// // mat4.h // CubicVR2 // // Created by Charles J. Cliffe on 2013-02-21. // Copyright (c) 2013 Charles J. Cliffe. All rights reserved. // #ifndef __CubicVR2__mat4__ #define __CubicVR2__mat4__ #include #include "cubic_types.h" #include "vec3.h" #include "vec4.h" #include "mat3.h" #include namespace CubicVR { using namespace std; #define mat4SG(c,x,y) \ mat4 COMBINE(get,x)() { return y; } \ c & COMBINE(set,x)(mat4 value) { y = value; return *this; } struct mat4 { __float a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p; // __float operator [] (unsigned i) const { return ((__float *)this)[i]; } #ifndef _WIN32 __float& operator [] (unsigned i) { return ((__float *)this)[i]; } #endif operator __float*() const { return (__float *)this; } mat4(__float ai,__float bi,__float ci,__float di,__float ei,__float fi,__float gi,__float hi,__float ii,__float ji,__float ki,__float li,__float mi,__float ni,__float oi,__float pi) { a = ai; b = bi; c = ci; d = di; e = ei; f = fi; g = gi; h = hi; i = ii; j = ji; k = ki; l = li; m = mi; n = ni; o = oi; p = pi; } mat4() { memset(this,0,sizeof(mat4)); } mat4 operator* (mat4 m) { return mat4::multiply(*this, m, true); }; void operator*= (mat4 m) { *this = mat4::multiply(*this, m, true); }; // mat4 &operator= (const mat4 &m) { memcpy(this,(__float *)m,sizeof(__float)*16); return *this; }; static mat4 identity() { return mat4(1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f); } static mat4 multiply(mat4 mLeft, mat4 mRight, bool /* updated */) { mat4 mOut; mOut[0] = mLeft[0] * mRight[0] + mLeft[4] * mRight[1] + mLeft[8] * mRight[2] + mLeft[12] * mRight[3]; mOut[1] = mLeft[1] * mRight[0] + mLeft[5] * mRight[1] + mLeft[9] * mRight[2] + mLeft[13] * mRight[3]; mOut[2] = mLeft[2] * mRight[0] + mLeft[6] * mRight[1] + mLeft[10] * mRight[2] + mLeft[14] * mRight[3]; mOut[3] = mLeft[3] * mRight[0] + mLeft[7] * mRight[1] + mLeft[11] * mRight[2] + mLeft[15] * mRight[3]; mOut[4] = mLeft[0] * mRight[4] + mLeft[4] * mRight[5] + mLeft[8] * mRight[6] + mLeft[12] * mRight[7]; mOut[5] = mLeft[1] * mRight[4] + mLeft[5] * mRight[5] + mLeft[9] * mRight[6] + mLeft[13] * mRight[7]; mOut[6] = mLeft[2] * mRight[4] + mLeft[6] * mRight[5] + mLeft[10] * mRight[6] + mLeft[14] * mRight[7]; mOut[7] = mLeft[3] * mRight[4] + mLeft[7] * mRight[5] + mLeft[11] * mRight[6] + mLeft[15] * mRight[7]; mOut[8] = mLeft[0] * mRight[8] + mLeft[4] * mRight[9] + mLeft[8] * mRight[10] + mLeft[12] * mRight[11]; mOut[9] = mLeft[1] * mRight[8] + mLeft[5] * mRight[9] + mLeft[9] * mRight[10] + mLeft[13] * mRight[11]; mOut[10] = mLeft[2] * mRight[8] + mLeft[6] * mRight[9] + mLeft[10] * mRight[10] + mLeft[14] * mRight[11]; mOut[11] = mLeft[3] * mRight[8] + mLeft[7] * mRight[9] + mLeft[11] * mRight[10] + mLeft[15] * mRight[11]; mOut[12] = mLeft[0] * mRight[12] + mLeft[4] * mRight[13] + mLeft[8] * mRight[14] + mLeft[12] * mRight[15]; mOut[13] = mLeft[1] * mRight[12] + mLeft[5] * mRight[13] + mLeft[9] * mRight[14] + mLeft[13] * mRight[15]; mOut[14] = mLeft[2] * mRight[12] + mLeft[6] * mRight[13] + mLeft[10] * mRight[14] + mLeft[14] * mRight[15]; mOut[15] = mLeft[3] * mRight[12] + mLeft[7] * mRight[13] + mLeft[11] * mRight[14] + mLeft[15] * mRight[15]; return