CubicSDR/src/audio/AudioThread.cpp

562 lines
16 KiB
C++

// Copyright (c) Charles J. Cliffe
// SPDX-License-Identifier: GPL-2.0+
#include "AudioThread.h"
#include "CubicSDRDefs.h"
#include <vector>
#include <algorithm>
#include "CubicSDR.h"
#include "DemodulatorThread.h"
#include "DemodulatorInstance.h"
#include <memory.h>
#include <mutex>
//50 ms
#define HEARTBEAT_CHECK_PERIOD_MICROS (50 * 1000)
std::map<int, AudioThread *> AudioThread::deviceController;
std::map<int, int> AudioThread::deviceSampleRate;
std::map<int, std::thread *> AudioThread::deviceThread;
std::recursive_mutex AudioThread::m_device_mutex;
AudioThread::AudioThread() : IOThread(), nBufferFrames(1024), sampleRate(0) {
audioQueuePtr = 0;
underflowCount = 0;
active.store(false);
outputDevice.store(-1);
gain = 1.0;
}
AudioThread::~AudioThread() {
std::lock_guard<std::recursive_mutex> lock(m_mutex);
}
std::recursive_mutex & AudioThread::getMutex()
{
return m_mutex;
}
void AudioThread::bindThread(AudioThread *other) {
std::lock_guard<std::recursive_mutex> lock(m_mutex);
if (std::find(boundThreads.begin(), boundThreads.end(), other) == boundThreads.end()) {
boundThreads.push_back(other);
}
}
void AudioThread::removeThread(AudioThread *other) {
std::lock_guard<std::recursive_mutex> lock(m_mutex);
auto i = std::find(boundThreads.begin(), boundThreads.end(), other);
if (i != boundThreads.end()) {
boundThreads.erase(i);
}
}
void AudioThread::deviceCleanup() {
std::lock_guard<std::recursive_mutex> lock(m_device_mutex);
for (auto i = deviceController.begin(); i != deviceController.end(); i++) {
i->second->terminate();
}
}
static int audioCallback(void *outputBuffer, void * /* inputBuffer */, unsigned int nBufferFrames, double /* streamTime */, RtAudioStreamStatus status,
void *userData) {
float *out = (float*)outputBuffer;
//Zero output buffer in all cases: this allow to mute audio if no AudioThread data is
//actually active.
::memset(out, 0, nBufferFrames * 2 * sizeof(float));
AudioThread *src = (AudioThread *) userData;
std::lock_guard<std::recursive_mutex> lock(src->getMutex());
if (src->isTerminated()) {
return 1;
}
if (status) {
std::cout << "Audio buffer underflow.." << (src->underflowCount++) << std::endl << std::flush;
}
if (src->boundThreads.empty()) {
return 0;
}
double peak = 0.0;
//for all boundThreads
for (size_t j = 0; j < src->boundThreads.size(); j++) {
AudioThread *srcmix = src->boundThreads[j];
//lock every single boundThread srcmix in succession the time we process
//its audio samples.
