Compare commits

...

34 Commits

Author SHA1 Message Date
markqvist bb4b1917d5
Merge pull request #13 from CoelacanthusHex/fix-makefile
chore: refine Makefile with Makefile Conventions
2023-05-31 18:20:45 +02:00
Coelacanthus 54b4ae14f8
chore: refine Makefile with Makefile Conventions
Users can now do the following:
- use DESTDIR to specify another root dir
- use PREFIX to specify another install path except for /usr/local,
  e.g. /usr for the system package.
- load custom CFLAGS and LDFLAGS from environment variables
- use CC to specify the C compiler

These features are helpful to package it into Linux Distribution.

Signed-off-by: Coelacanthus <CoelacanthusHex@gmail.com>
2023-05-27 22:35:58 +08:00
Mark Qvist d9b3d2b6ae
Update README.md 2021-10-11 15:29:06 +02:00
Mark Qvist bb9ff10158 Version updated to 0.1.9 2020-09-28 11:39:28 +02:00
Mark Qvist 5129dda626 Argparse variable init. Fixes #4. 2020-09-28 11:18:02 +02:00
Mark Qvist b4a80a1e7a Cleaned install output 2020-09-28 11:11:27 +02:00
Mark Qvist 8944821ba8 Added mandb update to makefile 2020-09-28 11:07:10 +02:00
Mark Qvist ef700b3244
Merge pull request #5 from yalla/master
Created manualpage for tncattach
2020-09-28 10:17:17 +02:00
Alexander W. Janssen 015f8a73fb now makefile for real. 2020-09-12 14:34:03 +02:00
Alexander W. Janssen 5bdc5d5ccc created manualpage and adapted makefile for installing manpage 2020-09-12 14:31:42 +02:00
Mark Qvist de83bc9f21 Fixed accidental removal of line 2020-06-24 14:44:30 +02:00
Mark Qvist 671ea5dda0 Fixed deprecated bzero and bcopy calls 2020-06-24 14:28:50 +02:00
Mark Qvist 07eeed45f5 Cleaned up indentation 2020-06-24 14:22:42 +02:00
Mark Qvist c2beeee944 Cleaned up TCP options 2020-06-24 14:15:49 +02:00
Mark Qvist eae91f349b Updated readme to include KISS over TCP 2020-06-24 14:13:40 +02:00
Mark Qvist b996f38689 Fixed typo 2020-06-24 14:02:02 +02:00
Mark Qvist d3ff2f207a Updated makefile 2020-06-24 14:01:35 +02:00
Mark Qvist 26f1e48b19 Renamed TCP files 2020-06-24 14:00:23 +02:00
Mark Qvist 5c8ddcd992 Merge branch 'valentintintin-tcp-kiss' 2020-06-24 12:31:17 +02:00
Mark Qvist dada2f3775 Makefile update 2020-06-24 12:28:49 +02:00
Valentin Saugnier 41086b2e0c Add TCP Kiss 2020-06-16 21:55:25 +02:00
Mark Qvist 1c7b30b995 Updated version number 2020-06-01 23:01:25 +02:00
Mark Qvist 30207d6691 Added ARP configuration for interface 2020-06-01 22:54:15 +02:00
Mark Qvist b438e5fb5a Implemented setting txqueuelen on created interface 2020-06-01 22:25:10 +02:00
Mark Qvist e7a831b41d Updated readme 2020-05-28 16:25:41 +02:00
Mark Qvist 5f251e1f28 Raspbian MTU setting description in readme 2020-05-28 14:45:07 +02:00
Mark Qvist 8a70eedfc5 Raspbian MTU setting 2020-05-28 14:15:29 +02:00
Mark Qvist a4f79f204b Fixed missing check when runnign without ID 2020-05-28 13:42:08 +02:00
Mark Qvist a4b433e2f7 Implemented part 97 compliant auto-identification 2020-05-28 13:27:06 +02:00
Mark Qvist bb045bc6d4 Increased logging in verbose mode 2020-05-28 12:34:46 +02:00
Mark Qvist 01a6fc1cd8 Increased logging in verbose mode 2020-05-28 12:20:07 +02:00
Mark Qvist 764746cc4c Fixed inadvertently setting interface flags when setting MTU 2020-05-28 11:32:46 +02:00
Mark Qvist 0159926312
Update README.md 2020-05-27 15:14:37 +02:00
Mark Qvist f6e12426d0 Implemented automatic station ID 2020-05-27 14:30:05 +02:00
10 changed files with 1174 additions and 672 deletions

