CubicSDR/src/demod/DemodulatorPreThread.cpp

334 lines
12 KiB
C++

#include "CubicSDRDefs.h"
#include <vector>
#ifdef __APPLE__
#include <pthread.h>
#endif
#include "DemodulatorPreThread.h"
#include "CubicSDR.h"
DemodulatorPreThread::DemodulatorPreThread() : IOThread(), iqResampler(NULL), iqResampleRatio(1), audioResampler(NULL), stereoResampler(NULL), audioResampleRatio(1), firStereoLeft(NULL), firStereoRight(NULL), iirStereoPilot(NULL), iqInputQueue(NULL), iqOutputQueue(NULL), threadQueueNotify(NULL), commandQueue(NULL)
{
initialized.store(false);
freqShifter = nco_crcf_create(LIQUID_VCO);
shiftFrequency = 0;
workerQueue = new DemodulatorThreadWorkerCommandQueue;
workerResults = new DemodulatorThreadWorkerResultQueue;
workerThread = new DemodulatorWorkerThread();
workerThread->setInputQueue("WorkerCommandQueue",workerQueue);
workerThread->setOutputQueue("WorkerResultQueue",workerResults);
}
void DemodulatorPreThread::initialize() {
initialized = false;
iqResampleRatio = (double) (params.bandwidth) / (double) params.sampleRate;
audioResampleRatio = (double) (params.audioSampleRate) / (double) params.bandwidth;
float As = 120.0f; // stop-band attenuation [dB]
iqResampler = msresamp_crcf_create(iqResampleRatio, As);
audioResampler = msresamp_rrrf_create(audioResampleRatio, As);
stereoResampler = msresamp_rrrf_create(audioResampleRatio, As);
// Stereo filters / shifters
double firStereoCutoff = ((double) 16000 / (double) params.audioSampleRate);
float ft = ((double) 1000 / (double) params.audioSampleRate); // filter transition
float mu = 0.0f; // fractional timing offset
if (firStereoCutoff < 0) {
firStereoCutoff = 0;
}
if (firStereoCutoff > 0.5) {
firStereoCutoff = 0.5;
}
unsigned int h_len = estimate_req_filter_len(ft, As);
float *h = new float[h_len];
liquid_firdes_kaiser(h_len, firStereoCutoff, As, mu, h);
firStereoLeft = firfilt_rrrf_create(h, h_len);
firStereoRight = firfilt_rrrf_create(h, h_len);
// stereo pilot filter
float bw = params.bandwidth;
if (bw < 100000.0) {
bw = 100000.0;
}
unsigned int order = 5; // filter order
float f0 = ((double) 19000 / bw);
float fc = ((double) 19500 / bw);
float Ap = 1.0f;
As = 60.0f;
iirStereoPilot = iirfilt_crcf_create_prototype(LIQUID_IIRDES_CHEBY2, LIQUID_IIRDES_BANDPASS, LIQUID_IIRDES_SOS, order, fc, f0, Ap, As);
initialized = true;
lastParams = params;
}
DemodulatorPreThread::~DemodulatorPreThread() {
}
void DemodulatorPreThread::run() {
#ifdef __APPLE__
pthread_t tID = pthread_self(); // ID of this thread
int priority = sched_get_priority_max( SCHED_FIFO) - 1;
sched_param prio = {priority}; // scheduling priority of thread
pthread_setschedparam(tID, SCHED_FIFO, &prio);
#endif
if (!initialized) {
initialize();
}
std::cout << "Demodulator preprocessor thread started.." << std::endl;
t_Worker = new std::thread(&DemodulatorWorkerThread::threadMain, workerThread);
ReBuffer<DemodulatorThreadPostIQData> buffers;
iqInputQueue = (DemodulatorThreadInputQueue*)getInputQueue("IQDataInput");
iqOutputQueue = (DemodulatorThreadPostInputQueue*)getOutputQueue("IQDataOutput");
threadQueueNotify = (DemodulatorThreadCommandQueue*)getOutputQueue("NotifyQueue");
commandQueue = ( DemodulatorThreadCommandQueue*)getInputQueue("CommandQueue");
