#include "SpectrumCanvas.h" #include "wx/wxprec.h" #ifndef WX_PRECOMP #include "wx/wx.h" #endif #if !wxUSE_GLCANVAS #error "OpenGL required: set wxUSE_GLCANVAS to 1 and rebuild the library" #endif #include "CubicSDR.h" #include "CubicSDRDefs.h" #include "AppFrame.h" #include #include #include "WaterfallCanvas.h" wxBEGIN_EVENT_TABLE(SpectrumCanvas, wxGLCanvas) EVT_PAINT(SpectrumCanvas::OnPaint) EVT_IDLE(SpectrumCanvas::OnIdle) EVT_MOTION(SpectrumCanvas::OnMouseMoved) EVT_LEFT_DOWN(SpectrumCanvas::OnMouseDown) EVT_LEFT_UP(SpectrumCanvas::OnMouseReleased) EVT_LEAVE_WINDOW(SpectrumCanvas::OnMouseLeftWindow) EVT_MOUSEWHEEL(SpectrumCanvas::OnMouseWheelMoved) wxEND_EVENT_TABLE() SpectrumCanvas::SpectrumCanvas(wxWindow *parent, int *attribList) : InteractiveCanvas(parent, attribList), fft_size(0), in(NULL), out(NULL), plan(NULL), fft_ceil_ma(1), fft_ceil_maa(1), fft_floor_ma(0), fft_floor_maa( 0), waterfallCanvas(NULL) { glContext = new SpectrumContext(this, &wxGetApp().GetContext(this)); mouseTracker.setVertDragLock(true); SetCursor(wxCURSOR_SIZEWE); } void SpectrumCanvas::setup(int fft_size_in) { if (fft_size == fft_size_in) { return; } fft_size = fft_size_in; if (in) { free(in); } in = (fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex) * fft_size); if (out) { free(out); } out = (fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex) * fft_size); if (plan) { fftwf_destroy_plan(plan); } plan = fftwf_plan_dft_1d(fft_size, in, out, FFTW_FORWARD, FFTW_MEASURE); fft_ceil_ma = fft_ceil_maa = 100.0; fft_floor_ma = fft_floor_maa = 0.0; } SpectrumCanvas::~SpectrumCanvas() { } void SpectrumCanvas::OnPaint(wxPaintEvent& WXUNUSED(event)) { wxPaintDC dc(this); const wxSize ClientSize = GetClientSize(); glContext->SetCurrent(*this); glViewport(0, 0, ClientSize.x, ClientSize.y); glContext->BeginDraw(); glContext->Draw(spectrum_points, getCenterFrequency(), getBandwidth()); std::vector &demods = wxGetApp().getDemodMgr().getDemodulators(); for (int i = 0, iMax = demods.size(); i < iMax; i++) { glContext->DrawDemodInfo(demods[i], 1, 1, 1, getCenterFrequency(), getBandwidth()); } glContext->EndDraw(); SwapBuffers(); } void SpectrumCanvas::setData(DemodulatorThreadIQData *input) { if (!input) { return; } std::vector *data = &input->data; if (data && data->size()) { if (fft_size != data->size()) { setup(data->size()); } if (spectrum_points.size() < fft_size * 2) { if (spectrum_points.capacity() < fft_size * 2) { spectrum_points.reserve(fft_size * 2); } spectrum_points.resize(fft_size * 2); } for (int i = 0; i < fft_size; i++) { in[i][0] = (*data)[i].real; in[i][1] = (*data)[i].imag; } fftwf_execute(plan); float fft_ceil = 0, fft_floor = 1; if (fft_result.size() != fft_size) { if (fft_result.capacity() < fft_size) { fft_result.reserve(fft_size); fft_result_ma.reserve(fft_size); fft_result_maa.reserve(fft_size); } fft_result.resize(fft_size); fft_result_ma.resize(fft_size); fft_result_maa.resize(fft_size); } int n; for (int i = 0, iMax = fft_size / 2; i < iMax; i++) { n = (i == 0) ? 