View File

@ -6,4 +6,10 @@
#define MTU_MIN 74
#define MTU_MAX 1522
#define MTU_DEFAULT 329
#define MTU_DEFAULT 329
#define TXQUEUELEN 10
// ARP timings, in seconds
#define ARP_BASE_REACHABLE_TIME 300
#define ARP_RETRANS_TIME 5

110
KISS.c
View File

@ -13,69 +13,73 @@ uint8_t frame_buffer[MAX_PAYLOAD];
uint8_t write_buffer[MAX_PAYLOAD*2+3];
extern bool verbose;
extern bool daemonize;
extern int attached_if;
extern int device_type;
extern void cleanup(void);
void kiss_frame_received(int frame_len) {
if (verbose) printf("Got KISS frame\r\n");
int written = write(attached_if, frame_buffer, frame_len);
if (written == -1) {
if (verbose) printf("Could not write received KISS frame to network interface, is the interface up?\r\n");
} else if (written != frame_len) {
printf("Error: Could only write %d of %d bytes to interface", written, frame_len);
cleanup();
exit(1);
}
if ( (device_type == IF_TUN && frame_len >= TUN_MIN_FRAME_SIZE) || (device_type == IF_TAP && frame_len >= ETHERNET_MIN_FRAME_SIZE) ) {
int written = write(attached_if, frame_buffer, frame_len);
if (written == -1) {
if (verbose && !daemonize) printf("Could not write received KISS frame (%d bytes) to network interface, is the interface up?\r\n", frame_len);
} else if (written != frame_len) {
if (!daemonize) printf("Error: Could only write %d of %d bytes to interface", written, frame_len);
cleanup();
exit(1);
}
if (verbose && !daemonize) printf("Got %d bytes from TNC, wrote %d bytes to interface\r\n", frame_len, written);
}
}
void kiss_serial_read(uint8_t sbyte) {
if (IN_FRAME && sbyte == FEND && kiss_command == CMD_DATA) {
IN_FRAME = false;
kiss_frame_received(frame_len);
} else if (sbyte == FEND) {
IN_FRAME = true;
kiss_command = CMD_UNKNOWN;
frame_len = 0;
} else if (IN_FRAME && frame_len < MAX_PAYLOAD) {
// Have a look at the command byte first
if (frame_len == 0 && kiss_command == CMD_UNKNOWN) {
// Strip of port nibble
kiss_command = sbyte & 0x0F;
} else if (kiss_command == CMD_DATA) {
if (sbyte == FESC) {
ESCAPE = true;
} else {
if (ESCAPE) {
if (sbyte == TFEND) sbyte = FEND;
if (sbyte == TFESC) sbyte = FESC;
ESCAPE = false;
}
if (IN_FRAME && sbyte == FEND && kiss_command == CMD_DATA) {
IN_FRAME = false;
kiss_frame_received(frame_len);
} else if (sbyte == FEND) {
IN_FRAME = true;
kiss_command = CMD_UNKNOWN;
frame_len = 0;
} else if (IN_FRAME && frame_len < MAX_PAYLOAD) {
// Have a look at the command byte first
if (frame_len == 0 && kiss_command == CMD_UNKNOWN) {
// Strip of port nibble
kiss_command = sbyte & 0x0F;
} else if (kiss_command == CMD_DATA) {
if (sbyte == FESC) {
ESCAPE = true;
} else {
if (ESCAPE) {
if (sbyte == TFEND) sbyte = FEND;
if (sbyte == TFESC) sbyte = FESC;
ESCAPE = false;
}
if (frame_len < MAX_PAYLOAD) {
frame_buffer[frame_len++] = sbyte;
}
}
}
}
if (frame_len < MAX_PAYLOAD) {
frame_buffer[frame_len++] = sbyte;
}
}
}
}
}
int kiss_write_frame(int serial_port, uint8_t* buffer, int frame_len) {
int write_len = 0;
write_buffer[write_len++] = FEND;
write_buffer[write_len++] = CMD_DATA;
for (int i = 0; i < frame_len; i++) {
uint8_t byte = buffer[i];
if (byte == FEND) {
write_buffer[write_len++] = FESC;
write_buffer[write_len++] = TFEND;
} else if (byte == FESC) {
write_buffer[write_len++] = FESC;
write_buffer[write_len++] = TFESC;
} else {
write_buffer[write_len++] = byte;
}
}
write_buffer[write_len++] = FEND;
int write_len = 0;
write_buffer[write_len++] = FEND;
write_buffer[write_len++] = CMD_DATA;
for (int i = 0; i < frame_len; i++) {
uint8_t byte = buffer[i];
if (byte == FEND) {
write_buffer[write_len++] = FESC;
write_buffer[write_len++] = TFEND;
} else if (byte == FESC) {
write_buffer[write_len++] = FESC;
write_buffer[write_len++] = TFESC;
} else {
write_buffer[write_len++] = byte;
}
}
write_buffer[write_len++] = FEND;
return write(serial_port, write_buffer, write_len);
return write(serial_port, write_buffer, write_len);
}

