#include "PrimaryGLContext.h" #include "wx/wxprec.h" #ifndef WX_PRECOMP #include "wx/wx.h" #endif #if !wxUSE_GLCANVAS #error "OpenGL required: set wxUSE_GLCANVAS to 1 and rebuild the library" #endif #include "CubicSDR.h" #include "CubicSDRDefs.h" #include "AppFrame.h" #include #include "Demodulate.h" #include "complex.h" wxString glGetwxString(GLenum name) { const GLubyte *v = glGetString(name); if (v == 0) { // The error is not important. It is GL_INVALID_ENUM. // We just want to clear the error stack. glGetError(); return wxString(); } return wxString((const char*) v); } static void CheckGLError() { GLenum errLast = GL_NO_ERROR; for (;;) { GLenum err = glGetError(); if (err == GL_NO_ERROR) return; if (err == errLast) { wxLogError (wxT("OpenGL error state couldn't be reset.")); return; } errLast = err; wxLogError (wxT("OpenGL error %d"), err); } } PrimaryGLContext::PrimaryGLContext(wxGLCanvas *canvas) : wxGLContext(canvas) { SetCurrent(*canvas); glEnable(GL_CULL_FACE); glEnable(GL_DEPTH_TEST); glMatrixMode(GL_PROJECTION); glLoadIdentity(); CheckGLError(); } void PrimaryGLContext::Plot(std::vector &points, std::vector &points2) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); // glEnable(GL_LINE_SMOOTH); if (points.size()) { glPushMatrix(); glTranslatef(-1.0f, -0.9f, 0.0f); glScalef(2.0f, 1.0f, 1.0f); glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(2, GL_FLOAT, 0, &points[0]); glDrawArrays(GL_LINE_STRIP, 0, points.size() / 2); glDisableClientState(GL_VERTEX_ARRAY); glPopMatrix(); } if (points2.size()) { glPushMatrix(); glTranslatef(-1.0f, 0.5f, 0.0f); glScalef(2.0f, 1.0f, 1.0f); glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(2, GL_FLOAT, 0, &points2[0]); glDrawArrays(GL_LINE_STRIP, 0, points2.size() / 2); glDisableClientState(GL_VERTEX_ARRAY); glPopMatrix(); } glFlush(); CheckGLError(); } wxBEGIN_EVENT_TABLE(TestGLCanvas, wxGLCanvas) EVT_PAINT(TestGLCanvas::OnPaint) EVT_KEY_DOWN(TestGLCanvas::OnKeyDown) EVT_IDLE(TestGLCanvas::OnIdle) wxEND_EVENT_TABLE() TestGLCanvas::TestGLCanvas(wxWindow *parent, int *attribList) : wxGLCanvas(parent, wxID_ANY, attribList, wxDefaultPosition, wxDefaultSize, wxFULL_REPAINT_ON_RESIZE), parent(parent) { bandwidth = 800000; resample_ratio = (float) (bandwidth) / (float) SRATE; audio_frequency = 44000; audio_resample_ratio = (float) (audio_frequency) / (float) bandwidth; int in_block_size = BUF_SIZE / 2; int out_block_size = FFT_SIZE; in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * in_block_size); out[0] = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * out_block_size); out[1] = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * out_block_size); plan[0] = fftw_plan_dft_1d(out_block_size, in, out[0], FFTW_FORWARD, FFTW_MEASURE); plan[1] = fftw_plan_dft_1d(out_block_size, out[0], out[1], FFTW_BACKWARD, FFTW_MEASURE); fft_ceil_ma = fft_ceil_maa = 1.0; dev = alcOpenDevice(NULL); if (!dev) { fprintf(stderr, "Oops\n"); } ctx = alcCreateContext(dev, NULL); alcMakeContextCurrent(ctx); if (!ctx) { fprintf(stderr, "Oops2\n"); } alGenBuffers(AL_NUM_BUFFERS, buffers); alGenSources(1, &source); // prime