mirror of
https://github.com/cjcliffe/CubicSDR.git
synced 2025-02-03 09:44:26 -05:00
Merge pull request #545 from cjcliffe/vso_circular_buffer_for_queue
TheadBlockingQueue implemented with circular buffer (zero runtime mem allocs) ==> Well, looks like it works.
This commit is contained in:
commit
313d66e1d6
@ -182,10 +182,10 @@ void SDRThread::deinit() {
|
||||
}
|
||||
|
||||
void SDRThread::assureBufferMinSize(SDRThreadIQData * dataOut, size_t minSize) {
|
||||
|
||||
if (dataOut->data.size() < minSize) {
|
||||
dataOut->data.resize(minSize);
|
||||
}
|
||||
|
||||
if (dataOut->data.size() < minSize) {
|
||||
dataOut->data.resize(minSize);
|
||||
}
|
||||
}
|
||||
|
||||
//Called in an infinite loop, read SaopySDR device to build
|
||||
@ -199,42 +199,42 @@ void SDRThread::readStream(SDRThreadIQDataQueue* iqDataOutQueue) {
|
||||
int nElems = numElems.load();
|
||||
int mtElems = mtuElems.load();
|
||||
|
||||
// Warning: if MTU > numElems, i.e if device MTU is too big w.r.t the sample rate, the TARGET_DISPLAY_FPS cannot
|
||||
//be reached and the CubicSDR displays "slows down".
|
||||
//To get back a TARGET_DISPLAY_FPS, the user need to adapt
|
||||
//the SoapySDR Device to use smaller buffer sizes, because
|
||||
// readStream() is suited to device MTU and cannot be really adapted dynamically.
|
||||
//TODO: Add in doc the need to reduce SoapySDR device buffer length (if available) to restore higher fps.
|
||||
// Warning: if MTU > numElems, i.e if device MTU is too big w.r.t the sample rate, the TARGET_DISPLAY_FPS cannot
|
||||
//be reached and the CubicSDR displays "slows down".
|
||||
//To get back a TARGET_DISPLAY_FPS, the user need to adapt
|
||||
//the SoapySDR Device to use smaller buffer sizes, because
|
||||
// readStream() is suited to device MTU and cannot be really adapted dynamically.
|
||||
//TODO: Add in doc the need to reduce SoapySDR device buffer length (if available) to restore higher fps.
|
||||
|
||||
//0. Retreive a new batch
|
||||
SDRThreadIQData *dataOut = buffers.getBuffer();
|
||||
//0. Retreive a new batch
|
||||
SDRThreadIQData *dataOut = buffers.getBuffer();
|
||||
|
||||
//1.If overflow occured on the previous readStream(), transfer it in dataOut directly.
|
||||
//Take care of the iq_swap option.
|
||||
//Take care of the iq_swap option.
|
||||
if (numOverflow > 0) {
|
||||
int n_overflow = std::min(numOverflow, nElems);
|
||||
|
||||
assureBufferMinSize(dataOut, n_overflow);
|
||||
assureBufferMinSize(dataOut, n_overflow);
|
||||
|
||||
::memcpy(&dataOut->data[0], &overflowBuffer.data[0], n_overflow * sizeof(liquid_float_complex));
|
||||
n_read = n_overflow;
|
||||
|
||||
numOverflow = std::min(0, numOverflow - n_overflow);
|
||||
|
||||
// std::cout << "SDRThread::readStream() 1.1 overflowBuffer not empty, collect the remaining " << n_overflow << " samples in it..." << std::endl;
|
||||
// std::cout << "SDRThread::readStream() 1.1 overflowBuffer not empty, collect the remaining " << n_overflow << " samples in it..." << std::endl;
|
||||
|
||||
if (numOverflow > 0) { // still some left, shift the remaining samples to the begining..
|
||||
::memmove(&overflowBuffer.data[0], &overflowBuffer.data[n_overflow], numOverflow * sizeof(liquid_float_complex));
|
||||
|
||||
std::cout << "SDRThread::readStream() 1.2 overflowBuffer still not empty, compact the remaining " << numOverflow << " samples in it..." << std::endl;
|
||||
std::cout << "SDRThread::readStream() 1.2 overflowBuffer still not empty, compact the remaining " << numOverflow << " samples in it..." << std::endl;
|
||||
}
|
||||
} //end if numOverflow > 0
|
||||
|
||||
//2. attempt readStream() at most nElems, by mtElems-sized chunks, append in dataOut->data directly.
|
||||
while (n_read < nElems && !stopping) {
|
||||
|
||||
//Whatever the number of remaining samples needed to reach nElems, we always try to read a mtElems-size chunk,
|
||||
//from which SoapySDR effectively returns n_stream_read.
|
||||
|
||||
//Whatever the number of remaining samples needed to reach nElems, we always try to read a mtElems-size chunk,
|
||||
//from which SoapySDR effectively returns n_stream_read.
|
||||
int n_stream_read = device->readStream(stream, buffs, mtElems, flags, timeNs);
|
||||
|
||||
//if the n_stream_read <= 0, bail out from reading.
|
||||
@ -252,7 +252,7 @@ void SDRThread::readStream(SDRThreadIQDataQueue* iqDataOutQueue) {
|
||||
|
||||
//n_requested is the exact number to reach nElems.
|
||||
int n_requested = nElems-n_read;
|
||||
|
||||
|
||||
//Copy at most n_requested CF32 into .data liquid_float_complex,
|
||||
//starting at n_read position.
|
||||
//inspired from SoapyRTLSDR code, this mysterious void** is indeed an array of CF32(real/imag) samples, indeed an array of
|
||||
@ -261,67 +261,67 @@ void SDRThread::readStream(SDRThreadIQDataQueue* iqDataOutQueue) {
|
||||
//nor that the Re/Im layout of fields matches the float array order, assign liquid_float_complex field by field.