View File

@ -4,7 +4,9 @@ Attach KISS TNC devices as network interfaces in Linux. This program allows you
## Installation
Currently it is recommended to compile and install __tncattach__ from source with the below commands. If that is not possible for you, precompiled __amd64__ and __armhf__ (Raspberry Pi) binaries exist in the releases section.
Currently it is recommended to compile and install __tncattach__ from source with the below commands.
If that is not possible for you, precompiled __amd64__ and __armhf__ (Raspberry Pi and similar) binaries have been provided in the releases section. You can [download the latest release here](https://github.com/markqvist/tncattach/releases).
```sh
# If you don't already have a compiler installed
@ -32,12 +34,17 @@ Usage: tncattach [OPTION...] port baudrate
Attach TNC devices as system network interfaces
-d, --daemon Run tncattach as a daemon
-m, --mtu=MTU Specify interface MTU
-e, --ethernet Create a full ethernet device
-i, --ipv4=IP_ADDRESS Configure an IPv4 address on interface
-m, --mtu=MTU Specify interface MTU
-n, --noipv6 Filter IPv6 traffic from reaching TNC
--noup Only create interface, don't bring it up
-T, --kisstcp Use KISS over TCP instead of serial port
-H, --tcphost=TCP_HOST Host to connect to when using KISS over TCP
-P, --tcpport=TCP_PORT TCP port when using KISS over TCP
-t, --interval=SECONDS Maximum interval between station identifications
-s, --id=CALLSIGN Station identification data
-d, --daemon Run tncattach as a daemon
-v, --verbose Enable verbose output
-?, --help Give this help list
--usage Give a short usage message
@ -46,10 +53,24 @@ Attach TNC devices as system network interfaces
The program supports attaching TNCs as point-to-point tunnel devices, or generic ethernet devices. The ethernet mode is suitable for point-to-multipoint setups, and can be enabled with the corresponding command line switch. If you only need point-to-point links, it is advisable to just use the standard point-to-point mode, since it doesn't incur the ethernet header overhead on each packet.
If you want to connect to a virtual KISS TNC over a TCP connection, you can use the -T option, along with the -H and -P options to specify the host and port.
Additionally, it is worth noting that __tncattach__ can filter out IPv6 packets from reaching the TNC. Most operating systems attempts to autoconfigure IPv6 when an interface is brought up, which results in a substantial amount of IPv6 traffic generated by router solicitations and similar, which is usually unwanted for packet radio links and similar.
If you intend to use __tncattach__ on a system with mDNS services enabled (avahi-daemon, for example), you may want to consider modifying your mDNS setup to exclude TNC interfaces, or turning it off entirely, since it will generate a lot of traffic that might be unwanted.
## Station Identification
You can configure tncattach to automatically transmit station identification beacons according to a given interval, by using the --id and --interval options. Identification will be transmitted as raw data frames with whatever content has been specified in the --id option. Useful for amateur radio use, or other areas where station identification is necessary.
Identification beacons will be transmitted when:
