CubicSDR/src/PrimaryGLContext.cpp

372 lines
10 KiB
C++

#include "PrimaryGLContext.h"
#include "wx/wxprec.h"
#ifndef WX_PRECOMP
#include "wx/wx.h"
#endif
#if !wxUSE_GLCANVAS
#error "OpenGL required: set wxUSE_GLCANVAS to 1 and rebuild the library"
#endif
#include "CubicSDR.h"
#include "CubicSDRDefs.h"
#include "AppFrame.h"
#include <algorithm>
#include "Demodulate.h"
#include "liquid.h"
#include "complex.h"
wxString glGetwxString(GLenum name) {
const GLubyte *v = glGetString(name);
if (v == 0) {
// The error is not important. It is GL_INVALID_ENUM.
// We just want to clear the error stack.
glGetError();
return wxString();
}
return wxString((const char*) v);
}
static void CheckGLError() {
GLenum errLast = GL_NO_ERROR;
for (;;) {
GLenum err = glGetError();
if (err == GL_NO_ERROR)
return;
if (err == errLast) {
wxLogError
(wxT("OpenGL error state couldn't be reset."));
return;
}
errLast = err;
wxLogError
(wxT("OpenGL error %d"), err);
}
}
PrimaryGLContext::PrimaryGLContext(wxGLCanvas *canvas) :
wxGLContext(canvas) {
SetCurrent(*canvas);
glEnable(GL_CULL_FACE);
glEnable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
CheckGLError();
}
void PrimaryGLContext::Plot(std::vector<float> &points, std::vector<float> &points2) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
// glEnable(GL_LINE_SMOOTH);
if (points.size()) {
glPushMatrix();
glTranslatef(-1.0f, -0.9f, 0.0f);
glScalef(2.0f, 1.0f, 1.0f);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, GL_FLOAT, 0, &points[0]);
glDrawArrays(GL_LINE_STRIP, 0, points.size() / 2);
glDisableClientState(GL_VERTEX_ARRAY);
glPopMatrix();
}
if (points2.size()) {
glPushMatrix();
glTranslatef(-1.0f, 0.5f, 0.0f);
glScalef(2.0f, 0.5f, 1.0f);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, GL_FLOAT, 0, &points2[0]);
glDrawArrays(GL_LINE_STRIP, 0, points2.size() / 2);
glDisableClientState(GL_VERTEX_ARRAY);
glPopMatrix();
}
glFlush();
CheckGLError();
}
wxBEGIN_EVENT_TABLE(TestGLCanvas, wxGLCanvas) EVT_PAINT(TestGLCanvas::OnPaint)
EVT_KEY_DOWN(TestGLCanvas::OnKeyDown)
EVT_IDLE(TestGLCanvas::OnIdle)
wxEND_EVENT_TABLE()
TestGLCanvas::TestGLCanvas(wxWindow *parent, int *attribList) :
wxGLCanvas(parent, wxID_ANY, attribList, wxDefaultPosition, wxDefaultSize,
wxFULL_REPAINT_ON_RESIZE), parent(parent) {
int in_block_size = BUF_SIZE / 2;
int out_block_size = FFT_SIZE;
in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * in_block_size);
out[0] = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * out_block_size);
out[1] = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * out_block_size);
plan[0] = fftw_plan_dft_1d(out_block_size, in, out[0], FFTW_FORWARD, FFTW_MEASURE);
plan[1] = fftw_plan_dft_1d(out_block_size, out[0], out[1], FFTW_BACKWARD, FFTW_MEASURE);
fft_ceil_ma = fft_ceil_maa = 1.0;
dev = alcOpenDevice(NULL);
