#include "PrimaryGLContext.h" #include "wx/wxprec.h" #ifndef WX_PRECOMP #include "wx/wx.h" #endif #if !wxUSE_GLCANVAS #error "OpenGL required: set wxUSE_GLCANVAS to 1 and rebuild the library" #endif #include "CubicSDR.h" #include "CubicSDRDefs.h" #include "AppFrame.h" #include #ifdef WIN32 #include "pa_debugprint.h" #endif wxString glGetwxString(GLenum name) { const GLubyte *v = glGetString(name); if (v == 0) { // The error is not important. It is GL_INVALID_ENUM. // We just want to clear the error stack. glGetError(); return wxString(); } return wxString((const char*) v); } static void CheckGLError() { GLenum errLast = GL_NO_ERROR; for (;;) { GLenum err = glGetError(); if (err == GL_NO_ERROR) return; if (err == errLast) { wxLogError (wxT("OpenGL error state couldn't be reset.")); return; } errLast = err; wxLogError (wxT("OpenGL error %d"), err); } } PrimaryGLContext::PrimaryGLContext(wxGLCanvas *canvas) : wxGLContext(canvas) { SetCurrent(*canvas); glEnable(GL_CULL_FACE); glEnable(GL_DEPTH_TEST); glMatrixMode(GL_PROJECTION); glLoadIdentity(); CheckGLError(); } void PrimaryGLContext::Plot(std::vector &points, std::vector &points2) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); // glEnable(GL_LINE_SMOOTH); if (points.size()) { glPushMatrix(); glTranslatef(-1.0f, -0.9f, 0.0f); glScalef(2.0f, 1.0f, 1.0f); glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(2, GL_FLOAT, 0, &points[0]); glDrawArrays(GL_LINE_STRIP, 0, points.size() / 2); glDisableClientState(GL_VERTEX_ARRAY); glPopMatrix(); } if (points2.size()) { glPushMatrix(); glTranslatef(-1.0f, 0.5f, 0.0f); glScalef(2.0f, 1.0f, 1.0f); glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(2, GL_FLOAT, 0, &points2[0]); glDrawArrays(GL_LINE_STRIP, 0, points2.size() / 2); glDisableClientState(GL_VERTEX_ARRAY); glPopMatrix(); } glFlush(); CheckGLError(); } wxBEGIN_EVENT_TABLE(TestGLCanvas, wxGLCanvas) EVT_PAINT(TestGLCanvas::OnPaint) EVT_KEY_DOWN(TestGLCanvas::OnKeyDown) EVT_IDLE(TestGLCanvas::OnIdle) wxEND_EVENT_TABLE() static int patestCallback(const void *inputBuffer, void *outputBuffer, unsigned long framesPerBuffer, const PaStreamCallbackTimeInfo* timeInfo, PaStreamCallbackFlags statusFlags, void *userData) { TestGLCanvas *src = (TestGLCanvas *) userData; float *out = (float*) outputBuffer; if (!src->audio_queue.size()) { for (int i = 0; i < framesPerBuffer * 2; i++) { out[i] = 0; } return paContinue; } std::vector *nextBuffer = src->audio_queue.front(); for (int i = 0; i < framesPerBuffer * 2; i++) { out[i] = (*nextBuffer)[src->audio_queue_ptr]; src->audio_queue_ptr++; if (src->audio_queue_ptr == nextBuffer->size()) { src->audio_queue.pop(); delete nextBuffer; src->audio_queue_ptr = 0; if (!src->audio_queue.size()) { break; } nextBuffer = src->audio_queue.front(); } } return paContinue; } TestGLCanvas::TestGLCanvas(wxWindow *parent, int *attribList) : wxGLCanvas(parent, wxID_ANY, attribList, wxDefaultPosition, wxDefaultSize, wxFULL_REPAINT_ON_RESIZE), parent(parent) { bandwidth = 800000; resample_ratio = (float) (bandwidth) / (float) SRATE; audio_frequency = 44100; audio_resample_ratio = (float) (audio_frequency) / (float) bandwidth; int in_block_size = BUF_SIZE / 2; int out_block_size = FFT_SIZE; in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * in_block_size); out[0] = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * out_block_size); out[1] = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * out_block_size); plan[0] = fftw_plan_dft_1d(out_block_size, in, out[0], FFTW_FORWARD, FFTW_MEASURE); plan[1] = fftw_plan_dft_1d(out_block_size, out[0], out[1], FFTW_BACKWARD, FFTW_MEASURE); fft_ceil_ma = fft_ceil_maa = 1.0; PaError err; err = Pa_Initialize(); if (err != paNoError) { std::cout << "Error starting :(\n"; } outputParameters.device = Pa_GetDefaultOutputDevice(); /* default output device */ if (outputParameters.device == paNoDevice) { std::cout << "Error: No default output device.\n"; } outputParameters.channelCount = 2; /* Stereo output, most likely supported. */ outputParameters.sampleFormat = paFloat32; /* 32 bit floating point output. */ outputParameters.suggestedLatency = Pa_GetDeviceInfo(outputParameters.device)->defaultLowOutputLatency; outputParameters.hostApiSpecificStreamInfo = NULL; stream = NULL; err = Pa_OpenStream(&stream, NULL, &outputParameters, 44100, 256, paClipOff, &patestCallback, this); err = Pa_StartStream(stream); if (err != paNoError) { std::cout << "Error starting stream: " << Pa_GetErrorText(err) << std::endl; std::cout << "\tPortAudio error: " << Pa_GetErrorText(err) << std::endl; } float fc = 0.5f * (bandwidth / SRATE); // filter cutoff frequency float ft = 0.05f; // filter transition float As = 60.0f; // stop-band attenuation [dB] float mu = 0.0f; // fractional timing offset // estimate required filter length and generate filter unsigned int h_len = estimate_req_filter_len(ft, As); float h[h_len]; liquid_firdes_kaiser(h_len, fc, As, mu, h); fir_filter = firfilt_crcf_create(h, h_len); // create multi-stage arbitrary resampler object resampler = msresamp_crcf_create(resample_ratio, As); msresamp_crcf_print(resampler); audio_resampler = msresamp_crcf_create(audio_resample_ratio, As); msresamp_crcf_print(audio_resampler); float kf = 0.1f; // modulation factor fdem = freqdem_create(kf); freqdem_print(fdem); } TestGLCanvas::~TestGLCanvas() { PaError err; err = Pa_StopStream(stream); err = Pa_CloseStream(stream); Pa_Terminate(); } void TestGLCanvas::OnPaint(wxPaintEvent& WXUNUSED(event)) { wxPaintDC dc(this); const wxSize ClientSize = GetClientSize(); PrimaryGLContext& canvas = wxGetApp().GetContext(this); glViewport(0, 0, ClientSize.x, ClientSize.y); canvas.Plot(spectrum_points, waveform_points); SwapBuffers(); } void TestGLCanvas::OnKeyDown(wxKeyEvent& event) { float angle = 5.0; unsigned int freq; switch (event.GetKeyCode()) { case WXK_RIGHT: freq = ((AppFrame*) parent)->getFrequency(); freq += 100000; ((AppFrame*) parent)->setFrequency(freq); break; case WXK_LEFT: freq = ((AppFrame*) parent)->getFrequency(); freq -= 100000; ((AppFrame*) parent)->setFrequency(freq); break; case WXK_DOWN: break; case WXK_UP: break; case WXK_SPACE: break; default: event.Skip(); return; } } void multiply2(float ar, float aj, float br, float bj, float *cr, float *cj) { *cr = ar * br - aj * bj; *cj = aj * br + ar * bj; } float polar_discriminant2(float ar, float aj, float br, float bj) { float cr, cj; double angle; multiply2(ar, aj, br, -bj, &cr, &cj); angle = atan2(cj, cr); return (angle / M_PI); } void TestGLCanvas::setData(std::vector *data) { if (data && data->size()) { if (spectrum_points.size() < FFT_SIZE * 