the buffers int16_t buffer_init[AL_BUFFER_SIZE]; for (int i = 0; i < AL_BUFFER_SIZE; i++) { buffer_init[i] = 0; } format = AL_FORMAT_MONO16; for (int i = 0; i < AL_NUM_BUFFERS; i++) { alBufferData(buffers[i], format, buffer_init, AL_BUFFER_SIZE, audio_frequency); } if (alGetError() != AL_NO_ERROR) { std::cout << "Error priming :(\n"; } alSourceQueueBuffers(source, AL_NUM_BUFFERS, buffers); alSourcePlay(source); if (alGetError() != AL_NO_ERROR) { std::cout << "Error starting :(\n"; } /* // define filter length, type, number of bands unsigned int n = 55; liquid_firdespm_btype btype = LIQUID_FIRDESPM_BANDPASS; unsigned int num_bands = 3; // band edge description [size: num_bands x 2] float bands[6] = { 0.0f, 0.14f, 0.15f, 0.35f, 0.36f, 0.5f }; // desired response [size: num_bands x 1] float des[3] = { 1.0f, 0.0f, 1.0f }; // relative weights [size: num_bands x 1] float weights[3] = { 1.0f, 1.0f, 1.0f }; // in-band weighting functions [size: num_bands x 1] liquid_firdespm_wtype wtype[3] = { LIQUID_FIRDESPM_FLATWEIGHT, LIQUID_FIRDESPM_EXPWEIGHT, LIQUID_FIRDESPM_FLATWEIGHT }; // allocate memory for array and design filter float h[n]; firdespm_run(n, num_bands, bands, des, weights, wtype, btype, h); */ float fc = 0.5f * (bandwidth / SRATE); // filter cutoff frequency float ft = 0.05f; // filter transition float As = 60.0f; // stop-band attenuation [dB] float mu = 0.0f; // fractional timing offset // estimate required filter length and generate filter unsigned int h_len = estimate_req_filter_len(ft, As); float h[h_len]; liquid_firdes_kaiser(h_len, fc, As, mu, h); fir_filter = firfilt_crcf_create(h, h_len); unsigned int m = 5; // filter semi-length float slsl = 60.0f; // filter sidelobe suppression level fir_hil = firhilbf_create(m, slsl); // create multi-stage arbitrary resampler object resampler = msresamp_crcf_create(resample_ratio, As); msresamp_crcf_print(resampler); audio_resampler = msresamp_crcf_create(audio_resample_ratio, As); msresamp_crcf_print(audio_resampler); float kf = 0.1f; // modulation factor fdem = freqdem_create(kf); freqdem_print(fdem); } TestGLCanvas::~TestGLCanvas() { alcMakeContextCurrent(NULL); alcDestroyContext(ctx); alcCloseDevice(dev); } void TestGLCanvas::OnPaint(wxPaintEvent& WXUNUSED(event)) { wxPaintDC dc(this); const wxSize ClientSize = GetClientSize(); PrimaryGLContext& canvas = wxGetApp().GetContext(this); glViewport(0, 0, ClientSize.x, ClientSize.y); canvas.Plot(spectrum_points, waveform_points); SwapBuffers(); } void TestGLCanvas::OnKeyDown(wxKeyEvent& event) { float angle = 5.0; unsigned int freq; switch (event.GetKeyCode()) { case WXK_RIGHT: freq = ((AppFrame*) parent)->getFrequency(); freq += 10000; ((AppFrame*) parent)->setFrequency(freq); break; case WXK_LEFT: freq = ((AppFrame*) parent)->getFrequency(); freq -= 10000; ((AppFrame*) parent)->setFrequency(freq); break; case WXK_DOWN: break; case WXK_UP: break; case WXK_SPACE: break; default: event.Skip(); return; } } void multiply2(float ar, float aj, float br, float bj, float *cr, float *cj) { *cr = ar * br - aj * bj; *cj = aj * br + ar * bj; } float polar_discriminant2(float ar, float aj, float br, float bj) { float cr, cj; double angle; multiply2(ar, aj, br, -bj, &cr, &cj); angle = atan2(cj, cr); return (angle / M_PI); } void TestGLCanvas::setData(std::vector *data) { if (data && data->size()) { /* std::vector tmp(data->begin(), data->end()); demod.demod(tmp); if (waveform_points.size() < demod.lp_len * 2) { waveform_points.resize(demod.lp_len * 2); } float waveform_ceil = 0; for (int i = 0, iMax = demod.lp_len; i < iMax; i++) { float v = fabs(demod.lowpassed[i]); if (v > waveform_ceil) { waveform_ceil = v; } } for (int i = 0, iMax = demod.lp_len; i < iMax; i++) { waveform_points[i * 2 + 1] = (float) demod.lowpassed[i] / waveform_ceil; waveform_points[i * 2] = ((double) i / (double) iMax); } ALint val; ALuint buffer; alGetSourcei(source, AL_SOURCE_STATE, &val); if (val != AL_PLAYING) { alSourcePlay(source); } // std::cout << "buffer: " << demod.output_target->len << "@" << frequency << std::endl; std::vector *newBuffer = new std::vector; newBuffer->resize(demod.output_target->len); memcpy(&(*newBuffer)[0],demod.output_target->buf,demod.output_target->len*2); audio_queue.push(newBuffer); frequency = demod.output.rate; while (audio_queue.size()>8) { alGetSourcei(source, AL_BUFFERS_PROCESSED, &val); if (val <= 0) { break; } std::vector *nextBuffer = audio_queue.front(); alSourceUnqueueBuffers(source, 1, &buffer); alBufferData(buffer, format, &(*nextBuffer)[0], nextBuffer->size()*2, frequency); alSourceQueueBuffers(source, 1, &buffer); audio_queue.pop(); delete nextBuffer; if (alGetError() != AL_NO_ERROR) { std::cout << "Error buffering :(\n"; } } */ if (spectrum_points.size() < FFT_SIZE * 2) { spectrum_points.resize(FFT_SIZE * 2); } fftw_execute(plan[0]); liquid_float_complex filtered_input[BUF_SIZE / 2]; for (int i = 0; i < BUF_SIZE / 2; i++) { liquid_float_complex x; liquid_float_complex y; x.real = (float) (*data)[i * 2] / 127.0f; x.imag = (float) (*data)[i * 2 + 1] / 127.0f; firfilt_crcf_push(fir_filter, x); // push input sample firfilt_crcf_execute(fir_filter, &y); // compute output filtered_input[i] = y; in[i][0] = x.real; in[i][1] = x.imag; } int out_size = ceil((float) (BUF_SIZE / 2) * resample_ratio); liquid_float_complex resampled_output[out_size]; unsigned int num_written; // number of values written to buffer msresamp_crcf_execute(resampler, filtered_input, (BUF_SIZE / 2), resampled_output, &num_written); double fft_ceil = 0; // fft_floor, if (fft_result.size() < FFT_SIZE) { fft_result.resize(FFT_SIZE); fft_result_ma.resize(FFT_SIZE); fft_result_maa.resize(FFT_SIZE); } for (int j = 0; j < 2; j++) { for (int i = 0, iMax = FFT_SIZE / 2; i < iMax; i++) { double a = out[0][i][0]; double b = out[0][i][1]; double c = sqrt(a * a + b * b); double x = out[0][FFT_SIZE / 2 + i][0]; double y = out[0][FFT_SIZE / 2 + i][1]; double z = sqrt(x * x + y * y); fft_result[i] = (z); fft_result[FFT_SIZE / 2 + i] = (c); } } float time_slice = (float) SRATE / (float) (BUF_SIZE / 2); for (int i = 0, iMax = FFT_SIZE; i < iMax; i++) { fft_result_maa[i] += (fft_result_ma[i] - fft_result_maa[i]) * 