if (!dev) {
fprintf(stderr, "Oops\n");
}
ctx = alcCreateContext(dev, NULL);
alcMakeContextCurrent(ctx);
if (!ctx) {
fprintf(stderr, "Oops2\n");
}
alGenBuffers(AL_NUM_BUFFERS, buffers);
alGenSources(1, &source);
// prime the buffers
int16_t buffer_init[AL_BUFFER_SIZE];
for (int i = 0; i < AL_BUFFER_SIZE; i++) {
buffer_init[i] = 0;
}
format = AL_FORMAT_MONO16;
for (int i = 0; i < AL_NUM_BUFFERS; i++) {
alBufferData(buffers[i], format, buffer_init, AL_BUFFER_SIZE, demod.output.rate);
}
if (alGetError() != AL_NO_ERROR) {
std::cout << "Error priming :(\n";
}
alSourceQueueBuffers(source, AL_NUM_BUFFERS, buffers);
alSourcePlay(source);
if (alGetError() != AL_NO_ERROR) {
std::cout << "Error starting :(\n";
}
// define filter length, type, number of bands
unsigned int n = 55;
liquid_firdespm_btype btype = LIQUID_FIRDESPM_BANDPASS;
unsigned int num_bands = 3;
// band edge description [size: num_bands x 2]
float bands[6] = { 0.0f, 0.14f, 0.15f, 0.35f, 0.36f, 0.5f };
// desired response [size: num_bands x 1]
float des[3] = { 1.0f, 0.0f, 1.0f };
// relative weights [size: num_bands x 1]
float weights[3] = { 1.0f, 1.0f, 1.0f };
// in-band weighting functions [size: num_bands x 1]
liquid_firdespm_wtype wtype[3] = { LIQUID_FIRDESPM_FLATWEIGHT, LIQUID_FIRDESPM_EXPWEIGHT, LIQUID_FIRDESPM_FLATWEIGHT };
// allocate memory for array and design filter
float h[n];
firdespm_run(n, num_bands, bands, des, weights, wtype, btype, h);
fir_filter = firfilt_crcf_create(h, n);
}
TestGLCanvas::~TestGLCanvas() {
alcMakeContextCurrent(NULL);
alcDestroyContext(ctx);
alcCloseDevice(dev);
}
void TestGLCanvas::OnPaint(wxPaintEvent& WXUNUSED(event)) {
wxPaintDC dc(this);
const wxSize ClientSize = GetClientSize();
PrimaryGLContext& canvas = wxGetApp().GetContext(this);
glViewport(0, 0, ClientSize.x, ClientSize.y);
canvas.Plot(spectrum_points, waveform_points);
SwapBuffers();
}
void TestGLCanvas::OnKeyDown(wxKeyEvent& event) {
float angle = 5.0;
unsigned int freq;
switch (event.GetKeyCode()) {
case WXK_RIGHT:
freq = ((AppFrame*) parent)->getFrequency();
freq += 100000;
((AppFrame*) parent)->setFrequency(freq);
break;
case WXK_LEFT:
freq = ((AppFrame*) parent)->getFrequency();
freq -= 100000;
((AppFrame*) parent)->setFrequency(freq);
break;
case WXK_DOWN:
break;
case WXK_UP:
break;
case WXK_SPACE:
break;
default:
event.Skip();
return;
}
}
void TestGLCanvas::setData(std::vector<signed char> *data) {
if (data && data->size()) {
/*
std::vector<int16_t> tmp(data->begin(), data->end());
demod.demod(tmp);
if (waveform_points.size() < demod.lp_len * 2) {
waveform_points.resize(demod.lp_len * 2);
}
float waveform_ceil = 0;
for (int i = 0, iMax = demod.lp_len; i < iMax; i++) {
float v = fabs(demod.lowpassed[i]);
if (v > waveform_ceil) {
waveform_ceil = v;
}
}
for (int i = 0, iMax = demod.lp_len; i < iMax; i++) {