|
||||
float *pp = (float *)buffs[0];
|
||||
|
||||
assureBufferMinSize(dataOut, n_read + n_requested);
|
||||
assureBufferMinSize(dataOut, n_read + n_requested);
|
||||
|
||||
if (iq_swap.load()) {
|
||||
for (int i = 0; i < n_requested; i++) {
|
||||
dataOut->data[n_read + i].imag = pp[2 * i];
|
||||
dataOut->data[n_read + i].real = pp[2 * i + 1];
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < n_requested; i++) {
|
||||
dataOut->data[n_read + i].real = pp[2 * i];
|
||||
dataOut->data[n_read + i].imag = pp[2 * i + 1];
|
||||
}
|
||||
}
|
||||
if (iq_swap.load()) {
|
||||
for (int i = 0; i < n_requested; i++) {
|
||||
dataOut->data[n_read + i].imag = pp[2 * i];
|
||||
dataOut->data[n_read + i].real = pp[2 * i + 1];
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < n_requested; i++) {
|
||||
dataOut->data[n_read + i].real = pp[2 * i];
|
||||
dataOut->data[n_read + i].imag = pp[2 * i + 1];
|
||||
}
|
||||
}
|
||||
|
||||
//shift of n_requested samples, each one made of 2 floats...
|
||||
pp += n_requested * 2;
|
||||
|
||||
//numNewOverflow are in exess, they have to be added in the existing overflowBuffer.
|
||||
int numNewOverflow = n_stream_read - n_requested;
|
||||
int numNewOverflow = n_stream_read - n_requested;
|
||||
|
||||
//so push the remainder samples to overflowBuffer:
|
||||
if (numNewOverflow > 0) {
|
||||
// std::cout << "SDRThread::readStream(): 2. SoapySDR read make nElems overflow by " << numNewOverflow << " samples..." << std::endl;
|
||||
}
|
||||
|
||||
assureBufferMinSize(&overflowBuffer, numOverflow + numNewOverflow);
|
||||
if (numNewOverflow > 0) {
|
||||
// std::cout << "SDRThread::readStream(): 2. SoapySDR read make nElems overflow by " << numNewOverflow << " samples..." << std::endl;
|
||||
}
|
||||
|
||||
assureBufferMinSize(&overflowBuffer, numOverflow + numNewOverflow);
|
||||
|
||||
if (iq_swap.load()) {
|
||||
if (iq_swap.load()) {
|
||||
|
||||
for (int i = 0; i < numNewOverflow; i++) {
|
||||
overflowBuffer.data[numOverflow + i].imag = pp[2 * i];
|
||||
overflowBuffer.data[numOverflow + i].real = pp[2 * i + 1];
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (int i = 0; i < numNewOverflow; i++) {
|
||||
overflowBuffer.data[numOverflow + i].real = pp[2 * i];
|
||||
overflowBuffer.data[numOverflow + i].imag = pp[2 * i + 1];
|
||||
}
|
||||
}
|
||||
numOverflow += numNewOverflow;
|
||||
for (int i = 0; i < numNewOverflow; i++) {
|
||||
overflowBuffer.data[numOverflow + i].imag = pp[2 * i];
|
||||
overflowBuffer.data[numOverflow + i].real = pp[2 * i + 1];
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (int i = 0; i < numNewOverflow; i++) {
|
||||
overflowBuffer.data[numOverflow + i].real = pp[2 * i];
|
||||
overflowBuffer.data[numOverflow + i].imag = pp[2 * i + 1];
|
||||
}
|
||||
}
|
||||
numOverflow += numNewOverflow;
|
||||
|
||||
n_read += n_requested;
|
||||
} else if (n_stream_read > 0) { // no overflow, read the whole n_stream_read.
|
||||
|
||||
float *pp = (float *)buffs[0];
|
||||
|
||||
assureBufferMinSize(dataOut, n_read + n_stream_read);
|
||||
assureBufferMinSize(dataOut, n_read + n_stream_read);
|
||||
|
||||
if (iq_swap.load()) {
|
||||
for (int i = 0; i < n_stream_read; i++) {
|
||||
dataOut->data[n_read + i].imag = pp[2 * i];
|
||||
dataOut->data[n_read + i].real = pp[2 * i + 1];
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (int i = 0; i < n_stream_read; i++) {
|
||||
dataOut->data[n_read + i].real = pp[2 * i];
|
||||
dataOut->data[n_read + i].imag = pp[2 * i + 1];
|
||||
}
|
||||
}
|
||||
if (iq_swap.load()) {
|
||||
for (int i = 0; i < n_stream_read; i++) {
|
||||
dataOut->data[n_read + i].imag = pp[2 * i];
|
||||
dataOut->data[n_read + i].real = pp[2 * i + 1];
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (int i = 0; i < n_stream_read; i++) {
|
||||
dataOut->data[n_read + i].real = pp[2 * i];
|
||||
dataOut->data[n_read + i].imag = pp[2 * i + 1];
|
||||
}
|
||||
}
|
||||
|
||||
n_read += n_stream_read;
|
||||
} else {
|
||||
@ -329,11 +329,11 @@ void SDRThread::readStream(SDRThreadIQDataQueue* iqDataOutQueue) {
|
||||
}
|
||||
} //end while
|
||||
|
||||
//3. At that point, dataOut contains nElems (or less if a read has return an error), try to post in queue, else discard.
|
||||
//3. At that point, dataOut contains nElems (or less if a read has return an error), try to post in queue, else discard.
