CubicSDR/src/audio/AudioThread.cpp

540 lines
17 KiB
C++

#include "AudioThread.h"
#include "CubicSDRDefs.h"
#include <vector>
#include <algorithm>
#include "DemodulatorThread.h"
#ifdef USE_MIXER
std::map<int, AudioThread *> AudioThread::deviceController;
std::map<int, std::thread *> AudioThread::deviceThread;
#endif
AudioThread::AudioThread(AudioThreadInputQueue *inputQueue, DemodulatorThreadCommandQueue* threadQueueNotify) :
currentInput(NULL), inputQueue(inputQueue), audioQueuePtr(0), underflowCount(0), terminated(false), active(false), outputDevice(-1), gain(
1.0), threadQueueNotify(threadQueueNotify) {
#ifdef USE_MIXER
boundThreads = new std::vector<AudioThread *>;
#endif
}
AudioThread::~AudioThread() {
#ifdef USE_MIXER
delete boundThreads.load();
#endif
}
#ifdef USE_MIXER
void AudioThread::bindThread(AudioThread *other) {
if (std::find(boundThreads.load()->begin(), boundThreads.load()->end(), other) == boundThreads.load()->end()) {
boundThreads.load()->push_back(other);
}
}
void AudioThread::removeThread(AudioThread *other) {
std::vector<AudioThread *>::iterator i;
i = std::find(boundThreads.load()->begin(), boundThreads.load()->end(), other);
if (i != boundThreads.load()->end()) {
boundThreads.load()->erase(i);
}
}
void AudioThread::deviceCleanup() {
std::map<int,AudioThread *>::iterator i;
for (i = deviceController.begin(); i != deviceController.end(); i++) {
i->second->terminate();
}
}
static int audioCallback(void *outputBuffer, void *inputBuffer, unsigned int nBufferFrames, double streamTime, RtAudioStreamStatus status,
void *userData) {
AudioThread *src = (AudioThread *) userData;
float *out = (float*) outputBuffer;
memset(out, 0, nBufferFrames * 2 * sizeof(float));
if (src->terminated) {
return 1;
}
if (status) {
std::cout << "Audio buffer underflow.." << (src->underflowCount++) << std::endl;
}
if (src->boundThreads.load()->empty()) {
return 0;
}
float peak = 0.0;
for (int j = 0; j < src->boundThreads.load()->size(); j++) {
AudioThread *srcmix = (*(src->boundThreads.load()))[j];
if (srcmix->terminated || !srcmix->inputQueue || srcmix->inputQueue->empty() || !srcmix->isActive()) {
continue;
}
if (!srcmix->currentInput) {
if (srcmix->terminated) {
continue;
}
srcmix->inputQueue->pop(srcmix->currentInput);
if (srcmix->terminated) {
continue;
}
srcmix->audioQueuePtr = 0;
continue;
}
std::lock_guard < std::mutex > lock(srcmix->currentInput->m_mutex);
if (srcmix->currentInput->channels == 0 || !srcmix->currentInput->data.size()) {
if (!srcmix->inputQueue->empty()) {
if (srcmix->currentInput) {
srcmix->currentInput->decRefCount();
srcmix->currentInput = NULL;
}
if (srcmix->terminated) {
continue;
}
srcmix->inputQueue->pop(srcmix->currentInput);
if (srcmix->terminated) {
continue;
}
srcmix->audioQueuePtr = 0;
}
continue;
}
peak += srcmix->currentInput->peak * srcmix->gain;
if (srcmix->currentInput->channels == 1) {
for (int i = 0; i < nBufferFrames; i++) {
if (srcmix->audioQueuePtr >= srcmix->currentInput->data.size()) {
if (srcmix->currentInput) {
srcmix->currentInput->decRefCount();
srcmix->currentInput = NULL;
}
if (srcmix->terminated) {
continue;
}
srcmix->inputQueue->pop(srcmix->currentInput);
if (srcmix->terminated) {
continue;
}
srcmix->audioQueuePtr = 0;
}
if (srcmix->currentInput && srcmix->currentInput->data.size()) {