waveform_points[i * 2 + 1] = (float) demod.lowpassed[i] / waveform_ceil;
waveform_points[i * 2] = ((double) i / (double) iMax);
}
ALint val;
ALuint buffer;
alGetSourcei(source, AL_SOURCE_STATE, &val);
if (val != AL_PLAYING) {
alSourcePlay(source);
}
// std::cout << "buffer: " << demod.output_target->len << "@" << frequency << std::endl;
std::vector<ALuint> *newBuffer = new std::vector<ALuint>;
newBuffer->resize(demod.output_target->len);
memcpy(&(*newBuffer)[0],demod.output_target->buf,demod.output_target->len*2);
audio_queue.push(newBuffer);
frequency = demod.output.rate;
while (audio_queue.size()>8) {
alGetSourcei(source, AL_BUFFERS_PROCESSED, &val);
if (val <= 0) {
break;
}
std::vector<ALuint> *nextBuffer = audio_queue.front();
alSourceUnqueueBuffers(source, 1, &buffer);
alBufferData(buffer, format, &(*nextBuffer)[0], nextBuffer->size()*2, frequency);
alSourceQueueBuffers(source, 1, &buffer);
audio_queue.pop();
delete nextBuffer;
if (alGetError() != AL_NO_ERROR) {
std::cout << "Error buffering :(\n";
}
}
*/
if (spectrum_points.size() < FFT_SIZE * 2) {
spectrum_points.resize(FFT_SIZE * 2);
}
for (int i = 0; i < BUF_SIZE / 2; i++) {
liquid_float_complex x;
liquid_float_complex y;
x.real = (float) (*data)[i * 2] / 127.0f;
x.imag = (float) (*data)[i * 2 + 1] / 127.0f;
firfilt_crcf_push(fir_filter, x); // push input sample
firfilt_crcf_execute(fir_filter, &y); // compute output
in[i][0] = y.real;
in[i][1] = y.imag;
}
fftw_execute(plan[0]);
double fft_ceil = 0;
// fft_floor,
if (fft_result.size() < FFT_SIZE) {
fft_result.resize(FFT_SIZE);
fft_result_ma.resize(FFT_SIZE);
fft_result_maa.resize(FFT_SIZE);
}
for (int i = 0, iMax = FFT_SIZE; i < iMax; i++) {
if (i>FFT_SIZE/4 && i < FFT_SIZE-FFT_SIZE/4) {
out[0][i][0] = 0;
out[0][i][1] = 0;
}
}
for (int j = 0; j < 2; j++) {
for (int i = 0, iMax = FFT_SIZE / 2; i < iMax; i++) {
double a = out[0][i][0];
double b = out[0][i][1];
double c = sqrt(a * a + b * b);
double x = out[0][FFT_SIZE / 2 + i][0];
double y = out[0][FFT_SIZE / 2 + i][1];
double z = sqrt(x * x + y * y);
fft_result[i] = z;
fft_result[FFT_SIZE/2 + i] = c;
}
}
float time_slice = (float) SRATE / (float) (BUF_SIZE / 2);
for (int i = 0, iMax = FFT_SIZE; i < iMax; i++) {
fft_result_maa[i] += (fft_result_ma[i] - fft_result_maa[i]) * 0.65;
fft_result_ma[i] += (fft_result[i] - fft_result_ma[i]) * 0.65;
if (fft_result_maa[i] > fft_ceil) {
fft_ceil = fft_result_maa[i];
}
}
fft_ceil_ma = fft_ceil_ma + (fft_ceil - fft_ceil_ma) * 0.05;
fft_ceil_maa = fft_ceil_maa + (fft_ceil - fft_ceil_maa) * 0.05;
fftw_execute(plan[1]);
for (int i = 0, iMax = FFT_SIZE; i < iMax; i++) {
spectrum_points[i * 2 + 1] = fft_result_maa[i] / fft_ceil_maa;
spectrum_points[i * 2] = ((double) i / (double) iMax);
}
}
}
void TestGLCanvas::OnIdle(wxIdleEvent &event) {
Refresh(false);
}