|
||||
if (n_read > 0 && !stopping && !iqDataOutQueue->full()) {
|
||||
|
||||
//clamp result:
|
||||
dataOut->data.resize(n_read);
|
||||
//clamp result:
|
||||
dataOut->data.resize(n_read);
|
||||
|
||||
dataOut->frequency = frequency.load();
|
||||
dataOut->sampleRate = sampleRate.load();
|
||||
@ -350,11 +350,11 @@ void SDRThread::readStream(SDRThreadIQDataQueue* iqDataOutQueue) {
|
||||
//saturation, let a chance to the other threads to consume the existing samples
|
||||
std::this_thread::yield();
|
||||
}
|
||||
}
|
||||
else {
|
||||
dataOut->setRefCount(0);
|
||||
std::cout << "SDRThread::readStream(): 3.1 iqDataOutQueue output queue is full, discard processing of the batch..." << std::endl;
|
||||
}
|
||||
}
|
||||
else {
|
||||
dataOut->setRefCount(0);
|
||||
std::cout << "SDRThread::readStream(): 3.1 iqDataOutQueue output queue is full, discard processing of the batch..." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void SDRThread::readLoop() {
|
||||
@ -425,7 +425,7 @@ void SDRThread::updateSettings() {
|
||||
free(buffs[0]);
|
||||
buffs[0] = malloc(mtuElems.load() * 4 * sizeof(float));
|
||||
//clear overflow buffer
|
||||
numOverflow = 0;
|
||||
numOverflow = 0;
|
||||
|
||||
rate_changed.store(false);
|
||||
doUpdate = true;
|
||||
@ -675,9 +675,9 @@ void SDRThread::setGain(std::string name, float value) {
|
||||
|
||||
float SDRThread::getGain(std::string name) {
|
||||
std::lock_guard < std::mutex > lock(gain_busy);
|
||||
float val = gainValues[name];
|
||||
|
||||
return val;
|
||||
float val = gainValues[name];
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
void SDRThread::writeSetting(std::string name, std::string value) {
|
||||
|
@ -3,7 +3,7 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <deque>
|
||||
#include <vector>
|
||||
#include <mutex>
|
||||
#include <thread>
|
||||
#include <cstdint>
|
||||
@ -29,22 +29,23 @@ class ThreadQueueBase {
|
||||
template<typename T>
|
||||
class ThreadBlockingQueue : public ThreadQueueBase {
|
||||
|
||||
typedef typename std::deque<T>::value_type value_type;
|
||||
typedef typename std::deque<T>::size_type size_type;
|
||||
typedef typename std::vector<T>::value_type value_type;
|
||||
typedef typename std::vector<T>::size_type size_type;
|
||||
|
||||
public:
|
||||
|
||||
/*! Create safe blocking queue. */
|
||||
ThreadBlockingQueue() {
|
||||
//at least 1 (== Exchanger)
|
||||
m_max_num_items = MIN_ITEM_NB;
|
||||
m_circular_buffer.resize(MIN_ITEM_NB + 1); //there is one slot more than the size for internal management.
|
||||
};
|
||||
|
||||
//Copy constructor
|
||||
ThreadBlockingQueue(const ThreadBlockingQueue& sq) {
|
||||
std::lock_guard < std::mutex > lock(sq.m_mutex);
|
||||
m_queue = sq.m_queue;
|
||||
m_max_num_items = sq.m_max_num_items;
|
||||
m_circular_buffer = sq.m_circular_buffer;
|
||||
m_head = sq.m_head;
|
||||
m_tail = sq.m_tail;
|
||||
}
|
||||
|
||||
/*! Destroy safe queue. */
|
||||
@ -60,10 +61,11 @@ public:
|
||||
void set_max_num_items(unsigned int max_num_items) {
|
||||
std::lock_guard < std::mutex > lock(m_mutex);
|
||||
|
||||
if (max_num_items > m_max_num_items) {
|
||||
if (max_num_items > (unsigned int)privateMaxNumElements()) {
|
||||
//Only raise the existing max size, never reduce it
|
||||
//for simplification sake at runtime.
|
||||
m_max_num_items = max_num_items;
|
||||
m_circular_buffer.resize(max_num_items + 1); // there is 1 extra allocated slot.
|
||||
//m_head and m_tail stays valid.