float v = srcmix->currentInput->data[srcmix->audioQueuePtr] * srcmix->gain;
out[i * 2] += v;
out[i * 2 + 1] += v;
}
srcmix->audioQueuePtr++;
}
} else {
for (int i = 0, iMax = srcmix->currentInput->channels * nBufferFrames; i < iMax; i++) {
if (srcmix->audioQueuePtr >= srcmix->currentInput->data.size()) {
if (srcmix->currentInput) {
srcmix->currentInput->decRefCount();
srcmix->currentInput = NULL;
}
if (srcmix->terminated) {
continue;
}
srcmix->inputQueue->pop(srcmix->currentInput);
if (srcmix->terminated) {
continue;
}
srcmix->audioQueuePtr = 0;
}
if (srcmix->currentInput && srcmix->currentInput->data.size()) {
out[i] = out[i] + srcmix->currentInput->data[srcmix->audioQueuePtr] * srcmix->gain;
}
srcmix->audioQueuePtr++;
}
}
if (peak > 1.0) {
for (int i = 0 ; i < nBufferFrames * 2; i ++) {
out[i] /= peak;
}
}
}
return 0;
}
#else
static int audioCallback(void *outputBuffer, void *inputBuffer, unsigned int nBufferFrames, double streamTime, RtAudioStreamStatus status,
void *userData) {
AudioThread *src = (AudioThread *) userData;
float *out = (float*) outputBuffer;
memset(out, 0, nBufferFrames * 2 * sizeof(float));
if (status) {
std::cout << "Audio buffer underflow.." << (src->underflowCount++) << std::endl;
}
if (src->terminated || !src->active) {
if (src->currentInput) {
src->currentInput->decRefCount();
src->currentInput = NULL;
}
return 1;
}
if (!src->currentInput) {
if (src->inputQueue->empty()) {
return 0;
}
src->inputQueue->pop(src->currentInput);
if (src->terminated || !src->active) {
src->currentInput->decRefCount();
src->currentInput = NULL;
return 1;
}
src->audioQueuePtr = 0;
return 0;
}
std::lock_guard < std::mutex > lock(src->currentInput->m_mutex);
if (src->currentInput->channels == 0 || !src->currentInput->data.size()) {
if (!src->inputQueue->empty()) {
if (src->currentInput) {
src->currentInput->decRefCount();
src->currentInput = NULL;
}
if (src->terminated || !src->active) {
return 1;
}
src->inputQueue->pop(src->currentInput);
if (src->terminated || !src->active) {
src->currentInput->decRefCount();
src->currentInput = NULL;
return 1;
}
src->audioQueuePtr = 0;
}
return 0;
}
if (src->currentInput->channels == 1) {
for (int i = 0; i < nBufferFrames; i++) {
if (src->audioQueuePtr >= src->currentInput->data.size()) {
if (src->currentInput) {
src->currentInput->decRefCount();
src->currentInput = NULL;
}
if (src->terminated || !src->active) {
return 1;
}
src->inputQueue->pop(src->currentInput);
if (src->terminated || !src->active) {
src->currentInput->decRefCount();
src->currentInput = NULL;
return 1;
}
src->audioQueuePtr = 0;
}
if (src->currentInput && src->currentInput->data.size()) {
out[i * 2] = out[i * 2 + 1] = src->currentInput->data[src->audioQueuePtr] * src->gain;
}
src->audioQueuePtr++;
}
} else {
for (int i = 0, iMax = src->currentInput->channels * nBufferFrames; i < iMax; i++) {
if (src->audioQueuePtr >= src->currentInput->data.size()) {
if (src->currentInput) {
src->currentInput->decRefCount();
src->currentInput = NULL;
}
if (src->terminated || !src->active) {
return 1;
}
src->inputQueue->pop(src->currentInput);
if (src->terminated || !src->active) {
src->currentInput->decRefCount();
src->currentInput = NULL;
return 1;
}
src->audioQueuePtr = 0;
}
if (src->currentInput && src->currentInput->data.size()) {
out[i] = src->currentInput->data[src->audioQueuePtr] * src->gain;
}
