#include "PrimaryGLContext.h" #include "wx/wxprec.h" #ifndef WX_PRECOMP #include "wx/wx.h" #endif #if !wxUSE_GLCANVAS #error "OpenGL required: set wxUSE_GLCANVAS to 1 and rebuild the library" #endif #include "CubicSDR.h" #include "CubicSDRDefs.h" #include "AppFrame.h" #include wxString glGetwxString(GLenum name) { const GLubyte *v = glGetString(name); if (v == 0) { // The error is not important. It is GL_INVALID_ENUM. // We just want to clear the error stack. glGetError(); return wxString(); } return wxString((const char*) v); } static void CheckGLError() { GLenum errLast = GL_NO_ERROR; for (;;) { GLenum err = glGetError(); if (err == GL_NO_ERROR) return; if (err == errLast) { wxLogError (wxT("OpenGL error state couldn't be reset.")); return; } errLast = err; wxLogError (wxT("OpenGL error %d"), err); } } PrimaryGLContext::PrimaryGLContext(wxGLCanvas *canvas) : wxGLContext(canvas) { SetCurrent(*canvas); glEnable(GL_CULL_FACE); glEnable(GL_DEPTH_TEST); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glGenTextures(1, &waterfall); glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, waterfall); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL); grad.addColor(GradientColor(0, 0, 0)); grad.addColor(GradientColor(0, 0, 1.0)); grad.addColor(GradientColor(0, 1.0, 0)); grad.addColor(GradientColor(1.0, 1.0, 0)); grad.addColor(GradientColor(1.0, 0.2, 0.0)); grad.generate(256); glPixelTransferi(GL_MAP_COLOR, GL_TRUE); glPixelMapfv(GL_PIXEL_MAP_I_TO_R, 256, &(grad.getRed())[0]); glPixelMapfv(GL_PIXEL_MAP_I_TO_G, 256, &(grad.getGreen())[0]); glPixelMapfv(GL_PIXEL_MAP_I_TO_B, 256, &(grad.getBlue())[0]); CheckGLError(); } void PrimaryGLContext::Plot(std::vector &points, std::vector &points2) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); if (points.size()) { memmove(waterfall_tex + FFT_SIZE, waterfall_tex, (NUM_WATERFALL_LINES - 1) * FFT_SIZE); for (int i = 0, iMax = FFT_SIZE; i < iMax; i++) { float v = points[i*2+1]; float wv = v; if (wv<0.0) wv = 0.0; if (wv>1.0) wv = 1.0; waterfall_tex[i] = (unsigned char) floor(wv * 255.0); } } glBindTexture(GL_TEXTURE_2D, waterfall); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, FFT_SIZE, NUM_WATERFALL_LINES, 0, GL_COLOR_INDEX, GL_UNSIGNED_BYTE, (GLvoid *) waterfall_tex); glDisable(GL_TEXTURE_2D); glColor3f(1.0,1.0,1.0); if (points.size()) { glPushMatrix(); glTranslatef(-1.0f, -0.9f, 0.0f); glScalef(2.0f, 1.0f, 1.0f); glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(2, GL_FLOAT, 0, &points[0]); glDrawArrays(GL_LINE_STRIP, 0, points.size() / 2); glDisableClientState(GL_VERTEX_ARRAY); glPopMatrix(); } if (points2.size()) { glPushMatrix(); glTranslatef(-1.0f, 0.5f, 0.0f); glScalef(2.0f, 1.0f, 1.0f); glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(2, GL_FLOAT, 0, &points2[0]); glDrawArrays(GL_LINE_STRIP, 0, points2.size() / 2); glDisableClientState(GL_VERTEX_ARRAY); glPopMatrix(); } glEnable(GL_TEXTURE_2D); // glEnable(GL_COLOR_TABLE); glBindTexture(GL_TEXTURE_2D, waterfall); glBegin(GL_QUADS); glTexCoord2f(0.0, 0.0); glVertex3f(-1.0, -1.0, 0.0); glTexCoord2f(1.0, 0.0); glVertex3f(1.0, -1.0, 0.0); glTexCoord2f(1.0, 1.0); glVertex3f(1.0, 1.0, 0.0); glTexCoord2f(0.0, 1.0); glVertex3f(-1.0, 1.0, 0.0); glEnd(); glFlush(); CheckGLError(); } wxBEGIN_EVENT_TABLE(TestGLCanvas, wxGLCanvas) EVT_PAINT(TestGLCanvas::OnPaint) EVT_KEY_DOWN(TestGLCanvas::OnKeyDown) EVT_IDLE(TestGLCanvas::OnIdle) wxEND_EVENT_TABLE() TestGLCanvas::TestGLCanvas(wxWindow *parent, int *attribList) : wxGLCanvas(parent, wxID_ANY, attribList, wxDefaultPosition, wxDefaultSize, wxFULL_REPAINT_ON_RESIZE), parent(parent) { int