|
||||
m_cond_not_full.notify_all();
|
||||
}
|
||||
}
|
||||
@ -83,14 +85,14 @@ public:
|
||||
if (timeout == BLOCKING_INFINITE_TIMEOUT) {
|
||||
m_cond_not_full.wait(lock, [this]() // Lambda funct
|
||||
{
|
||||
return m_queue.size() < m_max_num_items;
|
||||
return privateSize() < privateMaxNumElements();
|
||||
});
|
||||
} else if (timeout <= NON_BLOCKING_TIMEOUT && m_queue.size() >= m_max_num_items) {
|
||||
} else if (timeout <= NON_BLOCKING_TIMEOUT && privateSize() >= privateMaxNumElements()) {
|
||||
// if the value is below a threshold, consider it is a try_push()
|
||||
return false;
|
||||
}
|
||||
else if (false == m_cond_not_full.wait_for(lock, std::chrono::microseconds(timeout),
|
||||
[this]() { return m_queue.size() < m_max_num_items; })) {
|
||||
[this]() { return privateSize() < privateMaxNumElements(); })) {
|
||||
std::thread::id currentThreadId = std::this_thread::get_id();
|
||||
std::cout << "WARNING: Thread 0x" << std::hex << currentThreadId << std::dec <<
|
||||
" (" << currentThreadId << ") executing {" << typeid(*this).name() << "}.push() has failed with timeout > " <<
|
||||
@ -98,7 +100,10 @@ public:
|
||||
return false;
|
||||
}
|
||||
|
||||
m_queue.push_back(item);
|
||||
//m_tail is already the next valid place an item can be put
|
||||
m_circular_buffer[m_tail] = item;
|
||||
m_tail = nextIndex(m_tail, (int)m_circular_buffer.size());
|
||||
|
||||
m_cond_not_empty.notify_all();
|
||||
return true;
|
||||
}
|
||||
@ -111,11 +116,14 @@ public:
|
||||
bool try_push(const value_type& item) {
|
||||
std::lock_guard < std::mutex > lock(m_mutex);
|
||||
|
||||
if (m_queue.size() >= m_max_num_items) {
|
||||
if (privateSize() >= privateMaxNumElements()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
m_queue.push_back(item);
|
||||
//m_tail is already the next valid place an item can be put
|
||||
m_circular_buffer[m_tail] = item;
|
||||
m_tail = nextIndex(m_tail, (int)m_circular_buffer.size());
|
||||
|
||||
m_cond_not_empty.notify_all();
|
||||
return true;
|
||||
}
|
||||
@ -132,14 +140,14 @@ public:
|
||||
if (timeout == BLOCKING_INFINITE_TIMEOUT) {
|
||||
m_cond_not_empty.wait(lock, [this]() // Lambda funct
|
||||
{
|
||||
return !m_queue.empty();
|
||||
return privateSize() > 0;
|
||||
});
|
||||
} else if (timeout <= NON_BLOCKING_TIMEOUT && m_queue.empty()) {
|
||||
} else if (timeout <= NON_BLOCKING_TIMEOUT && privateSize() == 0) {
|
||||
// if the value is below a threshold, consider it is try_pop()
|
||||
return false;
|
||||
}
|
||||
else if (false == m_cond_not_empty.wait_for(lock, std::chrono::microseconds(timeout),
|
||||
[this]() { return !m_queue.empty(); })) {
|
||||
[this]() { return privateSize() > 0; })) {
|
||||
std::thread::id currentThreadId = std::this_thread::get_id();
|
||||
std::cout << "WARNING: Thread 0x" << std::hex << currentThreadId << std::dec <<
|
||||
" (" << currentThreadId << ") executing {" << typeid(*this).name() << "}.pop() has failed with timeout > " <<
|
||||
@ -147,8 +155,9 @@ public:
|
||||
return false;
|
||||
}
|
||||
|
||||
item = m_queue.front();
|
||||
m_queue.pop_front();
|
||||
item = m_circular_buffer[m_head];
|
||||
m_head = nextIndex(m_head, (int)m_circular_buffer.size());
|
||||
|
||||
m_cond_not_full.notify_all();
|
||||
return true;
|
||||
}
|
||||
@ -161,12 +170,13 @@ public:
|
||||
bool try_pop(value_type& item) {
|
||||
std::lock_guard < std::mutex > lock(m_mutex);
|
||||
|
||||
if (m_queue.empty()) {
|
||||
if (privateSize() == 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
item = m_queue.front();
|
||||
m_queue.pop_front();
|
||||
item = m_circular_buffer[m_head];
|
||||
m_head = nextIndex(m_head, (int)m_circular_buffer.size());
|
||||
|
||||
m_cond_not_full.notify_all();
|
||||
return true;
|
||||
}
|
||||
@ -178,7 +188,7 @@ public:
|
||||
*/
|
||||
size_type size() const {
|
||||
std::lock_guard < std::mutex > lock(m_mutex);
|
||||
return m_queue.size();
|
||||
return privateSize();
|
||||
}
|
||||
|
||||
/**
|
||||
@ -187,7 +197,7 @@ public:
|
||||
*/
|
||||
bool empty() const {
|
||||
std::lock_guard < std::mutex > lock(m_mutex);
|
||||
return m_queue.empty();
|
||||
return privateSize() == 0;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -196,7 +206,7 @@ public:
|
||||
*/
|
||||
bool full() const {
|
||||
std::lock_guard < std::mutex > lock(m_mutex);
|
||||
return (m_queue.size() >= m_max_num_items);
|
||||
return (privateSize() >= privateMaxNumElements());
|
||||
}
|
||||
|
||||
/**
|
||||
@ -204,7 +214,9 @@ public:
|
||||
*/
|
||||
void flush() {
|
||||
std::lock_guard < std::mutex > lock(m_mutex);
|
||||
m_queue.clear();
|
||||
m_head = 0;
|
||||
m_tail = 0;
|
||||
|
||||
m_cond_not_full.notify_all();
|
||||
}
|
||||
|
||||
@ -216,22 +228,24 @@ public:
|
||||
if (this != &sq) {
|
||||
std::lock_guard < std::mutex > lock1(m_mutex);
|
||||
std::lock_guard < std::mutex > lock2(sq.m_mutex);
|
||||
m_queue.swap(sq.m_queue);
|
||||
std::swap(m_max_num_items, sq.m_max_num_items);
|
||||
m_circular_buffer.swap(sq.m_circular_buffer);
|
||||
|
||||
if (!m_queue.empty()) {
|
||||
std::swap(m_head, sq.m_head);
|
||||
std::swap(m_tail, sq.m_tail);
|
||||
|
||||
if (privateSize() > 0) {
|
||||
m_cond_not_empty.notify_all();
|
||||
}
|
||||
|
||||
if (!sq.m_queue.empty()) {
|
||||
if (sq.privateSize() > 0) {
|
||||
sq.m_cond_not_empty.notify_all();
|
||||
}
|
||||
|
||||
if (!m_queue.full()) {
|
||||
if (privateSize() < privateMaxNumElements()) {
|
||||
m_cond_not_full.notify_all();
|
||||
}
|
||||
|
||||
if (!sq.m_queue.full()) {
|
||||
if (sq.privateSize() < sq.privateMaxNumElements()) {
|
||||
sq.m_cond_not_full.notify_all();
|
||||
}
|
||||
}
|
||||
@ -243,14 +257,16 @@ public:
|
||||
std::lock_guard < std::mutex > lock1(m_mutex);
|
||||
std::lock_guard < std::mutex > lock2(sq.m_mutex);
|
||||
|
||||
m_queue = sq.m_queue;
|
||||
m_max_num_items = sq.m_max_num_items;
|
||||
m_circular_buffer = sq.m_circular_buffer;
|
||||
|
||||
if (!m_queue.empty()) {
|
||||
m_head = sq.m_head;
|
||||
m_tail = sq.m_tail;
|
||||
|
||||
if (privateSize() > 0) {
|
||||
m_cond_not_empty.notify_all();
|
||||
}
|
||||
|
||||
if (!m_queue.full()) {
|
||||
if (privateSize() < privateMaxNumElements()) {
|
||||
m_cond_not_full.notify_all();
|
||||
}
|
||||
}
|
||||
@ -258,13 +274,38 @@ public:
|
||||
}
|
||||
|
||||
private:
|
||||
//TODO: use a circular buffer structure ? (fixed array + modulo)
|
||||
std::deque<T> m_queue;
|
||||
/// use a circular buffer structure to prevent allocations / reallocations (fixed array + modulo)
|
||||
std::vector<T> m_circular_buffer;
|
||||
|
||||
/**
|
||||
* The 'head' index of the element at the head of the deque, 'tail'
|
||||
* the next (valid !) index at which an element can be pushed.