src->audioQueuePtr++;
}
}
return 0;
}
#endif
void AudioThread::enumerateDevices(std::vector<RtAudio::DeviceInfo> &devs) {
RtAudio endac;
int numDevices = endac.getDeviceCount();
for (int i = 0; i < numDevices; i++) {
RtAudio::DeviceInfo info = endac.getDeviceInfo(i);
devs.push_back(info);
std::cout << std::endl;
std::cout << "Audio Device #" << i << " " << info.name << std::endl;
std::cout << "\tDefault Output? " << (info.isDefaultOutput ? "Yes" : "No") << std::endl;
std::cout << "\tDefault Input? " << (info.isDefaultOutput ? "Yes" : "No") << std::endl;
std::cout << "\tInput channels: " << info.inputChannels << std::endl;
std::cout << "\tOutput channels: " << info.outputChannels << std::endl;
std::cout << "\tDuplex channels: " << info.duplexChannels << std::endl;
std::cout << "\t" << "Native formats:" << std::endl;
RtAudioFormat nFormats = info.nativeFormats;
if (nFormats & RTAUDIO_SINT8) {
std::cout << "\t\t8-bit signed integer." << std::endl;
}
if (nFormats & RTAUDIO_SINT16) {
std::cout << "\t\t16-bit signed integer." << std::endl;
}
if (nFormats & RTAUDIO_SINT24) {
std::cout << "\t\t24-bit signed integer." << std::endl;
}
if (nFormats & RTAUDIO_SINT32) {
std::cout << "\t\t32-bit signed integer." << std::endl;
}
if (nFormats & RTAUDIO_FLOAT32) {
std::cout << "\t\t32-bit float normalized between plus/minus 1.0." << std::endl;
}
if (nFormats & RTAUDIO_FLOAT64) {
std::cout << "\t\t32-bit float normalized between plus/minus 1.0." << std::endl;
}
std::vector<unsigned int>::iterator srate;
std::cout << "\t" << "Supported sample rates:" << std::endl;
for (srate = info.sampleRates.begin(); srate != info.sampleRates.end(); srate++) {
std::cout << "\t\t" << (*srate) << "hz" << std::endl;
}
std::cout << std::endl;
}
}
void AudioThread::setupDevice(int deviceId) {
parameters.deviceId = deviceId;
parameters.nChannels = 2;
parameters.firstChannel = 0;
unsigned int sampleRate = AUDIO_FREQUENCY;
unsigned int bufferFrames = 256;
RtAudio::StreamOptions opts;
opts.streamName = "CubicSDR Audio Output";
try {
#ifdef USE_MIXER
if (deviceController.find(outputDevice.load()) != deviceController.end()) {
deviceController[outputDevice.load()]->removeThread(this);
}
#ifndef _MSC_VER
opts.priority = sched_get_priority_max(SCHED_FIFO);
#endif
// opts.flags = RTAUDIO_MINIMIZE_LATENCY;
opts.flags = RTAUDIO_SCHEDULE_REALTIME;
if (deviceController.find(parameters.deviceId) == deviceController.end()) {
deviceController[parameters.deviceId] = new AudioThread(NULL, NULL);
deviceController[parameters.deviceId]->setInitOutputDevice(parameters.deviceId);
deviceController[parameters.deviceId]->bindThread(this);
deviceThread[parameters.deviceId] = new std::thread(&AudioThread::threadMain, deviceController[parameters.deviceId]);
} else if (deviceController[parameters.deviceId] == this) {
dac.openStream(&parameters, NULL, RTAUDIO_FLOAT32, sampleRate, &bufferFrames, &audioCallback, (void *) this, &opts);
dac.startStream();
} else {
deviceController[parameters.deviceId]->bindThread(this);
}
active = true;
#else
if (dac.isStreamOpen()) {
if (dac.isStreamRunning()) {
dac.stopStream();
}
dac.closeStream();
}
if (deviceId != -1) {
active = true;
dac.openStream(&parameters, NULL, RTAUDIO_FLOAT32, sampleRate, &bufferFrames, &audioCallback, (void *) this, &opts);
dac.startStream();
} else {
active = false;
