CubicSDR/src/sdr/SDRThread.cpp

176 lines
4.8 KiB
C++

#include "SDRThread.h"
#include "CubicSDRDefs.h"
#include <vector>
#include "CubicSDR.h"
SDRThread::SDRThread(SDRThreadCommandQueue* pQueue) :
m_pQueue(pQueue), iqDataOutQueue(NULL), terminated(false) {
dev = NULL;
sample_rate = SRATE;
}
SDRThread::~SDRThread() {
std::cout << std::endl << "SDR Thread Done." << std::endl << std::endl;
rtlsdr_close(dev);
}
int SDRThread::enumerate_rtl() {
int first_available = -1;
char manufact[256], product[256], serial[256];
unsigned int rtl_count = rtlsdr_get_device_count();
std::cout << "RTL Devices: " << rtl_count << std::endl;
for (int i = 0; i < rtl_count; i++) {
std::cout << "Device #" << i << ": " << rtlsdr_get_device_name(i) << std::endl;
if (rtlsdr_get_device_usb_strings(i, manufact, product, serial) == 0) {
std::cout << "\tManufacturer: " << manufact << ", Product Name: " << product << ", Serial: " << serial << std::endl;
rtlsdr_open(&dev, i);
std::cout << "\t Tuner type: ";
switch (rtlsdr_get_tuner_type(dev)) {
case RTLSDR_TUNER_UNKNOWN:
std::cout << "Unknown";
break;
case RTLSDR_TUNER_E4000:
std::cout << "Elonics E4000";
break;
case RTLSDR_TUNER_FC0012:
std::cout << "Fitipower FC0012";
break;
case RTLSDR_TUNER_FC0013:
std::cout << "Fitipower FC0013";
break;
case RTLSDR_TUNER_FC2580:
std::cout << "Fitipower FC2580";
break;
case RTLSDR_TUNER_R820T:
std::cout << "Rafael Micro R820T";
break;
case RTLSDR_TUNER_R828D:
break;
}
std::cout << std::endl;
/*
int num_gains = rtlsdr_get_tuner_gains(dev, NULL);
int *gains = (int *)malloc(sizeof(int) * num_gains);
rtlsdr_get_tuner_gains(dev, gains);
std::cout << "\t Valid gains: ";
for (int g = 0; g < num_gains; g++) {
if (g > 0) {
std::cout << ", ";
}
std::cout << ((float)gains[g]/10.0f);
}
std::cout << std::endl;
free(gains);
*/
rtlsdr_close(dev);
if (first_available == -1) {
first_available = i;
}
} else {
std::cout << "\tUnable to access device #" << i << " (in use?)" << std::endl;
}
}
return first_available;
}
void SDRThread::threadMain() {
int dev_count = rtlsdr_get_device_count();
int first_available = enumerate_rtl();
if (first_available == -1) {
std::cout << "No devices found.. SDR Thread exiting.." << std::endl;
return;
} else {
std::cout << "Using first available RTL-SDR device #" << first_available << std::endl;
}
signed char buf[BUF_SIZE];
unsigned int frequency = DEFAULT_FREQ;
unsigned int bandwidth = SRATE;
rtlsdr_open(&dev, first_available);
rtlsdr_set_sample_rate(dev, bandwidth);
rtlsdr_set_center_freq(dev, frequency);
rtlsdr_set_agc_mode(dev, 1);
rtlsdr_set_offset_tuning(dev, 0);
rtlsdr_reset_buffer(dev);
sample_rate = rtlsdr_get_sample_rate(dev);
std::cout << "Sample Rate is: " << sample_rate << std::endl;
int n_read;
double seconds = 0.0;
std::cout << "Sampling..";
while (!terminated) {
SDRThreadCommandQueue *cmdQueue = m_pQueue.load();
if (!cmdQueue->empty()) {
bool freq_changed = false;
float new_freq;
while (!cmdQueue->empty()) {
SDRThreadCommand command;
cmdQueue->pop(command);
switch (command.cmd) {
case SDRThreadCommand::SDR_THREAD_CMD_TUNE:
std::cout << "Set frequency: " << command.int_value << std::endl;
freq_changed = true;
new_freq = command.int_value;
break;
}
}
if (freq_changed) {
frequency = new_freq;
rtlsdr_set_center_freq(dev, frequency);
}
}
rtlsdr_read_sync(dev, buf, BUF_SIZE, &n_read);
std::vector<signed char> new_buffer;
for (int i = 0; i < n_read; i++) {
new_buffer.push_back(buf[i] - 127);
}
double time_slice = (double) n_read / (double) sample_rate;
seconds += time_slice;
SDRThreadIQData dataOut;
dataOut.frequency = frequency;
dataOut.bandwidth = bandwidth;
dataOut.data = new_buffer;
if (iqDataOutQueue != NULL) {
iqDataOutQueue.load()->push(dataOut);
}
}
}
void SDRThread::terminate() {
terminated = true;
}