|
||||
* m_head == m_tail means empty.
|
||||
*/
|
||||
int m_head = 0, m_tail = 0;
|
||||
|
||||
//
|
||||
inline int nextIndex(int index, int modulus) const {
|
||||
return (index + 1 == modulus) ? 0 : index + 1;
|
||||
}
|
||||
|
||||
//
|
||||
inline int privateSize() const {
|
||||
if (m_head <= m_tail) {
|
||||
return m_tail - m_head;
|
||||
}
|
||||
|
||||
return (m_tail - m_head + (int)m_circular_buffer.size());
|
||||
}
|
||||
|
||||
//
|
||||
inline int privateMaxNumElements() const {
|
||||
return (int)m_circular_buffer.size() - 1;
|
||||
}
|
||||
|
||||
mutable std::mutex m_mutex;
|
||||
std::condition_variable m_cond_not_empty;
|
||||
std::condition_variable m_cond_not_full;
|
||||
size_t m_max_num_items = MIN_ITEM_NB;
|
||||
};
|
||||
|
||||
/*! Swaps the contents of two ThreadBlockingQueue objects. (external operator) */
|
||||
|
@ -1,4 +0,0 @@
|
||||
// Copyright (c) Charles J. Cliffe
|
||||
// SPDX-License-Identifier: GPL-2.0+
|
||||
|
||||
#include <ThreadQueue.h>
|
@ -1,302 +0,0 @@
|
||||
// Copyright (c) Charles J. Cliffe
|
||||
// SPDX-License-Identifier: GPL-2.0+
|
||||
|
||||
#pragma once
|
||||
|
||||
/* Credit to Alfredo Pons / https://plus.google.com/109903449837592676231
|
||||
* Code from http://gnodebian.blogspot.com.es/2013/07/a-thread-safe-asynchronous-queue-in-c11.html
|
||||
*
|
||||
* Changes:
|
||||
* Charles J. Nov-19-2014
|
||||
* - Renamed SafeQueue -> ThreadQueue
|
||||
* Sonnier.V Feb-10-2017
|
||||
* - Simplified, various fixes
|
||||
*/
|
||||
|
||||
#include <deque>
|
||||
#include <list>
|
||||
#include <mutex>
|
||||
#include <thread>
|
||||
#include <cstdint>
|
||||
#include <condition_variable>
|
||||
|
||||
class ThreadQueueBase {
|
||||
};
|
||||
|
||||
/** A thread-safe asynchronous queue */
|
||||
template<typename T>
|
||||
class ThreadQueue : public ThreadQueueBase {
|
||||
|
||||
typedef typename std::deque<T>::value_type value_type;
|
||||
typedef typename std::deque<T>::size_type size_type;
|
||||
|
||||
public:
|
||||
|
||||
/*! Create safe queue. */
|
||||
ThreadQueue() {
|
||||
m_max_num_items = 0;
|
||||
};
|
||||
ThreadQueue(ThreadQueue&& sq) {
|
||||
m_queue = std::move(sq.m_queue);
|
||||
m_max_num_items = sq.m_max_num_items;
|
||||
}
|
||||
ThreadQueue(const ThreadQueue& sq) {
|
||||
std::lock_guard < std::mutex > lock(sq.m_mutex);
|
||||
m_queue = sq.m_queue;
|
||||
m_max_num_items = sq.m_max_num_items;
|
||||
}
|
||||
|
||||
/*! Destroy safe queue. */
|
||||
~ThreadQueue() {
|
||||
std::lock_guard < std::mutex > lock(m_mutex);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the maximum number of items in the queue. Defaults is 0: No limit
|
||||
* \param[in] item An item.
|
||||
*/
|
||||
void set_max_num_items(unsigned int max_num_items) {
|
||||
std::lock_guard < std::mutex > lock(m_mutex);
|
||||
m_max_num_items = max_num_items;
|
||||
}
|
||||
|
||||
/**
|
||||
* Pushes the item into the queue.
|
||||
* \param[in] item An item.