std::lock_guard<std::recursive_mutex> lock(srcmix->getMutex());
if (srcmix->isTerminated() || !srcmix->inputQueue || srcmix->inputQueue->empty() || !srcmix->isActive()) {
continue;
}
if (!srcmix->currentInput) {
srcmix->audioQueuePtr = 0;
if (!srcmix->inputQueue->try_pop(srcmix->currentInput)) {
continue;
}
continue;
}
if (srcmix->currentInput->sampleRate != src->getSampleRate()) {
while (srcmix->inputQueue->try_pop(srcmix->currentInput)) {
if (srcmix->currentInput) {
if (srcmix->currentInput->sampleRate == src->getSampleRate()) {
break;
}
}
srcmix->currentInput = nullptr;
} //end while
srcmix->audioQueuePtr = 0;
if (!srcmix->currentInput) {
continue;
}
}
if (srcmix->currentInput->channels == 0 || !srcmix->currentInput->data.size()) {
if (!srcmix->inputQueue->empty()) {
srcmix->audioQueuePtr = 0;
if (srcmix->currentInput) {
srcmix->currentInput = nullptr;
}
if (!srcmix->inputQueue->try_pop(srcmix->currentInput)) {
continue;
}
}
continue;
}
double mixPeak = srcmix->currentInput->peak * srcmix->gain;
if (srcmix->currentInput->channels == 1) {
for (unsigned int i = 0; i < nBufferFrames; i++) {
if (srcmix->audioQueuePtr >= srcmix->currentInput->data.size()) {
srcmix->audioQueuePtr = 0;
if (srcmix->currentInput) {
srcmix->currentInput = nullptr;
}
if (!srcmix->inputQueue->try_pop(srcmix->currentInput)) {
break;
}
double srcPeak = srcmix->currentInput->peak * srcmix->gain;
if (mixPeak < srcPeak) {
mixPeak = srcPeak;
}
}
if (srcmix->currentInput && srcmix->currentInput->data.size()) {
float v = srcmix->currentInput->data[srcmix->audioQueuePtr] * srcmix->gain;
out[i * 2] += v;
out[i * 2 + 1] += v;
}
srcmix->audioQueuePtr++;
}
} else {
for (int i = 0, iMax = srcmix->currentInput->channels * nBufferFrames; i < iMax; i++) {
if (srcmix->audioQueuePtr >= srcmix->currentInput->data.size()) {
srcmix->audioQueuePtr = 0;
if (srcmix->currentInput) {
srcmix->currentInput = nullptr;
}
if (!srcmix->inputQueue->try_pop(srcmix->currentInput)) {
break;
}
double srcPeak = srcmix->currentInput->peak * srcmix->gain;
if (mixPeak < srcPeak) {
mixPeak = srcPeak;
}
}
if (srcmix->currentInput && srcmix->currentInput->data.size()) {
out[i] = out[i] + srcmix->currentInput->data[srcmix->audioQueuePtr] * srcmix->gain;
}
srcmix->audioQueuePtr++;
}
}
peak += mixPeak;
}
//normalize volume
if (peak > 1.0) {
float invPeak = (float)(1.0 / peak);
for (unsigned int i = 0; i < nBufferFrames * 2; i++) {
out[i] *= invPeak;
}
}
return 0;
}
void AudioThread::enumerateDevices(std::vector<RtAudio::DeviceInfo> &devs) {
RtAudio endac;
int numDevices = endac.getDeviceCount();
for (int i = 0; i < numDevices; i++) {
RtAudio::DeviceInfo info = endac.getDeviceInfo(i);
devs.push_back(info);
std::cout << std::endl;
std::cout << "Audio Device #" << i << " " << info.name << std::endl;
std::cout << "\tDefault Output? " << (info.isDefaultOutput ? "Yes" : "No") << std::endl;
std::cout << "\tDefault Input? " << (info.isDefaultInput ? "Yes" : "No") << std::endl;
std::cout << "\tInput channels: " << info.inputChannels << std::endl;
std::cout << "\tOutput channels: " << info.outputChannels << std::endl;
std::cout << "\tDuplex channels: " << info.duplexChannels << std::endl;
std::cout << "\t" << "Native formats:" << std::endl;
RtAudioFormat nFormats = info.nativeFormats;
if (nFormats & RTAUDIO_SINT8) {
std::cout << "\t\t8-bit signed integer." << std::endl;
}
if (nFormats & RTAUDIO_SINT16) {
std::cout << "\t\t16-bit signed integer." << std::endl;
}
if (nFormats & RTAUDIO_SINT24) {
std::cout << "\t\t24-bit signed integer." << std::endl;
}
if (nFormats & RTAUDIO_SINT32) {
std::cout << "\t\t32-bit signed integer." << std::endl;
}
if (nFormats & RTAUDIO_FLOAT32) {
std::cout << "\t\t32-bit float normalized between plus/minus 1.0." << std::endl;
}
if (nFormats & RTAUDIO_FLOAT64) {
std::cout << "\t\t64-bit float normalized between plus/minus 1.0." << std::endl;
}
std::vector<unsigned int>::iterator srate;
std::cout << "\t" << "Supported sample rates:" << std::endl;
for (srate = info.sampleRates.begin(); srate != info.sampleRates.end(); srate++) {
std::cout << "\t\t" << (*srate) << "hz" << std::endl;
}
std::cout << std::endl;
}
}
void AudioThread::setDeviceSampleRate(int deviceId, int sampleRate) {
AudioThread* matchingAudioThread = nullptr;
//scope lock here to minimize the common unique static lock contention
{
std::lock_guard<std::recursive_mutex> lock(m_device_mutex);
if (deviceController.find(deviceId) != deviceController.end()) {
matchingAudioThread = deviceController[deviceId];
}
}
//out-of-lock test
if (matchingAudioThread != nullptr) {
AudioThreadCommand refreshDevice;
refreshDevice.cmd = AudioThreadCommand::AUDIO_THREAD_CMD_SET_SAMPLE_RATE;
refreshDevice.int_value = sampleRate;
//VSO : blocking push !