- There is outgoing data to send, and the specified interval has elapsed.
- The specified interval elapses, and data has been sent since the last ID beacon.
- The program exits, if any data frames have been transmitted since the last ID beacon.
The above methodology should comply with station identification rules for amateur radio in most parts of the world, and complies with US Part 97 rules.
## Examples
Create an ethernet device with a USB-connected TNC, set the MTU, filter IPv6 traffic, and set an IPv4 address:
@ -59,6 +80,13 @@ Create an ethernet device with a USB-connected TNC, set the MTU, filter IPv6 tra
sudo tncattach /dev/ttyUSB0 115200 --ethernet --mtu 576 --noipv6 --ipv4 10.92.0.10/24
```
Create an ethernet device with a TCP-connected TNC, set the MTU, filter IPv6 traffic, and set an IPv4 address:
```sh
# Attach interface
sudo tncattach -T -H localhost -P 8001 --ethernet --mtu 576 --noipv6 --ipv4 10.92.0.10/24
```
You can interact with the interface like any other using the __ip__ or __ifconfig__ utilities:
```sh
@ -95,3 +123,21 @@ tnc0: flags=4305<UP,POINTOPOINT,RUNNING,NOARP,MULTICAST> mtu 400
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```
## Worth Knowing on Raspbian
On some versions of Raspbian (and probably other operating systems), the DHCP client daemon _dhcpcd_ interferes with TNC interfaces, by overriding their MTU and trying to auto-configure link-local addresses. You probably don't want this, and it can be disabled by editing the __/etc/dhcpcd.conf__ file, adding a statement telling _dhcpcd_ to ignore your TNC interface:
```
# Add the following statement somewhere at the beginning
# of /etc/dhcpcd.conf to prevent dhcpcd from changing MTU
denyinterfaces tnc0
```
## Support tncattach development
You can help support the continued development of open, free and private communications systems by donating via one of the following channels:
- Ethereum: 0x81F7B979fEa6134bA9FD5c701b3501A2e61E897a
- Bitcoin: 3CPmacGm34qYvR6XWLVEJmi2aNe3PZqUuq
- Ko-Fi: https://ko-fi.com/markqvist

284
Serial.c
View File

@ -3,172 +3,172 @@
extern void cleanup();
int open_port(char* port) {
int fd;
fd = open(port, O_RDWR | O_NOCTTY | O_SYNC | O_NDELAY);
int fd;
fd = open(port, O_RDWR | O_NOCTTY | O_SYNC | O_NDELAY);
if (fd == -1) {
perror("The serial port could not be opened");
cleanup();
exit(1);
} else {
fcntl(fd, F_SETFL, 0);
}
if (fd == -1) {
perror("The serial port could not be opened");
cleanup();
exit(1);
} else {
fcntl(fd, F_SETFL, 0);
}
return fd;
return fd;
}
int close_port(int fd) {
return close(fd);
return close(fd);
}
void set_speed(void *tty_s, int speed) {
cfsetospeed(tty_s, speed);
cfsetispeed(tty_s, speed);
cfsetospeed(tty_s, speed);
cfsetispeed(tty_s, speed);
}
bool setup_port(int fd, int speed) {
struct termios tty;
if (tcgetattr(fd, &tty) != 0) {
perror("Error setting port speed, could not read port parameters");
return false;
}
struct termios tty;
if (tcgetattr(fd, &tty) != 0) {
perror("Error setting port speed, could not read port parameters");
return false;
}
switch (speed) {
case 0:
set_speed(&tty, B0);
break;
case 50:
set_speed(&tty, B50);
break;
case 75:
set_speed(&tty, B75);
break;
case 110:
set_speed(&tty, B110);
break;
case 134:
set_speed(&tty, B134);
break;