|
||||
* \return true if an item was pushed into the queue
|
||||
*/
|
||||
bool push(const value_type& item) {
|
||||
std::lock_guard < std::mutex > lock(m_mutex);
|
||||
|
||||
if (m_max_num_items > 0 && m_queue.size() > m_max_num_items) {
|
||||
return false;
|
||||
}
|
||||
|
||||
m_queue.push_back(item);
|
||||
m_cond_not_empty.notify_all();
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Pushes the item into the queue.
|
||||
* \param[in] item An item.
|
||||
* \return true if an item was pushed into the queue
|
||||
*/
|
||||
bool push(const value_type&& item) {
|
||||
std::lock_guard < std::mutex > lock(m_mutex);
|
||||
|
||||
if (m_max_num_items > 0 && m_queue.size() > m_max_num_items) {
|
||||
return false;
|
||||
}
|
||||
|
||||
m_queue.push_back(item);
|
||||
m_cond_not_empty.notify_all();
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Pops item from the queue. If queue is empty, this function blocks until item becomes available.
|
||||
* \param[out] item The item.
|
||||
*/
|
||||
void pop(value_type& item) {
|
||||
std::unique_lock < std::mutex > lock(m_mutex);
|
||||
m_cond_not_empty.wait(lock, [this]() // Lambda funct
|
||||
{
|
||||
return !m_queue.empty();
|
||||
});
|
||||
item = m_queue.front();
|
||||
m_queue.pop_front();
|
||||
}
|
||||
|
||||
/**
|
||||
* Pops item from the queue using the contained type's move assignment operator, if it has one..
|
||||
* This method is identical to the pop() method if that type has no move assignment operator.
|
||||
* If queue is empty, this function blocks until item becomes available.
|
||||
* \param[out] item The item.
|
||||
*/
|
||||
void move_pop(value_type& item) {
|
||||
std::unique_lock < std::mutex > lock(m_mutex);
|
||||
m_cond_not_empty.wait(lock, [this]() // Lambda funct
|
||||
{
|
||||
return !m_queue.empty();
|
||||
});
|
||||
item = std::move(m_queue.front());
|
||||
m_queue.pop_front();
|
||||
}
|
||||
|
||||
/**
|
||||
* Tries to pop item from the queue.
|
||||
* \param[out] item The item.
|
||||
* \return False is returned if no item is available.
|
||||
*/
|
||||
bool try_pop(value_type& item) {
|
||||
std::lock_guard < std::mutex > lock(m_mutex);
|
||||
|
||||
if (m_queue.empty())
|
||||
return false;
|
||||
|
||||
item = m_queue.front();
|
||||
m_queue.pop_front();
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Tries to pop item from the queue using the contained type's move assignment operator, if it has one..
|
||||
* This method is identical to the try_pop() method if that type has no move assignment operator.
|
||||
* \param[out] item The item.
|
||||
* \return False is returned if no item is available.
|
||||
*/
|
||||
bool try_move_pop(value_type& item) {
|
||||
std::lock_guard < std::mutex > lock(m_mutex);
|
||||
|
||||
if (m_queue.empty())
|
||||
return false;
|
||||
|
||||
item = std::move(m_queue.front());
|
||||
m_queue.pop_front();
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Pops item from the queue. If the queue is empty, blocks for timeout microseconds, or until item becomes available.
|
||||
* \param[out] t An item.
|
||||
* \param[in] timeout The number of microseconds to wait.
|
||||
* \return true if get an item from the queue, false if no item is received before the timeout.
|
||||
*/
|
||||
bool timeout_pop(value_type& item, std::uint64_t timeout) {
|
||||
std::unique_lock < std::mutex > lock(m_mutex);
|
||||
|
||||
if (m_queue.empty()) {
|
||||
if (timeout == 0)
|
||||
return false;
|
||||
|
||||
if (m_cond_not_empty.wait_for(lock, std::chrono::microseconds(timeout)) == std::cv_status::timeout)
|
||||
return false;
|
||||
}
|
||||
|
||||
item = m_queue.front();
|
||||
m_queue.pop_front();
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Pops item from the queue using the contained type's move assignment operator, if it has one..
|
||||
* If the queue is empty, blocks for timeout microseconds, or until item becomes available.
|
||||
* This method is identical to the try_pop() method if that type has no move assignment operator.
|
||||
* \param[out] t An item.
|
||||
* \param[in] timeout The number of microseconds to wait.
|
||||
* \return true if get an item from the queue, false if no item is received before the timeout.
|
||||
*/
|
||||
bool timeout_move_pop(value_type& item, std::uint64_t timeout) {
|
||||
std::unique_lock < std::mutex > lock(m_mutex);
|
||||
|
||||
if (m_queue.empty()) {
|
||||
if (timeout == 0)
|
||||
return false;
|
||||
|
||||
if (m_cond_not_empty.wait_for(lock, std::chrono::microseconds(timeout)) == std::cv_status::timeout)
|
||||
return false;
|
||||
}
|
||||
|
||||
item = std::move(m_queue.front());
|
||||
m_queue.pop_front();
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the number of items in the queue.
|
||||
* \return Number of items in the queue.
|
||||
*/
|
||||
size_type size() const {
|
||||
std::lock_guard < std::mutex > lock(m_mutex);
|
||||
return m_queue.size();
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if the queue is empty.
|
||||
* \return true if queue is empty.
|
||||
*/
|
||||
bool empty() const {
|
||||
std::lock_guard < std::mutex > lock(m_mutex);
|
||||
return m_queue.empty();
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if the queue is full.
|
||||
* \return true if queue is full.
|
||||
*/
|
||||
bool full() const {
|
||||
std::lock_guard < std::mutex > lock(m_mutex);
|
||||
return (m_max_num_items != 0) && (m_queue.size() >= m_max_num_items);
|
||||
}
|
||||
|
||||
/**
|
||||
* Remove any items in the queue.
