CubicSDR/src/demod/DemodulatorThread.cpp

579 lines
20 KiB
C++

#include "CubicSDRDefs.h"
#include "DemodulatorThread.h"
#include <vector>
#include <cmath>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifdef __APPLE__
#include <pthread.h>
#endif
DemodulatorThread::DemodulatorThread(DemodulatorThreadPostInputQueue* iqInputQueue, DemodulatorThreadControlCommandQueue *threadQueueControl,
DemodulatorThreadCommandQueue* threadQueueNotify) :
iqInputQueue(iqInputQueue), audioVisOutputQueue(NULL), audioOutputQueue(NULL), iqAutoGain(NULL), amOutputCeil(1), amOutputCeilMA(1), amOutputCeilMAA(
1), stereo(false), terminated(
false), demodulatorType(DEMOD_TYPE_FM), threadQueueNotify(threadQueueNotify), threadQueueControl(threadQueueControl), squelchLevel(0), signalLevel(
0), squelchEnabled(false), audioSampleRate(0) {
demodFM = freqdem_create(0.5);
demodAM_USB = ampmodem_create(0.5, 0.0, LIQUID_AMPMODEM_USB, 1);
demodAM_LSB = ampmodem_create(0.5, 0.0, LIQUID_AMPMODEM_LSB, 1);
demodAM_DSB = ampmodem_create(0.5, 0.0, LIQUID_AMPMODEM_DSB, 1);
demodAM_DSB_CSP = ampmodem_create(0.5, 0.0, LIQUID_AMPMODEM_DSB, 0);
demodAM = demodAM_DSB_CSP;
// advanced demodulators
demodASK = modem_create(LIQUID_MODEM_ASK256);
demodAPSK = modem_create(LIQUID_MODEM_APSK256);
demodBPSK = modem_create(LIQUID_MODEM_BPSK);
demodDPSK = modem_create(LIQUID_MODEM_DPSK256);
demodPSK = modem_create(LIQUID_MODEM_PSK256);
demodOOK = modem_create(LIQUID_MODEM_OOK);
demodSQAM = modem_create(LIQUID_MODEM_SQAM128);
demodST = modem_create(LIQUID_MODEM_V29);
demodQAM = modem_create(LIQUID_MODEM_QAM256);
demodQPSK = modem_create(LIQUID_MODEM_QPSK);
currentDemodLock = false;
}
DemodulatorThread::~DemodulatorThread() {
}
#ifdef __APPLE__
void *DemodulatorThread::threadMain() {
#else
void DemodulatorThread::threadMain() {
#endif
#ifdef __APPLE__
pthread_t tID = pthread_self(); // ID of this thread
int priority = sched_get_priority_max( SCHED_FIFO )-1;
sched_param prio = {priority}; // scheduling priority of thread
pthread_setschedparam(tID, SCHED_FIFO, &prio);
#endif
msresamp_rrrf audioResampler = NULL;
msresamp_rrrf stereoResampler = NULL;
firfilt_rrrf firStereoLeft = NULL;
firfilt_rrrf firStereoRight = NULL;
liquid_float_complex x, y, z[2];
float rz[2];
firhilbf firStereoR2C = firhilbf_create(5, 60.0f);
firhilbf firStereoC2R = firhilbf_create(5, 60.0f);
nco_crcf stereoShifter = nco_crcf_create(LIQUID_NCO);
double stereoShiftFrequency = 0;
// half band filter used for side-band elimination
resamp2_cccf ssbFilt = resamp2_cccf_create(12,-0.25f,60.0f);
// Automatic IQ gain
iqAutoGain = agc_crcf_create();
agc_crcf_set_bandwidth(iqAutoGain, 0.9);
AudioThreadInput *ati_vis = new AudioThreadInput;
ati_vis->data.reserve(DEMOD_VIS_SIZE);
std::cout << "Demodulator thread started.." << std::endl;
switch (demodulatorType.load()) {
case DEMOD_TYPE_FM:
break;
case DEMOD_TYPE_LSB:
demodAM = demodAM_LSB;
break;
case DEMOD_TYPE_USB:
demodAM = demodAM_USB;
break;
case DEMOD_TYPE_DSB:
demodAM = demodAM_DSB;
break;
case DEMOD_TYPE_AM:
demodAM = demodAM_DSB_CSP;
break;
}
terminated = false;
while (!terminated) {
DemodulatorThreadPostIQData *inp;
iqInputQueue->pop(inp);
std::lock_guard < std::mutex > lock(inp->m_mutex);
int bufSize = inp->data.size();
if (!bufSize) {
inp->decRefCount();
continue;
}
if (audioResampler == NULL) {
audioResampler = inp->audioResampler;
stereoResampler = inp->stereoResampler;
firStereoLeft = inp->firStereoLeft;
firStereoRight = inp->firStereoRight;
audioSampleRate = inp->audioSampleRate;
} else if (audioResampler != inp->audioResampler) {
msresamp_rrrf_destroy(audioResampler);
msresamp_rrrf_destroy(stereoResampler);
audioResampler = inp->audioResampler;
stereoResampler = inp->stereoResampler;
audioSampleRate = inp->audioSampleRate;
if (demodAM) {
ampmodem_reset(demodAM);
}
freqdem_reset(demodFM);
}
if (firStereoLeft != inp->firStereoLeft) {
if (firStereoLeft != NULL) {
firfilt_rrrf_destroy(firStereoLeft);
}
firStereoLeft = inp->firStereoLeft;
}
if (firStereoRight != inp->firStereoRight) {
if (firStereoRight != NULL) {
firfilt_rrrf_destroy(firStereoRight);
}
firStereoRight = inp->firStereoRight;
}
if (agcData.size() != bufSize) {
if (agcData.capacity() < bufSize) {
agcData.reserve(bufSize);
agcAMData.reserve(bufSize);
}
agcData.resize(bufSize);
agcAMData.resize(bufSize);
}
double audio_resample_ratio = inp->audioResampleRatio;
if (demodOutputData.size() != bufSize) {
if (demodOutputData.capacity() < bufSize) {
demodOutputData.reserve(bufSize);
}
demodOutputData.resize(bufSize);
}
int audio_out_size = ceil((double) (bufSize) * audio_resample_ratio) + 512;
agc_crcf_execute_block(iqAutoGain, &(inp->data[0]), bufSize, &agcData[0]);
float currentSignalLevel = 0;
currentSignalLevel = ((60.0 / fabs(agc_crcf_get_rssi(iqAutoGain))) / 15.0 - signalLevel);
if (agc_crcf_get_signal_level(iqAutoGain) > currentSignalLevel) {
currentSignalLevel = agc_crcf_get_signal_level(iqAutoGain);
}
if (demodulatorType == DEMOD_TYPE_FM) {
freqdem_demodulate_block(demodFM, &agcData[0], bufSize, &demodOutputData[0]);
} else {
float p;
unsigned int bitstream;
switch (demodulatorType.load()) {
case DEMOD_TYPE_LSB:
for (int i = 0; i < bufSize; i++) { // Reject upper band
resamp2_cccf_filter_execute(ssbFilt,inp->data[i],&x,&y);
ampmodem_demodulate(demodAM, x, &demodOutputData[i]);
}
break;
case DEMOD_TYPE_USB:
for (int i = 0; i < bufSize; i++) { // Reject lower band
resamp2_cccf_filter_execute(ssbFilt,inp->data[i],&x,&y);
ampmodem_demodulate(demodAM, y, &demodOutputData[i]);
}
break;
case DEMOD_TYPE_AM:
case DEMOD_TYPE_DSB:
for (int i = 0; i < bufSize; i++) {
ampmodem_demodulate(demodAM, inp->data[i], &demodOutputData[i]);
}
break;
case DEMOD_TYPE_ASK:
for (int i = 0; i < bufSize; i++) {
modem_demodulate(demodASK, inp->data[i], &bitstream);
// std::cout << bitstream << std::endl;
}
updateDemodulatorLock(demodASK, 0.8f);
break;
case DEMOD_TYPE_BPSK:
for (int i = 0; i < bufSize; i++) {
modem_demodulate(demodBPSK, inp->data[i], &bitstream);
// std::cout << bitstream << std::endl;
}
