// Copyright (c) Charles J. Cliffe // SPDX-License-Identifier: GPL-2.0+ #include "ScopeVisualProcessor.h" #include #include ScopeVisualProcessor::ScopeVisualProcessor(): outputBuffers("ScopeVisualProcessorBuffers") { scopeEnabled.store(true); spectrumEnabled.store(true); fft_average_rate = 0.65f; fft_ceil_ma = fft_ceil_maa = 0; fft_floor_ma = fft_floor_maa = 0; maxScopeSamples = 1024; fftPlan = nullptr; } ScopeVisualProcessor::~ScopeVisualProcessor() { if (fftPlan) { fft_destroy_plan(fftPlan); } } void ScopeVisualProcessor::setup(int fftSize_in) { fftSize = fftSize_in; desiredInputSize = fftSize; fftInData.resize(fftSize); fftOutput.resize(fftSize); if (fftPlan) { fft_destroy_plan(fftPlan); } fftPlan = fft_create_plan(fftSize, fftInData.data(), fftOutput.data(), LIQUID_FFT_FORWARD, 0); } void ScopeVisualProcessor::setScopeEnabled(bool scopeEnable) { scopeEnabled.store(scopeEnable); } void ScopeVisualProcessor::setSpectrumEnabled(bool spectrumEnable) { spectrumEnabled.store(spectrumEnable); } void ScopeVisualProcessor::process() { if (!isOutputEmpty()) { return; } AudioThreadInput *audioInputData; if (input->try_pop(audioInputData)) { if (!audioInputData) { return; } size_t i, iMax = audioInputData->data.size(); if (!iMax) { delete audioInputData; //->decRefCount(); return; } ScopeRenderData *renderData = NULL; if (scopeEnabled) { iMax = audioInputData->data.size(); if (iMax > maxScopeSamples) { iMax = maxScopeSamples; } renderData = outputBuffers.getBuffer(); renderData->channels = audioInputData->channels; renderData->inputRate = audioInputData->inputRate; renderData->sampleRate = audioInputData->sampleRate; if (renderData->waveform_points.size() != iMax * 2) { renderData->waveform_points.resize(iMax * 2); } float peak = 1.0f; for (i = 0; i < iMax; i++) { float p = fabs(audioInputData->data[i]); if (p > peak) { peak = p; } } if (audioInputData->type == 1) { iMax = audioInputData->data.size(); if (renderData->waveform_points.size() != iMax * 2) { renderData->waveform_points.resize(iMax * 2); } for (i = 0; i < iMax; i++) { renderData->waveform_points[i * 2] = (((double) (i % (iMax/2)) / (double) iMax) * 2.0 - 0.5) * 2.0; renderData->waveform_points[i * 2 + 1] = audioInputData->data[i] / peak; } renderData->mode = ScopePanel::SCOPE_MODE_2Y; } else if (audioInputData->type == 2) { iMax = audioInputData->data.size(); if (renderData->waveform_points.size() != iMax) { renderData->waveform_points.resize(iMax); } for (i = 0; i < iMax/2; i++) { renderData->waveform_points[i * 2] = audioInputData->data[i * 2] / peak; renderData->waveform_points[i * 2 + 1] = audioInputData->data[i * 2 + 1] / peak; } renderData->mode = ScopePanel::SCOPE_MODE_XY; } else { for (i = 0; i < iMax; i++) { renderData->waveform_points[i * 2] = (((double) i / (double) iMax) - 0.5) * 2.0; renderData->waveform_points[i * 2 + 1] = audioInputData->data[i] / peak; } renderData->mode = ScopePanel::SCOPE_MODE_Y; } renderData->spectrum = false; distribute(renderData); } if (spectrumEnabled) { iMax = audioInputData->data.size(); if (audioInputData->channels==1) { for (i = 0; i < fftSize; i++) { if (i < iMax) { fftInData[i].real = audioInputData->data[i]; fftInData[i].imag = 0; } else { fftInData[i].real = 0; fftInData[i].imag = 0; } } } else if (audioInputData->channels==2) { iMax = iMax/2; for (i = 0; i < fftSize; i++) { if (i < iMax) { fftInData[i].real = audioInputData->data[i] + audioInputData->data[iMax+i]; fftInData[i].imag = 0; } else { fftInData[i].real = 0; fftInData[i].imag = 0; } } } renderData = outputBuffers.getBuffer(); renderData->channels = audioInputData->channels; renderData->inputRate = audioInputData->inputRate; renderData->sampleRate = audioInputData->sampleRate; delete audioInputData; //->decRefCount(); double fft_ceil = 0, fft_floor = 1; if (fft_result.size() < (fftSize/2)) { fft_result.resize((fftSize/2)); fft_result_ma.resize((fftSize/2)); fft_result_maa.resize((fftSize/2)); } fft_execute(fftPlan); for (i = 0; i < (fftSize/2); i++) { //cast result to double to prevent overflows / excessive precision losses in the following computations... double a = (double) fftOutput[i].real; double b = (double) fftOutput[i].imag; //computes norm = sqrt(a**2 + b**2) //being actually floats cast into doubles, we are indeed overflow-free here. fft_result[i] = sqrt(a*a + b*b); } for (i = 0; i < (fftSize/2); i++) { fft_result_ma[i] += (fft_result[i] - fft_result_ma[i]) * fft_average_rate; fft_result_maa[i] += (fft_result_ma[i] - fft_result_maa[i]) * fft_average_rate; if (fft_result_maa[i] > fft_ceil) { fft_ceil = fft_result_maa[i]; } if (fft_result_maa[i] < fft_floor) { fft_floor = fft_result_maa[i]; } } fft_ceil_ma = fft_ceil_ma + (fft_ceil - fft_ceil_ma) * 0.05; fft_ceil_maa = fft_ceil_maa + (fft_ceil_ma - fft_ceil_maa) * 0.05; fft_floor_ma = fft_floor_ma + (fft_floor - fft_floor_ma) * 0.05; fft_floor_maa = fft_floor_maa + (fft_floor_ma - fft_floor_maa) * 0.05; unsigned int outSize = fftSize/2; if (renderData->sampleRate != renderData->inputRate) { outSize = (int)floor((float)outSize * ((float)renderData->sampleRate/(float)renderData->inputRate)); } if (renderData->waveform_points.size() != outSize*2) { renderData->waveform_points.resize(outSize*2); } for (i = 0; i < outSize; i++) { float v = (log10(fft_result_maa[i]+0.25 - (fft_floor_maa-0.75)) / log10((fft_ceil_maa+0.25) - (fft_floor_maa-0.75))); renderData->waveform_points[i * 2] = ((double) i / (double) (outSize)); renderData->waveform_points[i * 2 + 1] = v; } renderData->fft_floor = fft_floor_maa; renderData->fft_ceil = fft_ceil_maa; renderData->fft_size = fftSize/2; renderData->spectrum = true; distribute(renderData); } else { delete audioInputData; //->decRefCount(); } } //end if try_pop() }