case 150:
set_speed(&tty, B150);
break;
case 200:
set_speed(&tty, B200);
break;
case 300:
set_speed(&tty, B300);
break;
case 600:
set_speed(&tty, B600);
break;
case 1200:
set_speed(&tty, B1200);
break;
case 2400:
set_speed(&tty, B2400);
break;
case 4800:
set_speed(&tty, B4800);
break;
case 9600:
set_speed(&tty, B9600);
break;
case 19200:
set_speed(&tty, B19200);
break;
case 38400:
set_speed(&tty, B38400);
break;
case 57600:
set_speed(&tty, B57600);
break;
case 115200:
set_speed(&tty, B115200);
break;
case 230400:
set_speed(&tty, B230400);
break;
default:
printf("Error: Invalid port speed %d specified\r\n", speed);
cleanup();
exit(1);
return false;
}
switch (speed) {
case 0:
set_speed(&tty, B0);
break;
case 50:
set_speed(&tty, B50);
break;
case 75:
set_speed(&tty, B75);
break;
case 110:
set_speed(&tty, B110);
break;
case 134:
set_speed(&tty, B134);
break;
case 150:
set_speed(&tty, B150);
break;
case 200:
set_speed(&tty, B200);
break;
case 300:
set_speed(&tty, B300);
break;
case 600:
set_speed(&tty, B600);
break;
case 1200:
set_speed(&tty, B1200);
break;
case 2400:
set_speed(&tty, B2400);
break;
case 4800:
set_speed(&tty, B4800);
break;
case 9600:
set_speed(&tty, B9600);
break;
case 19200:
set_speed(&tty, B19200);
break;
case 38400:
set_speed(&tty, B38400);
break;
case 57600:
set_speed(&tty, B57600);
break;
case 115200:
set_speed(&tty, B115200);
break;
case 230400:
set_speed(&tty, B230400);
break;
default:
printf("Error: Invalid port speed %d specified\r\n", speed);
cleanup();
exit(1);
return false;
}
// Set 8-bit characters, no parity, one stop bit
tty.c_cflag |= CS8;
tty.c_cflag &= ~PARENB;
tty.c_cflag &= ~CSTOPB;
// Set 8-bit characters, no parity, one stop bit
tty.c_cflag |= CS8;
tty.c_cflag &= ~PARENB;
tty.c_cflag &= ~CSTOPB;
// Disable hardware flow control
tty.c_cflag &= ~CRTSCTS;
// Disable hardware flow control
tty.c_cflag &= ~CRTSCTS;
// Enable reading and ignore modem
// control lines
tty.c_cflag |= CREAD | CLOCAL;
// Enable reading and ignore modem
// control lines
tty.c_cflag |= CREAD | CLOCAL;
// Disable canonical mode, echo
// and signal characters.
tty.c_lflag &= ~ICANON;
tty.c_lflag &= ~ECHO;
tty.c_lflag &= ~ECHOE;
tty.c_lflag &= ~ECHONL;
tty.c_lflag &= ~ISIG;
// Disable canonical mode, echo
// and signal characters.
tty.c_lflag &= ~ICANON;
tty.c_lflag &= ~ECHO;
tty.c_lflag &= ~ECHOE;
tty.c_lflag &= ~ECHONL;
tty.c_lflag &= ~ISIG;
// Disable processing of input,
// just pass the raw data.
tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL);
// Disable processing of input,
// just pass the raw data.
tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL);
// Disable XON/XOFF software flow control.
tty.c_iflag &= ~(IXON | IXOFF | IXANY);
// Disable XON/XOFF software flow control.
tty.c_iflag &= ~(IXON | IXOFF | IXANY);
// Disable processing output bytes
// and new line conversions
tty.c_oflag &= ~OPOST;
tty.c_oflag &= ~ONLCR;
// Disable processing output bytes
// and new line conversions
tty.c_oflag &= ~OPOST;
tty.c_oflag &= ~ONLCR;
// Block forever until at least one byte is read.
tty.c_cc[VMIN] = 1;
tty.c_cc[VTIME] = 0;
// Block forever until at least one byte is read.
tty.c_cc[VMIN] = 1;
tty.c_cc[VTIME] = 0;
// TODO: Check these
// Prevent conversion of tabs to spaces (NOT PRESENT IN LINUX)