mOut; }; static vec3 multiply(mat4 m1, vec3 m2, bool /* updated */) { vec3 mOut; mOut[0] = m1[0] * m2[0] + m1[4] * m2[1] + m1[8] * m2[2] + m1[12]; mOut[1] = m1[1] * m2[0] + m1[5] * m2[1] + m1[9] * m2[2] + m1[13]; mOut[2] = m1[2] * m2[0] + m1[6] * m2[1] + m1[10] * m2[2] + m1[14]; return mOut; } static mat4 frustum(__float left, __float right, __float bottom, __float top, __float zNear, __float zFar) { __float A = (right + left) / (right - left); __float B = (top + bottom) / (top - bottom); __float C = - (zFar + zNear) / (zFar - zNear); __float D = - (-2.0f * zFar * zNear) / (zFar - zNear); return mat4((2.0f * zNear) / (right - left), 0, A, 0, 0, (2.0f * zNear) / (top - bottom), B, 0, 0, 0, C, D, 0, 0, -1, 0); }; static mat4 perspective(__float fovy, __float aspect, __float zNear, __float zFar) { __float yFac = tan(fovy * (float)M_PI / 360.0f); __float xFac = yFac * aspect; return mat4::frustum(-xFac, xFac, -yFac, yFac, zNear, zFar); }; static mat4 ortho(__float left,__float right,__float bottom,__float top,__float znear,__float zfar) { return mat4(2.0f / (right - left), 0, 0, 0, 0, 2.0f / (top - bottom), 0, 0, 0, 0, -2.0f / (zfar - znear), 0, -(left + right) / (right - left), -(top + bottom) / (top - bottom), -(zfar + znear) / (zfar - znear), 1); }; static __float determinant(mat4 m) { __float a0 = m[0] * m[5] - m[1] * m[4]; __float a1 = m[0] * m[6] - m[2] * m[4]; __float a2 = m[0] * m[7] - m[3] * m[4]; __float a3 = m[1] * m[6] - m[2] * m[5]; __float a4 = m[1] * m[7] - m[3] * m[5]; __float a5 = m[2] * m[7] - m[3] * m[6]; __float b0 = m[8] * m[13] - m[9] * m[12]; __float b1 = m[8] * m[14] - m[10] * m[12]; __float b2 = m[8] * m[15] - m[11] * m[12]; __float b3 = m[9] * m[14] - m[10] * m[13]; __float b4 = m[9] * m[15] - m[11] * m[13]; __float b5 = m[10] * m[15] - m[11] * m[14]; __float det = a0 * b5 - a1 * b4 + a2 * b3 + a3 * b2 - a4 * b1 + a5 * b0; return det; }; // coFactor: function (m, n, out) { // // .. todo.. // }, static mat4 transpose(mat4 m) { return mat4(m[0], m[4], m[8], m[12], m[1], m[5], m[9], m[13], m[2], m[6], m[10], m[14], m[3], m[7], m[11], m[15]); }; static mat3 inverse_mat3(mat4 mat) { mat3 dest; __float a00 = mat[0], a01 = mat[1], a02 = mat[2], a10 = mat[4], a11 = mat[5], a12 = mat[6], a20 = mat[8], a21 = mat[9], a22 = mat[10]; __float b01 = a22*a11-a12*a21, b11 = -a22*a10+a12*a20, b21 = a21*a10-a11*a20; __float d = a00*b01 + a01*b11 + a02*b21; if (!d) { return dest; } __float id = 1/d; dest[0] = b01*id; dest[1] = (-a22*a01 + a02*a21)*id; dest[2] = (a12*a01 - a02*a11)*id; dest[3] = b11*id; dest[4] = (a22*a00 - a02*a20)*id; dest[5] = (-a12*a00 + a02*a10)*id; dest[6] = b21*id; dest[7] = (-a21*a00 + a01*a20)*id; dest[8] = (a11*a00 - a01*a10)*id; return dest; }; static mat4 inverse(mat4 m) { mat4 m_inv; __float a0 = m[0] * m[5] - m[1] * m[4]; __float a1 = m[0] * m[6] - m[2] * m[4]; __float a2 = m[0] * m[7] - m[3] * m[4]; __float a3 = m[1] * m[6] - m[2] * m[5]; __float a4 = m[1] * m[7] - m[3] * m[5]; __float a5 = m[2] * m[7] - m[3] * m[6]; __float b0 = m[8] * m[13] - m[9] * m[12]; __float b1 = m[8] * m[14] - m[10] * m[12]; __float b2 = m[8] * m[15] - m[11] * m[12]; __float b3 = m[9] * m[14] - m[10] * m[13]; __float b4 = m[9] * m[15] - m[11] * m[13]; __float b5 = m[10] * m[15] - m[11] * m[14]; __float determinant = a0 * b5 - a1 * b4 + a2 * b3 + a3 * b2 - a4 * b1 + a5 * b0; if (determinant != 0) { m_inv[0] = 0 + m[5] * b5 - m[6] * b4 + m[7] * b3; m_inv[4] = 0 - m[4] * b5 + m[6] * b2 - m[7] * b1; m_inv[8] = 0 + m[4] * b4 - m[5] * b2 + m[7] * b0; m_inv[12] = 0 - m[4] * b3 + m[5] * b1 - m[6] * b0; m_inv[1] = 0 - m[1] * b5 + m[2] * b4 - m[3] * b3; m_inv[5] = 0 + m[0] * b5 - m[2] * b2 + m[3] * b1; m_inv[9] = 0 - m[0] * b4 + m[1] * b2 - m[3] * b0; m_inv[13] = 0 + m[0] * b3 - m[1] * b1 + m[2] * b0; m_inv[2] = 0 + m[13] * a5 - m[14] * a4 + m[15] * a3; m_inv[6] = 0 - m[12] * a5 + m[14] * a2 - m[15] * a1; m_inv[10] = 0 + m[12] * a4 - m[13] * a2 + m[15] * a0; m_inv[14] = 0 - m[12] * a3 + m[13] * a1 - m[14] * a0; m_inv[3] = 0 - m[9] * a5 + m[10] * a4 - m[11] * a3; m_inv[7] = 0 + m[8] * a5 - m[10] * a2 + m[11] * a1; m_inv[11] = 0 - m[8] * a4 + m[9] * a2 - m[11] * a0; m_inv[15] = 0 + m[8] * a3 - m[9] * a1 + m[10] * a0; __float inverse_det = 1.0f / determinant; m_inv[0] *= inverse_det; m_inv[1] *= inverse_det; m_inv[2] *= inverse_det; m_inv[3] *= inverse_det; m_inv[4] *= inverse_det; m_inv[5] *= inverse_det; m_inv[6] *= inverse_det; m_inv[7] *= inverse_det; m_inv[8] *= inverse_det; m_inv[9] *= inverse_det; m_inv[10] *= inverse_det; m_inv[11] *= inverse_det; m_inv[12] *= inverse_det; m_inv[13] *= inverse_det; m_inv[14] *= inverse_det; m_inv[15] *= inverse_det; return m_inv; } return mat4::identity(); }; static mat4 translate(__float x, __float y, __float z) { mat4 m = mat4(1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, x, y, z, 1.0f); return m; }; static mat4 rotateAxis(__float r, __float x, __float y, __float z) { // rotate r about axis x,y,z __float sAng = sinf(r*((float)M_PI/180.0f)); __float cAng = cosf(r*((float)M_PI/180.0f)); return mat4( cAng+(x*x)*(1.0f-cAng), x*y*(1.0f-cAng) - z*sAng, x*z*(1.0f-cAng) + y*sAng, 0, y*x*(1.0f-cAng)+z*sAng, cAng + y*y*(1.0f-cAng), y*z*(1.0f-cAng)-x*sAng, 0, z*x*(1.0f-cAng)-y*sAng, z*y*(1.0f-cAng)+x*sAng, cAng+(z*z)*(1.0f-cAng), 0, 0, 0, 0, 1 ); }; static mat4 rotate(__float x, __float y, __float z) { // rotate each axis, angles x, y, z in turn __float sAng,cAng; mat4 mOut = mat4(1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f); if (z!