matchingAudioThread->getCommandQueue()->push(refreshDevice);
}
}
void AudioThread::setSampleRate(int sampleRate) {
bool outputIsThis = false;
//scope lock here to minimize the common unique static lock contention
{
std::lock_guard<std::recursive_mutex> lock(m_device_mutex);
if (deviceController[outputDevice.load()] == this) {
outputIsThis = true;
deviceSampleRate[outputDevice.load()] = sampleRate;
}
}
std::lock_guard<std::recursive_mutex> lock(m_mutex);
if (outputIsThis) {
dac.stopStream();
dac.closeStream();
for (size_t j = 0; j < boundThreads.size(); j++) {
AudioThread *srcmix = boundThreads[j];
srcmix->setSampleRate(sampleRate);
}
//make a local copy, snapshot of the list of demodulators
std::vector<DemodulatorInstancePtr> demodulators = wxGetApp().getDemodMgr().getDemodulators();
for (auto demod : demodulators) {
if (demod->getOutputDevice() == outputDevice.load()) {
demod->setAudioSampleRate(sampleRate);
}
}
dac.openStream(&parameters, NULL, RTAUDIO_FLOAT32, sampleRate, &nBufferFrames, &audioCallback, (void *) this, &opts);
dac.startStream();
}
this->sampleRate = sampleRate;
}
int AudioThread::getSampleRate() {
std::lock_guard<std::recursive_mutex> lock(m_mutex);
return this->sampleRate;
}
void AudioThread::setupDevice(int deviceId) {
//global lock to setup the device...
std::lock_guard<std::recursive_mutex> lock(m_device_mutex);
parameters.deviceId = deviceId;
parameters.nChannels = 2;
parameters.firstChannel = 0;
opts.streamName = "CubicSDR Audio Output";
try {
if (deviceController.find(outputDevice.load()) != deviceController.end()) {
deviceController[outputDevice.load()]->removeThread(this);
}
#ifndef _MSC_VER
opts.priority = sched_get_priority_max(SCHED_FIFO);
#endif
// opts.flags = RTAUDIO_MINIMIZE_LATENCY;
opts.flags = RTAUDIO_SCHEDULE_REALTIME;
if (deviceSampleRate.find(parameters.deviceId) != deviceSampleRate.end()) {
sampleRate = deviceSampleRate[parameters.deviceId];
} else {
std::cout << "Error, device sample rate wasn't initialized?" << std::endl;
return;
// sampleRate = AudioThread::getDefaultAudioSampleRate();
// deviceSampleRate[parameters.deviceId] = sampleRate;
}
if (deviceController.find(parameters.deviceId) == deviceController.end()) {
deviceController[parameters.deviceId] = new AudioThread();
deviceController[parameters.deviceId]->setInitOutputDevice(parameters.deviceId, sampleRate);
deviceController[parameters.deviceId]->bindThread(this);
deviceThread[parameters.deviceId] = new std::thread(&AudioThread::threadMain, deviceController[parameters.deviceId]);
} else if (deviceController[parameters.deviceId] == this) {
//Attach callback
dac.openStream(&parameters, NULL, RTAUDIO_FLOAT32, sampleRate, &nBufferFrames, &audioCallback, (void *) this, &opts);
dac.startStream();
} else {
deviceController[parameters.deviceId]->bindThread(this);
}
active = true;
} catch (RtAudioError& e) {
e.printMessage();
return;
}
if (deviceId != -1) {
outputDevice = deviceId;
}
}
int AudioThread::getOutputDevice() {
std::lock_guard<std::recursive_mutex> lock(m_mutex);
if (outputDevice == -1) {
return dac.getDefaultOutputDevice();
}
return outputDevice;
}
void AudioThread::setInitOutputDevice(int deviceId, int sampleRate) {
//global lock
std::lock_guard<std::recursive_mutex> lock(m_device_mutex);