|
||||
*/
|
||||
void flush() {
|
||||
std::lock_guard < std::mutex > lock(m_mutex);
|
||||
m_queue.clear();
|
||||
}
|
||||
|
||||
/**
|
||||
* Swaps the contents.
|
||||
* \param[out] sq The ThreadQueue to swap with 'this'.
|
||||
*/
|
||||
void swap(ThreadQueue& sq) {
|
||||
if (this != &sq) {
|
||||
std::lock_guard < std::mutex > lock1(m_mutex);
|
||||
std::lock_guard < std::mutex > lock2(sq.m_mutex);
|
||||
m_queue.swap(sq.m_queue);
|
||||
std::swap(m_max_num_items, sq.m_max_num_items);
|
||||
|
||||
if (!m_queue.empty())
|
||||
m_cond_not_empty.notify_all();
|
||||
|
||||
|
||||
if (!sq.m_queue.empty())
|
||||
sq.m_cond_not_empty.notify_all();
|
||||
}
|
||||
}
|
||||
|
||||
/*! The copy assignment operator */
|
||||
ThreadQueue& operator=(const ThreadQueue& sq) {
|
||||
if (this != &sq) {
|
||||
std::lock_guard < std::mutex > lock1(m_mutex);
|
||||
std::lock_guard < std::mutex > lock2(sq.m_mutex);
|
||||
|
||||
m_queue = sq.m_queue;
|
||||
m_max_num_items = sq.m_max_num_items;
|
||||
|
||||
if (!m_queue.empty())
|
||||
m_cond_not_empty.notify_all();
|
||||
}
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
/*! The move assignment operator */
|
||||
ThreadQueue& operator=(ThreadQueue && sq) {
|
||||
std::lock_guard < std::mutex > lock(m_mutex);
|
||||
m_queue = std::move(sq.m_queue);
|
||||
m_max_num_items = sq.m_max_num_items;
|
||||
|
||||
if (!m_queue.empty())
|
||||
m_cond_not_empty.notify_all();
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
std::deque<T> m_queue;
|
||||
|
||||
mutable std::mutex m_mutex;
|
||||
std::condition_variable m_cond_not_empty;
|
||||
size_t m_max_num_items;
|
||||
};
|
||||
|
||||
/*! Swaps the contents of two ThreadQueue objects. */
|
||||
template<typename T>
|
||||
void swap(ThreadQueue<T>& q1, ThreadQueue<T>& q2) {
|
||||
q1.swap(q2);
|
||||
}
|
@ -4,7 +4,7 @@
|
||||
#include "Timer.h"
|
||||
|
||||
#ifdef _WIN32
|
||||
#include <windows.h>
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
#include <iostream>
|
||||
@ -12,167 +12,167 @@
|
||||
Timer::Timer(void) : time_elapsed(0), system_milliseconds(0), start_time(0), end_time(0), last_update(0), num_updates(0), paused_time(0), offset(0), paused_state(false), lock_state(false), lock_rate(0)
|
||||
{
|
||||
#ifdef _WIN32
|
||||
// According to Microsoft, QueryPerformanceXXX API is perfectly
|
||||
//fine for Windows 7+ systems, and use the highest appropriate counter.
|
||||
//this only need to be done once.
|
||||
::QueryPerformanceFrequency(&win_frequency);
|
||||
// According to Microsoft, QueryPerformanceXXX API is perfectly
|
||||
//fine for Windows 7+ systems, and use the highest appropriate counter.
|
||||
//this only need to be done once.
|
||||
::QueryPerformanceFrequency(&win_frequency);
|
||||
#endif;
|
||||
}
|
||||
|
||||
|
||||
void Timer::start(void)
|
||||
{
|
||||
update();
|
||||
num_updates = 0;
|
||||
start_time = system_milliseconds;
|
||||
last_update = start_time;
|
||||
paused_state = false;
|
||||
lock_state = false;
|
||||
lock_rate = 0;
|
||||
paused_time = 0;
|
||||
offset = 0;
|
||||
update();
|
||||
num_updates = 0;
|
||||
start_time = system_milliseconds;
|
||||
last_update = start_time;
|
||||
paused_state = false;
|
||||
lock_state = false;
|
||||
lock_rate = 0;
|
||||
paused_time = 0;
|
||||
offset = 0;
|
||||
}
|
||||
|
||||
|
||||
void Timer::stop(void)
|
||||
{
|
||||
end_time = system_milliseconds;
|
||||
end_time = system_milliseconds;
|
||||
}
|
||||
|
||||
|
||||
void Timer::reset(void)
|
||||
{
|
||||
start();
|
||||
start();
|
||||
}
|
||||
|
||||
|
||||
void Timer::lockFramerate(float f_rate)
|
||||
{
|
||||
lock_rate = 1.0f/f_rate;
|
||||
lock_state = true;
|
||||
lock_rate = 1.0f/f_rate;
|
||||
lock_state = true;
|
||||
}
|
||||
|
||||
|
||||
void Timer::unlock()
|
||||
{
|
||||
unsigned long msec_tmp = system_milliseconds;
|
||||
|
||||
lock_state = false;
|
||||
unsigned long msec_tmp = system_milliseconds;
|
||||
|
||||
lock_state = false;
|
||||
|
||||
update();
|
||||
|
||||
last_update = system_milliseconds-(unsigned long)lock_rate;
|
||||
|
||||
offset += msec_tmp-system_milliseconds;
|
||||
|
||||
lock_rate = 0;
|
||||
update();
|
||||
|
||||
last_update = system_milliseconds-(unsigned long)lock_rate;
|
||||
|
||||
offset += msec_tmp-system_milliseconds;
|
||||
|
||||
lock_rate = 0;
|
||||
}
|
||||
|
||||
bool Timer::locked()
|
||||
{
|
||||
return lock_state;
|
||||
return lock_state;
|
||||
}
|
||||
|
||||
void Timer::update(void)
|
||||
{
|
||||
num_updates++;
|
||||
last_update = system_milliseconds;
|
||||
|
||||
|
||||
if (lock_state)
|
||||
{
|
||||
system_milliseconds += (unsigned long)(lock_rate*1000.0);
|
||||
}
|
||||
else
|
||||
{
|
||||
num_updates++;
|
||||
last_update = system_milliseconds;
|
||||
|
||||
|
||||
if (lock_state)
|
||||
{
|
||||
system_milliseconds += (unsigned long)(lock_rate*1000.0);
|
||||
}
|
||||
else
|
||||
{
|
||||
#ifdef _WIN32
|
||||
|
||||
//Use QuaryPerformanceCounter, imune to problems sometimes
|
||||
//multimedia timers have.