std::vector<liquid_float_complex> in_buf_data;
std::vector<liquid_float_complex> out_buf_data;
// liquid_float_complex carrySample; // Keep the stream count even to simplify some demod operations
// bool carrySampleFlag = false;
while (!terminated) {
DemodulatorThreadIQData *inp;
iqInputQueue->pop(inp);
bool bandwidthChanged = false;
bool rateChanged = false;
DemodulatorThreadParameters tempParams = params;
if (!commandQueue->empty()) {
while (!commandQueue->empty()) {
DemodulatorThreadCommand command;
commandQueue->pop(command);
switch (command.cmd) {
case DemodulatorThreadCommand::DEMOD_THREAD_CMD_SET_BANDWIDTH:
if (command.llong_value < 1500) {
command.llong_value = 1500;
}
if (command.llong_value > params.sampleRate) {
tempParams.bandwidth = params.sampleRate;
} else {
tempParams.bandwidth = command.llong_value;
}
bandwidthChanged = true;
break;
case DemodulatorThreadCommand::DEMOD_THREAD_CMD_SET_FREQUENCY:
params.frequency = tempParams.frequency = command.llong_value;
break;
case DemodulatorThreadCommand::DEMOD_THREAD_CMD_SET_AUDIO_RATE:
tempParams.audioSampleRate = (int)command.llong_value;
rateChanged = true;
break;
default:
break;
}
}
}
if (inp->sampleRate != tempParams.sampleRate && inp->sampleRate) {
tempParams.sampleRate = inp->sampleRate;
rateChanged = true;
}
if (bandwidthChanged || rateChanged) {
DemodulatorWorkerThreadCommand command(DemodulatorWorkerThreadCommand::DEMOD_WORKER_THREAD_CMD_BUILD_FILTERS);
command.sampleRate = tempParams.sampleRate;
command.audioSampleRate = tempParams.audioSampleRate;
command.bandwidth = tempParams.bandwidth;
command.frequency = tempParams.frequency;
workerQueue->push(command);
}
if (!initialized) {
inp->decRefCount();
continue;
}
// Requested frequency is not center, shift it into the center!
if ((params.frequency - inp->frequency) != shiftFrequency || rateChanged) {
shiftFrequency = params.frequency - inp->frequency;
if (abs(shiftFrequency) <= (int) ((double) (inp->sampleRate / 2) * 1.5)) {
nco_crcf_set_frequency(freqShifter, (2.0 * M_PI) * (((double) abs(shiftFrequency)) / ((double) inp->sampleRate)));
}
}
if (abs(shiftFrequency) > (int) ((double) (inp->sampleRate / 2) * 1.5)) {
inp->decRefCount();
continue;
}
// std::lock_guard < std::mutex > lock(inp->m_mutex);
std::vector<liquid_float_complex> *data = &inp->data;
if (data->size() && (inp->sampleRate == params.sampleRate)) {
int bufSize = data->size();
if (in_buf_data.size() != bufSize) {
if (in_buf_data.capacity() < bufSize) {
in_buf_data.reserve(bufSize);
out_buf_data.reserve(bufSize);
}
in_buf_data.resize(bufSize);
out_buf_data.resize(bufSize);
}
in_buf_data.assign(inp->data.begin(), inp->data.end());
liquid_float_complex *in_buf = &in_buf_data[0];
liquid_float_complex *out_buf = &out_buf_data[0];
liquid_float_complex *temp_buf = NULL;
if (shiftFrequency != 0) {
if (shiftFrequency < 0) {
nco_crcf_mix_block_up(freqShifter, in_buf, out_buf, bufSize);
} else {
nco_crcf_mix_block_down(freqShifter, in_buf, out_buf, bufSize);
}
temp_buf = in_buf;
in_buf = out_buf;
out_buf = temp_buf;
}
DemodulatorThreadPostIQData *resamp = buffers.getBuffer();
int out_size = ceil((double) (bufSize) * iqResampleRatio) + 512;
if (resampledData.size() != out_size) {
if (resampledData.capacity() < out_size) {