AudioThreadInput *dummy;
while (!inputQueue->empty()) { // flush queue
inputQueue->pop(dummy);
if (dummy) {
dummy->decRefCount();
}
}
}
#endif
} catch (RtAudioError& e) {
e.printMessage();
return;
}
if (deviceId != -1) {
outputDevice = deviceId;
}
}
int AudioThread::getOutputDevice() {
if (outputDevice == -1) {
return dac.getDefaultOutputDevice();
}
return outputDevice;
}
void AudioThread::setInitOutputDevice(int deviceId) {
outputDevice = deviceId;
}
void AudioThread::threadMain() {
#ifdef __APPLE__
pthread_t tID = pthread_self(); // ID of this thread
int priority = sched_get_priority_max( SCHED_RR) - 1;
sched_param prio = {priority}; // scheduling priority of thread
pthread_setschedparam(tID, SCHED_RR, &prio);
#endif
std::cout << "Audio thread initializing.." << std::endl;
if (dac.getDeviceCount() < 1) {
std::cout << "No audio devices found!" << std::endl;
return;
}
setupDevice((outputDevice.load() == -1) ? (dac.getDefaultOutputDevice()) : outputDevice.load());
std::cout << "Audio thread started." << std::endl;
terminated = false;
while (!terminated) {
AudioThreadCommand command;
cmdQueue.pop(command);
if (command.cmd == AudioThreadCommand::AUDIO_THREAD_CMD_SET_DEVICE) {
setupDevice(command.int_value);
}
}
#if !USE_MIXER
AudioThreadInput dummy;
inputQueue->push(&dummy);
#endif
#ifdef USE_MIXER
if (deviceController[parameters.deviceId] != this) {
deviceController[parameters.deviceId]->removeThread(this);
} else {
try {
if (dac.isStreamOpen()) {
if (dac.isStreamRunning()) {
dac.stopStream();
}
dac.closeStream();
}
} catch (RtAudioError& e) {
e.printMessage();
}
}
#else
try {
if (dac.isStreamOpen()) {
if (dac.isStreamRunning()) {
dac.stopStream();
}
dac.closeStream();
}
} catch (RtAudioError& e) {
e.printMessage();
}
#endif
if (threadQueueNotify != NULL) {
DemodulatorThreadCommand tCmd(DemodulatorThreadCommand::DEMOD_THREAD_CMD_AUDIO_TERMINATED);
tCmd.context = this;
threadQueueNotify->push(tCmd);
}
std::cout << "Audio thread done." << std::endl;
}
void AudioThread::terminate() {
terminated = true;
AudioThreadCommand endCond; // push an empty input to bump the queue
cmdQueue.push(endCond);
}
bool AudioThread::isActive() {
return active;
}
void AudioThread::setActive(bool state) {
#ifdef USE_MIXER
AudioThreadInput *dummy;
if (state && !active) {
while (!inputQueue->empty()) { // flush queue
inputQueue->pop(dummy);
if (dummy) {
dummy->decRefCount();
}
}
deviceController[parameters.deviceId]->bindThread(this);
} else if (!state && active) {
deviceController[parameters.deviceId]->removeThread(this);
while (!inputQueue->empty()) { // flush queue
inputQueue->pop(dummy);
if (dummy) {
dummy->decRefCount();
}
}
}
active = state;
#else
if (state && !active && outputDevice != -1) {
active = state;
AudioThreadCommand command;
command.cmd = AudioThreadCommand::AUDIO_THREAD_CMD_SET_DEVICE;
command.int_value = outputDevice;
cmdQueue.push(command);
} else if (active && !state) {
active = state;
AudioThreadCommand command;
command.cmd = AudioThreadCommand::AUDIO_THREAD_CMD_SET_DEVICE;
command.int_value = -1;
cmdQueue.push(command);
}
#endif
}
AudioThreadCommandQueue *AudioThread::getCommandQueue() {
return &cmdQueue;
}
void AudioThread::setGain(float gain_in) {
if (gain < 0.0) {
gain = 0.0;
}
if (gain > 2.0) {
gain = 2.0;
}
gain = gain_in;
}
float AudioThread::getGain() {
return gain;
}