=0) { sAng = sinf(z*((float)M_PI/180.0f)); cAng = cosf(z*((float)M_PI/180.0f)); mOut *= mat4(cAng, sAng, 0.0f, 0.0f, -sAng, cAng, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f); } if (y!=0) { sAng = sinf(y*((float)M_PI/180.0f)); cAng = cosf(y*((float)M_PI/180.0f)); mOut *= mat4(cAng, 0.0f, -sAng, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, sAng, 0.0f, cAng, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f); } if (x!=0) { sAng = sinf(x*((float)M_PI/180.0f)); cAng = cosf(x*((float)M_PI/180.0f)); mOut *= mat4(1.0f, 0.0f, 0.0f, 0.0f, 0.0f, cAng, sAng, 0.0f, 0.0f, -sAng, cAng, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f); } return mOut; }; static mat4 scale(__float x, __float y, __float z) { return mat4(x, 0.0f, 0.0f, 0.0f, 0.0f, y, 0.0f, 0.0f, 0.0f, 0.0f, z, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f); }; static mat4 transform(vec3 position, vec3 rotation, vec3 scale) { mat4 m = mat4::identity(); if (position!=NULL) { m *= mat4::translate(position[0],position[1],position[2]); } if (rotation!=NULL) { if (!(rotation[0] == 0 && rotation[1] == 0 && rotation[2] == 0)) { m *= mat4::rotate(rotation[0],rotation[1],rotation[2]); } } if (scale!=NULL) { if (!(scale[0] == 1 && scale[1] == 1 && scale[2] == 1)) { m *= mat4::scale(scale[0],scale[1],scale[2]); } } return m; }; static vec4 vec4_multiply(vec4 m1, mat4 m2) { vec4 mOut; mOut[0] = m2[0] * m1[0] + m2[4] * m1[1] + m2[8] * m1[2] + m2[12] * m1[3]; mOut[1] = m2[1] * m1[0] + m2[5] * m1[1] + m2[9] * m1[2] + m2[13] * m1[3]; mOut[2] = m2[2] * m1[0] + m2[6] * m1[1] + m2[10] * m1[2] + m2[14] * m1[3]; mOut[3] = m2[3] * m1[0] + m2[7] * m1[1] + m2[11] * m1[2] + m2[15] * m1[3]; return mOut; }; static mat4 lookat(__float eyex, __float eyey, __float eyez, __float centerx, __float centery, __float centerz, __float upx, __float upy, __float upz) { vec3 forward, side, up; forward[0] = centerx - eyex; forward[1] = centery - eyey; forward[2] = centerz - eyez; up[0] = upx; up[1] = upy; up[2] = upz; forward = vec3::normalize(forward); /* Side = forward x up */ side = vec3::cross(forward, up); side = vec3::normalize(side); /* Recompute up as: up = side x forward */ up = vec3::cross(side, forward); return mat4::translate(-eyex,-eyey,-eyez) * mat4( side[0], up[0], -forward[0], 0, side[1], up[1], -forward[1], 0, side[2], up[2], -forward[2], 0, 0, 0, 0, 1); }; static vec3 unProject(mat4 pMatrix, mat4 mvMatrix, float width, float height, float winx, float winy, float /* winz */) { vec4 p(((winx / width) * 2.0f) - 1.0, -(((winy / height) * 2.0f) - 1.0), 1.0, 1.0); vec4 invp = mat4::vec4_multiply(mat4::vec4_multiply(p, mat4::inverse(pMatrix)), mat4::inverse(mvMatrix)); vec3 result(invp[0] / invp[3], invp[1] / invp[3], invp[2] / invp[3]); return result; }; }; } #endif /* defined(__CubicVR2__mat4__) */