updateDemodulatorLock(demodBPSK, 0.8f);
break;
case DEMOD_TYPE_DPSK:
for (int i = 0; i < bufSize; i++) {
modem_demodulate(demodDPSK, inp->data[i], &bitstream);
// std::cout << bitstream << std::endl;
}
updateDemodulatorLock(demodDPSK, 0.8f);
break;
case DEMOD_TYPE_PSK:
for (int i = 0; i < bufSize; i++) {
modem_demodulate(demodPSK, inp->data[i], &bitstream);
// std::cout << bitstream << std::endl;
}
updateDemodulatorLock(demodPSK, 0.8f);
break;
case DEMOD_TYPE_OOK:
for (int i = 0; i < bufSize; i++) {
modem_demodulate(demodOOK, inp->data[i], &bitstream);
// std::cout << bitstream << std::endl;
}
updateDemodulatorLock(demodOOK, 0.8f);
break;
case DEMOD_TYPE_SQAM:
for (int i = 0; i < bufSize; i++) {
modem_demodulate(demodSQAM, inp->data[i], &bitstream);
// std::cout << bitstream << std::endl;
}
updateDemodulatorLock(demodSQAM, 0.8f);
break;
case DEMOD_TYPE_ST:
for (int i = 0; i < bufSize; i++) {
modem_demodulate(demodST, inp->data[i], &bitstream);
// std::cout << bitstream << std::endl;
}
updateDemodulatorLock(demodST, 0.8f);
break;
case DEMOD_TYPE_QAM:
for (int i = 0; i < bufSize; i++) {
modem_demodulate(demodQAM, inp->data[i], &bitstream);
// std::cout << bitstream << std::endl;
}
updateDemodulatorLock(demodQAM, 0.5f);
break;
case DEMOD_TYPE_QPSK:
for (int i = 0; i < bufSize; i++) {
modem_demodulate(demodQPSK, inp->data[i], &bitstream);
// std::cout << bitstream << std::endl;
}
updateDemodulatorLock(demodQPSK, 0.8f);
break;
}
amOutputCeilMA = amOutputCeilMA + (amOutputCeil - amOutputCeilMA) * 0.025;
amOutputCeilMAA = amOutputCeilMAA + (amOutputCeilMA - amOutputCeilMAA) * 0.025;
amOutputCeil = 0;
for (int i = 0; i < bufSize; i++) {
if (demodOutputData[i] > amOutputCeil) {
amOutputCeil = demodOutputData[i];
}
}
float gain = 0.5 / amOutputCeilMAA;
for (int i = 0; i < bufSize; i++) {
demodOutputData[i] *= gain;
}
}
if (audio_out_size != resampledOutputData.size()) {
if (resampledOutputData.capacity() < audio_out_size) {
resampledOutputData.reserve(audio_out_size);
}
resampledOutputData.resize(audio_out_size);
}
unsigned int numAudioWritten;
msresamp_rrrf_execute(audioResampler, &demodOutputData[0], bufSize, &resampledOutputData[0], &numAudioWritten);
if (stereo) {
if (demodStereoData.size() != bufSize) {
if (demodStereoData.capacity() < bufSize) {
demodStereoData.reserve(bufSize);
}
demodStereoData.resize(bufSize);
}
double freq = (2.0 * M_PI) * ((double) 38000) / ((double) inp->sampleRate);
if (stereoShiftFrequency != freq) {
nco_crcf_set_frequency(stereoShifter, freq);
stereoShiftFrequency = freq;
}
for (int i = 0; i < bufSize; i++) {
firhilbf_r2c_execute(firStereoR2C, demodOutputData[i], &x);
nco_crcf_mix_down(stereoShifter, x, &y);
nco_crcf_step(stereoShifter);
firhilbf_c2r_execute(firStereoC2R, y, &demodStereoData[i]);
}
if (audio_out_size != resampledStereoData.size()) {
if (resampledStereoData.capacity() < audio_out_size) {
resampledStereoData.reserve(audio_out_size);
}
resampledStereoData.resize(audio_out_size);
}
msresamp_rrrf_execute(stereoResampler, &demodStereoData[0], bufSize, &resampledStereoData[0], &numAudioWritten);