in_block_size = BUF_SIZE / 2; int out_block_size = FFT_SIZE; in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * in_block_size); out[0] = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * out_block_size); out[1] = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * out_block_size); plan[0] = fftw_plan_dft_1d(out_block_size, in, out[0], FFTW_FORWARD, FFTW_MEASURE); plan[1] = fftw_plan_dft_1d(out_block_size, out[0], out[1], FFTW_BACKWARD, FFTW_MEASURE); fft_ceil_ma = fft_ceil_maa = 100.0; fft_floor_ma = fft_floor_maa = 0.0; } TestGLCanvas::~TestGLCanvas() { } void TestGLCanvas::OnPaint(wxPaintEvent& WXUNUSED(event)) { wxPaintDC dc(this); const wxSize ClientSize = GetClientSize(); PrimaryGLContext& canvas = wxGetApp().GetContext(this); glViewport(0, 0, ClientSize.x, ClientSize.y); canvas.Plot(spectrum_points, test_demod.waveform_points); SwapBuffers(); } void TestGLCanvas::OnKeyDown(wxKeyEvent& event) { float angle = 5.0; unsigned int freq; switch (event.GetKeyCode()) { case WXK_RIGHT: freq = ((AppFrame*) parent)->getFrequency(); freq += 100000; ((AppFrame*) parent)->setFrequency(freq); break; case WXK_LEFT: freq = ((AppFrame*) parent)->getFrequency(); freq -= 100000; ((AppFrame*) parent)->setFrequency(freq); break; case WXK_DOWN: break; case WXK_UP: break; case WXK_SPACE: break; default: event.Skip(); return; } } void multiply2(float ar, float aj, float br, float bj, float *cr, float *cj) { *cr = ar * br - aj * bj; *cj = aj * br + ar * bj; } float polar_discriminant2(float ar, float aj, float br, float bj) { float cr, cj; double angle; multiply2(ar, aj, br, -bj, &cr, &cj); angle = atan2(cj, cr); return (angle / M_PI); } void TestGLCanvas::setData(std::vector *data) { if (data && data->size()) { if (spectrum_points.size() < FFT_SIZE * 2) { spectrum_points.resize(FFT_SIZE * 2); } for (int i = 0; i < BUF_SIZE / 2; i++) { in[i][0] = (float) (*data)[i * 2] / 127.0f; in[i][1] = (float) (*data)[i * 2 + 1] / 127.0f; } fftw_execute(plan[0]); double fft_ceil = 0, fft_floor=1; if (fft_result.size() < FFT_SIZE) { fft_result.resize(FFT_SIZE); fft_result_ma.resize(FFT_SIZE); fft_result_maa.resize(FFT_SIZE); } for (int j = 0; j < 2; j++) { for (int i = 0, iMax = FFT_SIZE / 2; i < iMax; i++) { double a = out[0][i][0]; double b = out[0][i][1]; double c = sqrt(a * a + b * b); double x = out[0][FFT_SIZE / 2 + i][0]; double y = out[0][FFT_SIZE / 2 + i][1]; double z = sqrt(x * x + y * y); fft_result[i] = (z); fft_result[FFT_SIZE / 2 + i] = (c); } } float time_slice = (float) SRATE / (float) (BUF_SIZE / 2); for (int i = 0, iMax = FFT_SIZE; i < iMax; i++) { fft_result_maa[i] += (fft_result_ma[i] - fft_result_maa[i]) * 0.65; fft_result_ma[i] += (fft_result[i] - fft_result_ma[i]) * 0.65; if (fft_result_maa[i] > fft_ceil) { fft_ceil = fft_result_maa[i]; } if (fft_result_maa[i] < fft_floor) { fft_floor = fft_result_maa[i]; } } fft_ceil += 1; fft_floor -= 1; fft_ceil_ma = fft_ceil_ma + (fft_ceil - fft_ceil_ma) * 0.01; fft_ceil_maa = fft_ceil_maa + (fft_ceil_ma - fft_ceil_maa) * 0.01; fft_floor_ma = fft_floor_ma + (fft_floor - fft_floor_ma) * 0.01; fft_floor_maa = fft_floor_maa + (fft_floor_ma - fft_floor_maa) * 0.01; // fftw_execute(plan[1]); for (int i = 0, iMax = FFT_SIZE; i < iMax; i++) { float v = (log10(fft_result_maa[i]-fft_floor_maa) / log10(fft_ceil_maa-fft_floor_maa)); spectrum_points[i * 2] = ((float) i / (float) iMax); spectrum_points[i * 2 + 1] = v; } test_demod.writeBuffer(data); } } void TestGLCanvas::OnIdle(wxIdleEvent &event) { Refresh(false); }