resampledData.reserve(out_size);
}
resampledData.resize(out_size);
}
unsigned int numWritten;
msresamp_crcf_execute(iqResampler, in_buf, bufSize, &resampledData[0], &numWritten);
resamp->setRefCount(1);
resamp->data.assign(resampledData.begin(), resampledData.begin() + numWritten);
// bool uneven = (numWritten % 2 != 0);
// if (!carrySampleFlag && !uneven) {
// resamp->data.assign(resampledData.begin(), resampledData.begin() + numWritten);
// carrySampleFlag = false;
// } else if (!carrySampleFlag && uneven) {
// resamp->data.assign(resampledData.begin(), resampledData.begin() + (numWritten-1));
// carrySample = resampledData.back();
// carrySampleFlag = true;
// } else if (carrySampleFlag && uneven) {
// resamp->data.resize(numWritten+1);
// resamp->data[0] = carrySample;
// memcpy(&resamp->data[1],&resampledData[0],sizeof(liquid_float_complex)*numWritten);
// carrySampleFlag = false;
// } else if (carrySampleFlag && !uneven) {
// resamp->data.resize(numWritten);
// resamp->data[0] = carrySample;
// memcpy(&resamp->data[1],&resampledData[0],sizeof(liquid_float_complex)*(numWritten-1));
// carrySample = resampledData.back();
// carrySampleFlag = true;
// }
resamp->audioResampleRatio = audioResampleRatio;
resamp->audioResampler = audioResampler;
resamp->audioSampleRate = params.audioSampleRate;
resamp->stereoResampler = stereoResampler;
resamp->firStereoLeft = firStereoLeft;
resamp->firStereoRight = firStereoRight;
resamp->iirStereoPilot = iirStereoPilot;
resamp->sampleRate = params.bandwidth;
iqOutputQueue->push(resamp);
}
inp->decRefCount();
if (!terminated && !workerResults->empty()) {
while (!workerResults->empty()) {
DemodulatorWorkerThreadResult result;
workerResults->pop(result);
switch (result.cmd) {
case DemodulatorWorkerThreadResult::DEMOD_WORKER_THREAD_RESULT_FILTERS:
msresamp_crcf_destroy(iqResampler);
if (result.iqResampler) {
iqResampler = result.iqResampler;
iqResampleRatio = result.iqResampleRatio;
}
if (result.firStereoLeft) {
firStereoLeft = result.firStereoLeft;
}
if (result.firStereoRight) {
firStereoRight = result.firStereoRight;
}
if (result.iirStereoPilot) {
iirStereoPilot = result.iirStereoPilot;
}
if (result.audioResampler) {
audioResampler = result.audioResampler;
audioResampleRatio = result.audioResamplerRatio;
stereoResampler = result.stereoResampler;
}
if (result.audioSampleRate) {
params.audioSampleRate = result.audioSampleRate;
}
if (result.bandwidth) {
params.bandwidth = result.bandwidth;
}
if (result.sampleRate) {
params.sampleRate = result.sampleRate;
}
break;
default:
break;
}
}
}
}
buffers.purge();
DemodulatorThreadCommand tCmd(DemodulatorThreadCommand::DEMOD_THREAD_CMD_DEMOD_PREPROCESS_TERMINATED);
tCmd.context = this;
threadQueueNotify->push(tCmd);
std::cout << "Demodulator preprocessor thread done." << std::endl;
}
void DemodulatorPreThread::terminate() {
terminated = true;
DemodulatorThreadIQData *inp = new DemodulatorThreadIQData; // push dummy to nudge queue
iqInputQueue->push(inp);
DemodulatorWorkerThreadCommand command(DemodulatorWorkerThreadCommand::DEMOD_WORKER_THREAD_CMD_NULL);
workerQueue->push(command);
workerThread->terminate();
t_Worker->join();
delete t_Worker;
delete workerThread;
delete workerResults;
delete workerQueue;
}