEnd();
}
glPopMatrix();
glPushMatrix();
glTranslatef(0.0f, -0.5f, 0.0f);
if (i_points.size()) {
// glScalef(10.0f, 1.0f, 1.0f);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, GL_FLOAT, 0, &i_points[0]);
glDrawArrays(GL_LINE_STRIP, 0, i_points.size() / 2);
glDisableClientState(GL_VERTEX_ARRAY);
} else {
glBegin(GL_LINE_STRIP);
glColor3f(1.0f, 1.0f, 1.0f);
glVertex3f(-1.0f, 0.0f, 0.0f);
glVertex3f(1.0f, 0.0f, 0.0f);
glEnd();
}
glPopMatrix();
glFlush();
CheckGLError();
}
wxBEGIN_EVENT_TABLE(TestGLCanvas, wxGLCanvas) EVT_PAINT(TestGLCanvas::OnPaint)
EVT_KEY_DOWN(TestGLCanvas::OnKeyDown)
EVT_IDLE(TestGLCanvas::OnIdle)
wxEND_EVENT_TABLE()
TestGLCanvas::TestGLCanvas(wxWindow *parent, int *attribList) :
wxGLCanvas(parent, wxID_ANY, attribList, wxDefaultPosition, wxDefaultSize,
wxFULL_REPAINT_ON_RESIZE) {
int in_block_size = BUF_SIZE/2;
int out_block_size = FFT_SIZE;
in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * in_block_size);
out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * out_block_size);
plan = fftw_plan_dft_1d(out_block_size, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
}
void TestGLCanvas::OnPaint(wxPaintEvent& WXUNUSED(event)) {
wxPaintDC dc(this);
const wxSize ClientSize = GetClientSize();
PrimaryGLContext& canvas = wxGetApp().GetContext(this);
glViewport(0, 0, ClientSize.x, ClientSize.y);
canvas.PlotIQ(i_points, q_points);
SwapBuffers();
}
void TestGLCanvas::OnKeyDown(wxKeyEvent& event) {
float angle = 5.0;
switch (event.GetKeyCode()) {
case WXK_RIGHT:
break;
case WXK_LEFT:
break;
case WXK_DOWN:
break;
case WXK_UP:
break;
case WXK_SPACE:
break;
default:
event.Skip();
return;
}
}
void TestGLCanvas::setData(std::vector<signed char> *data) {
if (data && data->size()) {
if (i_points.size() < FFT_SIZE*2) {
i_points.resize(FFT_SIZE*2);
}
for (int i = 0; i < BUF_SIZE / 2; i++) {
in[i][0] = (float) (*data)[i * 2] / 127.0f;
in[i][1] = (float) (*data)[i * 2 + 1] / 127.0f;
}
// for (int i = 0; i < BUF_SIZE / 2; i++) {
// double ang = (M_PI / (float) BUF_SIZE) * (float) i;
// double w = 0.5 * (1.0 - cos(ang));
//
// in[i][0] *= w;
// in[i][1] *= w;
// }
fftw_execute(plan);
float result[FFT_SIZE];
float fft_floor, fft_ceil;
for (int i = 0, iMax = FFT_SIZE; i < iMax; i++) {
double a = out[i][0];
double b = out[i][1];
double c = sqrt(a*a+b*b);
if (i==1) {
fft_floor=fft_ceil=c;
} else {
if (c<fft_floor) {
fft_floor = c;
}
if (c>fft_ceil) {
fft_ceil = c;
}
}
result[i] = c;
}
for (int i = 0, iMax = FFT_SIZE; i < iMax; i++) {
i_points[i * 2 + 1] = (result[i]-fft_floor)/(fft_ceil-fft_floor);
i_points[i * 2] = 2.0f * ((float) i / (float) iMax) - 1.0f;
}
}
}
void TestGLCanvas::OnIdle(wxIdleEvent &event) {
Refresh(false);
}