1 : i; float a = out[n][0]; float b = out[n][1]; float c = sqrt(a * a + b * b); float x = out[fft_size / 2 + n][0]; float y = out[fft_size / 2 + n][1]; float z = sqrt(x * x + y * y); fft_result[i] = (z); fft_result[fft_size / 2 + i] = (c); } for (int i = 0, iMax = fft_size; i < iMax; i++) { fft_result_maa[i] += (fft_result_ma[i] - fft_result_maa[i]) * 0.65; fft_result_ma[i] += (fft_result[i] - fft_result_ma[i]) * 0.65; if (fft_result_maa[i] > fft_ceil) { fft_ceil = fft_result_maa[i]; } if (fft_result_maa[i] < fft_floor) { fft_floor = fft_result_maa[i]; } } fft_ceil += 1; fft_floor -= 1; fft_ceil_ma = fft_ceil_ma + (fft_ceil - fft_ceil_ma) * 0.01; fft_ceil_maa = fft_ceil_maa + (fft_ceil_ma - fft_ceil_maa) * 0.01; fft_floor_ma = fft_floor_ma + (fft_floor - fft_floor_ma) * 0.01; fft_floor_maa = fft_floor_maa + (fft_floor_ma - fft_floor_maa) * 0.01; // fftwf_execute(plan[1]); for (int i = 0, iMax = fft_size; i < iMax; i++) { float v = (log10(fft_result_maa[i] - fft_floor_maa) / log10(fft_ceil_maa - fft_floor_maa)); spectrum_points[i * 2] = ((float) i / (float) iMax); spectrum_points[i * 2 + 1] = v; } } } void SpectrumCanvas::OnIdle(wxIdleEvent &event) { Refresh(false); } void SpectrumCanvas::OnMouseMoved(wxMouseEvent& event) { InteractiveCanvas::OnMouseMoved(event); if (mouseTracker.mouseDown()) { int freqChange = mouseTracker.getDeltaMouseX() * getBandwidth(); if (freqChange != 0) { long long freq = wxGetApp().getFrequency(); if (isView) { if (isView) { if (centerFreq - freqChange < bandwidth/2) { centerFreq = bandwidth/2; } else { centerFreq -= freqChange; } } if (waterfallCanvas) { waterfallCanvas->setCenterFrequency(centerFreq); } long long bwOfs = (centerFreq > freq) ? ((long long) bandwidth / 2) : (-(long long) bandwidth / 2); long long freqEdge = centerFreq + bwOfs; if (abs(freq - freqEdge) > (SRATE / 2)) { freqChange = -((centerFreq > freq) ? (freqEdge - freq - (SRATE / 2)) : (freqEdge - freq + (SRATE / 2))); } else { freqChange = 0; } } if (freqChange) { if (freq - freqChange < SRATE/2) { freq = SRATE/2; } else { freq -= freqChange; } wxGetApp().setFrequency(freq); setStatusText("Set center frequency: %s", freq); } } } else { setStatusText("Click and drag to adjust center frequency."); } } void SpectrumCanvas::OnMouseDown(wxMouseEvent& event) { InteractiveCanvas::OnMouseDown(event); SetCursor(wxCURSOR_CROSS); } void SpectrumCanvas::OnMouseWheelMoved(wxMouseEvent& event) { InteractiveCanvas::OnMouseWheelMoved(event); } void SpectrumCanvas::OnMouseReleased(wxMouseEvent& event) { InteractiveCanvas::OnMouseReleased(event); SetCursor(wxCURSOR_SIZEWE); } void SpectrumCanvas::OnMouseLeftWindow(wxMouseEvent& event) { InteractiveCanvas::OnMouseLeftWindow(event); SetCursor(wxCURSOR_SIZEWE); } void SpectrumCanvas::attachWaterfallCanvas(WaterfallCanvas* canvas_in) { waterfallCanvas = canvas_in; }