outputDevice = deviceId;
if (sampleRate == -1) {
if (deviceSampleRate.find(parameters.deviceId) != deviceSampleRate.end()) {
sampleRate = deviceSampleRate[deviceId];
}
} else {
deviceSampleRate[deviceId] = sampleRate;
}
this->sampleRate = sampleRate;
}
void AudioThread::run() {
#ifdef __APPLE__
pthread_t tID = pthread_self(); // ID of this thread
int priority = sched_get_priority_max( SCHED_RR) - 1;
sched_param prio = {priority}; // scheduling priority of thread
pthread_setschedparam(tID, SCHED_RR, &prio);
#endif
// std::cout << "Audio thread initializing.." << std::endl;
if (dac.getDeviceCount() < 1) {
std::cout << "No audio devices found!" << std::endl;
return;
}
setupDevice((outputDevice.load() == -1) ? (dac.getDefaultOutputDevice()) : outputDevice.load());
// std::cout << "Audio thread started." << std::endl;
inputQueue = std::static_pointer_cast<AudioThreadInputQueue>(getInputQueue("AudioDataInput"));
//Infinite loop, witing for commands or for termination
while (!stopping) {
AudioThreadCommand command;
if (!cmdQueue.pop(command, HEARTBEAT_CHECK_PERIOD_MICROS)) {
continue;
}
if (command.cmd == AudioThreadCommand::AUDIO_THREAD_CMD_SET_DEVICE) {
setupDevice(command.int_value);
}
if (command.cmd == AudioThreadCommand::AUDIO_THREAD_CMD_SET_SAMPLE_RATE) {
setSampleRate(command.int_value);
}
}
// Drain any remaining inputs, with a non-blocking pop
if (inputQueue != nullptr) {
inputQueue->flush();
}
//Thread termination, prevent fancy things to happen, lock the whole thing:
//This way audioThreadCallback is rightly protected from thread termination
std::lock_guard<std::recursive_mutex> lock(m_mutex);
//Nullify currentInput...
currentInput = nullptr;
//Stop : this affects the device list , so must be protected globally.
std::lock_guard<std::recursive_mutex> global_lock(m_device_mutex);
if (deviceController[parameters.deviceId] != this) {
deviceController[parameters.deviceId]->removeThread(this);
} else {
try {
if (dac.isStreamOpen()) {
if (dac.isStreamRunning()) {
dac.stopStream();
}
dac.closeStream();
}
} catch (RtAudioError& e) {
e.printMessage();
}
}
// std::cout << "Audio thread done." << std::endl;
}
void AudioThread::terminate() {
IOThread::terminate();
}
bool AudioThread::isActive() {
std::lock_guard<std::recursive_mutex> lock(m_mutex);
return active;
}
void AudioThread::setActive(bool state) {
AudioThread* matchingAudioThread = nullptr;
//scope lock here to minimize the common unique static lock contention
{
std::lock_guard<std::recursive_mutex> lock(m_device_mutex);
if (deviceController.find(parameters.deviceId) != deviceController.end()) {
matchingAudioThread = deviceController[parameters.deviceId];
}
}
std::lock_guard<std::recursive_mutex> lock(m_mutex);
if (matchingAudioThread == nullptr) {
return;
}
if (state && !active && inputQueue) {
matchingAudioThread->bindThread(this);
} else if (!state && active) {
matchingAudioThread->removeThread(this);
}
// Activity state changing, clear any inputs
if(inputQueue) {
inputQueue->flush();
}
active = state;
}
AudioThreadCommandQueue *AudioThread::getCommandQueue() {
return &cmdQueue;
}
void AudioThread::setGain(float gain_in) {
if (gain_in < 0.0) {
gain_in = 0.0;
}
if (gain_in > 2.0) {
gain_in = 2.0;
}
gain = gain_in;
}