0.65; fft_result_ma[i] += (fft_result[i] - fft_result_ma[i]) * 0.65; if (fft_result_maa[i] > fft_ceil) { fft_ceil = fft_result_maa[i]; } } fft_ceil_ma = fft_ceil_ma + (fft_ceil - fft_ceil_ma) * 0.05; fft_ceil_maa = fft_ceil_maa + (fft_ceil - fft_ceil_maa) * 0.05; // fftw_execute(plan[1]); for (int i = 0, iMax = FFT_SIZE; i < iMax; i++) { spectrum_points[i * 2 + 1] = fft_result_maa[i] / fft_ceil_maa; spectrum_points[i * 2] = ((double) i / (double) iMax); } float waveform_ceil = 0, waveform_floor = 0; // std::vector output_buffer; // output_buffer.resize(num_written); // for (int i = 0, iMax = BUF_SIZE / 2; i < iMax; i++) { // liquid_float_complex x; // x.real = in[i][0]; // x.imag = in[i][1]; // float y[2]; // // firhilbf_interp_execute(fir_hil, x, y); // output_buffer[i] = y[1]; // // if (waveform_ceil < y[1]) { // waveform_ceil = y[1]; // } // } int i; float pcm = 0; float pr = pre_r; float pj = pre_j; for (i = 0; i < num_written; i++) { freqdem_demodulate(fdem, resampled_output[i], &pcm); resampled_output[i].real = (float) pcm; resampled_output[i].imag = 0; if (waveform_ceil < resampled_output[i].real) { waveform_ceil = resampled_output[i].real; } if (waveform_floor > resampled_output[i].real) { waveform_floor = resampled_output[i].real; } } droop_ofs = -(waveform_ceil + waveform_floor) / 2.0; droop_ofs_ma = droop_ofs_ma + (droop_ofs - droop_ofs_ma) * 0.01; droop_ofs_maa = droop_ofs_maa + (droop_ofs_ma - droop_ofs_maa) * 0.01; pre_r = pr; pre_j = pj; int audio_out_size = ceil((float) (num_written) * audio_resample_ratio); liquid_float_complex resampled_audio_output[audio_out_size]; unsigned int num_audio_written; // number of values written to buffer msresamp_crcf_execute(audio_resampler, resampled_output, num_written, resampled_audio_output, &num_audio_written); if (waveform_points.size() != num_audio_written * 2) { waveform_points.resize(num_audio_written * 2); } for (int i = 0, iMax = waveform_points.size() / 2; i < iMax; i++) { waveform_points[i * 2 + 1] = resampled_audio_output[i].real * 0.5f; waveform_points[i * 2] = ((double) i / (double) iMax); } // std::cout << num_audio_written << std::endl; ALint val; ALuint buffer; alGetSourcei(source, AL_SOURCE_STATE, &val); if (val != AL_PLAYING) { alSourcePlay(source); } // std::cout << "buffer: " << demod.output_target->len << "@" << frequency << std::endl; std::vector *newBuffer = new std::vector; newBuffer->resize(num_audio_written); for (int i = 0; i < num_audio_written; i++) { (*newBuffer)[i] = resampled_audio_output[i].real*32767.0; } audio_queue.push(newBuffer); while (audio_queue.size() > 8) { alGetSourcei(source, AL_BUFFERS_PROCESSED, &val); if (val <= 0) { break; } std::vector *nextBuffer = audio_queue.front(); alSourceUnqueueBuffers(source, 1, &buffer); alBufferData(buffer, format, &(*nextBuffer)[0], nextBuffer->size() * 2, audio_frequency); alSourceQueueBuffers(source, 1, &buffer); audio_queue.pop(); delete nextBuffer; if (alGetError() != AL_NO_ERROR) { std::cout << "Error buffering :(\n"; } } } } void TestGLCanvas::OnIdle(wxIdleEvent &event) { Refresh(false); }