}
if (currentSignalLevel > signalLevel) {
signalLevel = signalLevel + (currentSignalLevel - signalLevel) * 0.5;
} else {
signalLevel = signalLevel + (currentSignalLevel - signalLevel) * 0.05;
}
AudioThreadInput *ati = NULL;
if (audioOutputQueue != NULL) {
if (!squelchEnabled || (signalLevel >= squelchLevel)) {
for (outputBuffersI = outputBuffers.begin(); outputBuffersI != outputBuffers.end(); outputBuffersI++) {
if ((*outputBuffersI)->getRefCount() <= 0) {
ati = (*outputBuffersI);
break;
}
}
if (ati == NULL) {
ati = new AudioThreadInput;
outputBuffers.push_back(ati);
}
ati->sampleRate = audioSampleRate;
ati->setRefCount(1);
if (stereo) {
ati->channels = 2;
if (ati->data.capacity() < (numAudioWritten * 2)) {
ati->data.reserve(numAudioWritten * 2);
}
ati->data.resize(numAudioWritten * 2);
for (int i = 0; i < numAudioWritten; i++) {
float l, r;
firfilt_rrrf_push(firStereoLeft, (resampledOutputData[i] - (resampledStereoData[i])));
firfilt_rrrf_execute(firStereoLeft, &l);
firfilt_rrrf_push(firStereoRight, (resampledOutputData[i] + (resampledStereoData[i])));
firfilt_rrrf_execute(firStereoRight, &r);
ati->data[i * 2] = l;
ati->data[i * 2 + 1] = r;
}
} else {
ati->channels = 1;
ati->data.assign(resampledOutputData.begin(), resampledOutputData.begin() + numAudioWritten);
}
std::vector<float>::iterator data_i;
ati->peak = 0;
for (data_i = ati->data.begin(); data_i != ati->data.end(); data_i++) {
float p = fabs(*data_i);
if (p > ati->peak) {
ati->peak = p;
}
}
audioOutputQueue->push(ati);
}
}
if (ati && audioVisOutputQueue != NULL && audioVisOutputQueue->empty()) {
int num_vis = DEMOD_VIS_SIZE;
if (stereo) {
ati_vis->channels = 2;
int stereoSize = ati->data.size();
if (stereoSize > DEMOD_VIS_SIZE) {
stereoSize = DEMOD_VIS_SIZE;
}
ati_vis->data.resize(stereoSize);
for (int i = 0; i < stereoSize / 2; i++) {
ati_vis->data[i] = ati->data[i * 2];
ati_vis->data[i + stereoSize / 2] = ati->data[i * 2 + 1];
}
} else {
ati_vis->channels = 1;
if (numAudioWritten > bufSize) {
if (num_vis > numAudioWritten) {
num_vis = numAudioWritten;
}
ati_vis->data.assign(resampledOutputData.begin(), resampledOutputData.begin() + num_vis);
} else {
if (num_vis > bufSize) {
num_vis = bufSize;
}
ati_vis->data.assign(demodOutputData.begin(), demodOutputData.begin() + num_vis);
}
// std::cout << "Signal: " << agc_crcf_get_signal_level(agc) << " -- " << agc_crcf_get_rssi(agc) << "dB " << std::endl;
}
audioVisOutputQueue->push(ati_vis);
}
if (!threadQueueControl->empty()) {
int newDemodType = DEMOD_TYPE_NULL;
while (!threadQueueControl->empty()) {
DemodulatorThreadControlCommand command;
threadQueueControl->pop(command);
switch (command.cmd) {
case DemodulatorThreadControlCommand::DEMOD_THREAD_CMD_CTL_SQUELCH_ON:
squelchEnabled = true;
break;
case DemodulatorThreadControlCommand::DEMOD_THREAD_CMD_CTL_SQUELCH_OFF:
squelchEnabled = false;
break;
case DemodulatorThreadControlCommand::DEMOD_THREAD_CMD_CTL_TYPE:
newDemodType = command.demodType;
break;