|
||||
LARGE_INTEGER win_current_count;
|
||||
::QueryPerformanceCounter(&win_current_count);
|
||||
//Use QuaryPerformanceCounter, imune to problems sometimes
|
||||
//multimedia timers have.
|
||||
LARGE_INTEGER win_current_count;
|
||||
::QueryPerformanceCounter(&win_current_count);
|
||||
|
||||
system_milliseconds = (unsigned long)(win_current_count.QuadPart * 1000.0 / win_frequency.QuadPart);
|
||||
system_milliseconds = (unsigned long)(win_current_count.QuadPart * 1000.0 / win_frequency.QuadPart);
|
||||
|
||||
#else
|
||||
gettimeofday(&time_val,&time_zone);
|
||||
gettimeofday(&time_val,&time_zone);
|
||||
|
||||
system_milliseconds = (unsigned long)time_val.tv_usec;
|
||||
system_milliseconds /= 1000;
|
||||
system_milliseconds += (unsigned long)(time_val.tv_sec*1000);
|
||||
system_milliseconds = (unsigned long)time_val.tv_usec;
|
||||
system_milliseconds /= 1000;
|
||||
system_milliseconds += (unsigned long)(time_val.tv_sec*1000);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (paused_state) paused_time += system_milliseconds-last_update;
|
||||
if (paused_state) paused_time += system_milliseconds-last_update;
|
||||
|
||||
time_elapsed = system_milliseconds-start_time-paused_time+offset;
|
||||
time_elapsed = system_milliseconds-start_time-paused_time+offset;
|
||||
}
|
||||
|
||||
|
||||
unsigned long Timer::getMilliseconds(void)
|
||||
{
|
||||
return time_elapsed;
|
||||
return time_elapsed;
|
||||
}
|
||||
|
||||
|
||||
|
||||
double Timer::getSeconds(void)
|
||||
{
|
||||
return ((double)getMilliseconds())/1000.0;
|
||||
return ((double)getMilliseconds())/1000.0;
|
||||
}
|
||||
|
||||
|
||||
void Timer::setMilliseconds(unsigned long milliseconds_in)
|
||||
{
|
||||
offset -= (system_milliseconds-start_time-paused_time+offset)-milliseconds_in;
|
||||
offset -= (system_milliseconds-start_time-paused_time+offset)-milliseconds_in;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void Timer::setSeconds(double seconds_in)
|
||||
{
|
||||
setMilliseconds((long)(seconds_in*1000.0));
|
||||
setMilliseconds((long)(seconds_in*1000.0));
|
||||
}
|
||||
|
||||
|
||||
double Timer::lastUpdateSeconds(void)
|
||||
{
|
||||
return ((double)lastUpdateMilliseconds())/1000.0;
|
||||
return ((double)lastUpdateMilliseconds())/1000.0;
|
||||
}
|
||||
|
||||
|
||||
unsigned long Timer::lastUpdateMilliseconds(void)
|
||||
{
|
||||
return system_milliseconds-last_update;
|
||||
return system_milliseconds-last_update;
|
||||
}
|
||||
|
||||
unsigned long Timer::totalMilliseconds()
|
||||
{
|
||||
return system_milliseconds-start_time;
|
||||
return system_milliseconds-start_time;
|
||||
}
|
||||
|
||||
|
||||
double Timer::totalSeconds(void)
|
||||
{
|
||||
return totalMilliseconds()/1000.0;
|
||||
return totalMilliseconds()/1000.0;
|
||||
}
|
||||
|
||||
|
||||
unsigned long Timer::getNumUpdates(void)
|
||||
{
|
||||
return num_updates;
|
||||
return num_updates;
|
||||
}
|
||||
|
||||
|
||||
void Timer::paused(bool pause_in)
|
||||
{
|
||||
paused_state = pause_in;
|
||||
paused_state = pause_in;
|
||||
}
|
||||
|
||||
bool Timer::paused()
|
||||
{
|
||||
return paused_state;
|
||||
return paused_state;
|
||||
}
|
||||
|
||||
void Timer::timerTestFunc() {
|
||||
|
@ -18,7 +18,6 @@
|
||||
class Timer {
|
||||
private:
|
||||
|
||||
//units are microsecs:
|
||||
unsigned long time_elapsed;
|
||||
unsigned long system_milliseconds;
|
||||
unsigned long start_time;
|
||||
@ -32,7 +31,7 @@ private:
|
||||
struct timeval time_val;
|
||||
struct timezone time_zone;
|
||||
#else
|
||||
LARGE_INTEGER win_frequency;
|
||||
LARGE_INTEGER win_frequency;
|
||||
#endif;
|
||||
|
||||
bool paused_state;
|
||||
|
Loading…
Reference in New Issue
Block a user