2) { spectrum_points.resize(FFT_SIZE * 2); } fftw_execute(plan[0]); liquid_float_complex filtered_input[BUF_SIZE / 2]; for (int i = 0; i < BUF_SIZE / 2; i++) { liquid_float_complex x; liquid_float_complex y; x.real = (float) (*data)[i * 2] / 127.0f; x.imag = (float) (*data)[i * 2 + 1] / 127.0f; firfilt_crcf_push(fir_filter, x); // push input sample firfilt_crcf_execute(fir_filter, &y); // compute output filtered_input[i] = y; in[i][0] = x.real; in[i][1] = x.imag; } int out_size = ceil((float) (BUF_SIZE / 2) * resample_ratio); liquid_float_complex resampled_output[out_size]; unsigned int num_written; // number of values written to buffer msresamp_crcf_execute(resampler, filtered_input, (BUF_SIZE / 2), resampled_output, &num_written); double fft_ceil = 0; // fft_floor, if (fft_result.size() < FFT_SIZE) { fft_result.resize(FFT_SIZE); fft_result_ma.resize(FFT_SIZE); fft_result_maa.resize(FFT_SIZE); } for (int j = 0; j < 2; j++) { for (int i = 0, iMax = FFT_SIZE / 2; i < iMax; i++) { double a = out[0][i][0]; double b = out[0][i][1]; double c = sqrt(a * a + b * b); double x = out[0][FFT_SIZE / 2 + i][0]; double y = out[0][FFT_SIZE / 2 + i][1]; double z = sqrt(x * x + y * y); fft_result[i] = (z); fft_result[FFT_SIZE / 2 + i] = (c); } } float time_slice = (float) SRATE / (float) (BUF_SIZE / 2); for (int i = 0, iMax = FFT_SIZE; i < iMax; i++) { fft_result_maa[i] += (fft_result_ma[i] - fft_result_maa[i]) * 0.65; fft_result_ma[i] += (fft_result[i] - fft_result_ma[i]) * 0.65; if (fft_result_maa[i] > fft_ceil) { fft_ceil = fft_result_maa[i]; } } fft_ceil_ma = fft_ceil_ma + (fft_ceil - fft_ceil_ma) * 0.05; fft_ceil_maa = fft_ceil_maa + (fft_ceil - fft_ceil_maa) * 0.05; // fftw_execute(plan[1]); for (int i = 0, iMax = FFT_SIZE; i < iMax; i++) { spectrum_points[i * 2 + 1] = log10(fft_result_maa[i]) / log10(fft_ceil_maa); // spectrum_points[i * 2 + 1] = (fft_result_maa[i]) / (fft_ceil_maa); spectrum_points[i * 2] = ((double) i / (double) iMax); } float waveform_ceil = 0, waveform_floor = 0; float pcm = 0; for (int i = 0; i < num_written; i++) { freqdem_demodulate(fdem, resampled_output[i], &pcm); resampled_output[i].real = (float) pcm; resampled_output[i].imag = 0; if (waveform_ceil < resampled_output[i].real) { waveform_ceil = resampled_output[i].real; } if (waveform_floor > resampled_output[i].real) { waveform_floor = resampled_output[i].real; } } int audio_out_size = ceil((float) (num_written) * audio_resample_ratio); liquid_float_complex resampled_audio_output[audio_out_size]; unsigned int num_audio_written; // number of values written to buffer msresamp_crcf_execute(audio_resampler, resampled_output, num_written, resampled_audio_output, &num_audio_written); if (waveform_points.size() != num_audio_written * 2) { waveform_points.resize(num_audio_written * 2); } for (int i = 0, iMax = waveform_points.size() / 2; i < iMax; i++) { waveform_points[i * 2 + 1] = resampled_audio_output[i].real * 0.5f; waveform_points[i * 2] = ((double) i / (double) iMax); } std::vector *newBuffer = new std::vector; newBuffer->resize(num_audio_written * 2); for (int i = 0; i < num_audio_written; i++) { (*newBuffer)[i * 2] = resampled_audio_output[i].real; (*newBuffer)[i * 2 + 1] = resampled_audio_output[i].real; } audio_queue.push(newBuffer); } } void TestGLCanvas::OnIdle(wxIdleEvent &event) { Refresh(false); }