default:
break;
}
}
if (newDemodType != DEMOD_TYPE_NULL) {
switch (newDemodType) {
case DEMOD_TYPE_FM:
freqdem_reset(demodFM);
break;
case DEMOD_TYPE_LSB:
demodAM = demodAM_LSB;
ampmodem_reset(demodAM);
break;
case DEMOD_TYPE_USB:
demodAM = demodAM_USB;
ampmodem_reset(demodAM);
break;
case DEMOD_TYPE_DSB:
demodAM = demodAM_DSB;
ampmodem_reset(demodAM);
break;
case DEMOD_TYPE_AM:
demodAM = demodAM_DSB_CSP;
ampmodem_reset(demodAM);
break;
// case DEMOD_TYPE_QPSK:
// std::cout << "reset modem qpsk" << std::endl;
// modem_reset(demodQPSK);
// break;
}
demodulatorType = newDemodType;
}
}
inp->decRefCount();
}
if (audioResampler != NULL) {
msresamp_rrrf_destroy(audioResampler);
}
if (stereoResampler != NULL) {
msresamp_rrrf_destroy(stereoResampler);
}
if (firStereoLeft != NULL) {
firfilt_rrrf_destroy(firStereoLeft);
}
if (firStereoRight != NULL) {
firfilt_rrrf_destroy(firStereoRight);
}
agc_crcf_destroy(iqAutoGain);
firhilbf_destroy(firStereoR2C);
firhilbf_destroy(firStereoC2R);
nco_crcf_destroy(stereoShifter);
resamp2_cccf_destroy(ssbFilt);
while (!outputBuffers.empty()) {
AudioThreadInput *audioDataDel = outputBuffers.front();
outputBuffers.pop_front();
delete audioDataDel;
}
if (audioVisOutputQueue && !audioVisOutputQueue->empty()) {
AudioThreadInput *dummy_vis;
audioVisOutputQueue->pop(dummy_vis);
}
delete ati_vis;
DemodulatorThreadCommand tCmd(DemodulatorThreadCommand::DEMOD_THREAD_CMD_DEMOD_TERMINATED);
tCmd.context = this;
threadQueueNotify->push(tCmd);
std::cout << "Demodulator thread done." << std::endl;
#ifdef __APPLE__
return this;
#endif
}
void DemodulatorThread::setVisualOutputQueue(DemodulatorThreadOutputQueue *tQueue) {
audioVisOutputQueue = tQueue;
}
void DemodulatorThread::setAudioOutputQueue(AudioThreadInputQueue *tQueue) {
audioOutputQueue = tQueue;
}
void DemodulatorThread::terminate() {
terminated = true;
DemodulatorThreadPostIQData *inp = new DemodulatorThreadPostIQData; // push dummy to nudge queue
iqInputQueue->push(inp);
}
void DemodulatorThread::setStereo(bool state) {
stereo = state;
std::cout << "Stereo " << (state ? "Enabled" : "Disabled") << std::endl;
}
bool DemodulatorThread::isStereo() {
return stereo;
}
float DemodulatorThread::getSignalLevel() {
return signalLevel;
}
void DemodulatorThread::setSquelchLevel(float signal_level_in) {
if (!squelchEnabled) {
squelchEnabled = true;
}
squelchLevel = signal_level_in;
}
float DemodulatorThread::getSquelchLevel() {
return squelchLevel;
}
void DemodulatorThread::setDemodulatorType(int demod_type_in) {
demodulatorType = demod_type_in;
}
int DemodulatorThread::getDemodulatorType() {
return demodulatorType;
}
void DemodulatorThread::setDemodulatorLock(bool demod_lock_in) {
demod_lock_in ? currentDemodLock = true : currentDemodLock = false;
}
int DemodulatorThread::getDemodulatorLock() {
return currentDemodLock;
}
void DemodulatorThread::updateDemodulatorLock(modem demod, float sensitivity) {
modem_get_demodulator_evm(demod) <= sensitivity ? setDemodulatorLock(true) : setDemodulatorLock(false);
}