// tty.c_oflag &= ~OXTABS;
// Prevent removal of C-d chars (0x004) in output (NOT PRESENT IN LINUX)
// tty.c_oflag &= ~ONOEOT;
// TODO: Check these
// Prevent conversion of tabs to spaces (NOT PRESENT IN LINUX)
// tty.c_oflag &= ~OXTABS;
// Prevent removal of C-d chars (0x004) in output (NOT PRESENT IN LINUX)
// tty.c_oflag &= ~ONOEOT;
if (tcsetattr(fd, TCSANOW, &tty) != 0) {
perror("Could not configure serial port parameters");
return false;
} else {
return true;
}
if (tcsetattr(fd, TCSANOW, &tty) != 0) {
perror("Could not configure serial port parameters");
return false;
} else {
return true;
}
}
bool set_port_blocking(int fd, bool should_block) {
struct termios tty;
memset(&tty, 0, sizeof tty);
struct termios tty;
memset(&tty, 0, sizeof tty);
if (tcgetattr(fd, &tty) != 0) {
perror("Error configuring port blocking behaviour, could not read port parameters");
return false;
} else {
// TODO: Implement this correctly
if (should_block) {
// Block forever until at least one byte is read.
tty.c_cc[VMIN] = 1;
tty.c_cc[VTIME] = 0;
} else {
// Never block, always return immediately with
// whatever is available.
tty.c_cc[VMIN] = 0;
tty.c_cc[VTIME] = 0;
}
if (tcsetattr(fd, TCSANOW, &tty) != 0) {
perror("Could not set port parameters while configuring blocking behaviour");
return false;
} else {
return true;
}
}
if (tcgetattr(fd, &tty) != 0) {
perror("Error configuring port blocking behaviour, could not read port parameters");
return false;
} else {
// TODO: Implement this correctly
if (should_block) {
// Block forever until at least one byte is read.
tty.c_cc[VMIN] = 1;
tty.c_cc[VTIME] = 0;
} else {
// Never block, always return immediately with
// whatever is available.
tty.c_cc[VMIN] = 0;
tty.c_cc[VTIME] = 0;
}
if (tcsetattr(fd, TCSANOW, &tty) != 0) {
perror("Could not set port parameters while configuring blocking behaviour");
return false;
} else {
return true;
}
}
}

272
TAP.c
View File

@ -15,118 +15,184 @@ extern char* netmask;
extern void cleanup();
int open_tap(void) {
struct ifreq ifr;
int fd = open("/dev/net/tun", O_RDWR);
struct ifreq ifr;
int fd = open("/dev/net/tun", O_RDWR);
if (fd < 0) {
perror("Could not open clone device");
exit(1);
} else {
memset(&ifr, 0, sizeof(ifr));
// TODO: Enable PI header again?
if (fd < 0) {
perror("Could not open clone device");
exit(1);
} else {
memset(&ifr, 0, sizeof(ifr));
// TODO: Enable PI header again?
if (device_type == IF_TAP) {
ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
} else if (device_type == IF_TUN) {
ifr.ifr_flags = IFF_TUN;
} else {
printf("Error: Unsupported interface type\r\n");
cleanup();
exit(1);
}
if (device_type == IF_TAP) {
ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
} else if (device_type == IF_TUN) {
ifr.ifr_flags = IFF_TUN;
} else {
printf("Error: Unsupported interface type\r\n");
cleanup();
exit(1);
}
strcpy(tap_name, "tnc%d");
strncpy(ifr.ifr_name, tap_name, IFNAMSIZ);
strcpy(tap_name, "tnc%d");
strncpy(ifr.ifr_name, tap_name, IFNAMSIZ);
if (ioctl(fd, TUNSETIFF, &ifr) < 0) {
perror("Could not configure network interface");
exit(1);
} else {
strcpy(if_name, ifr.ifr_name);
int inet = socket(AF_INET, SOCK_DGRAM, 0);
if (inet == -1) {
perror("Could not open AF_INET socket\r\n");
cleanup();
exit(1);
} else {
if (ioctl(inet, SIOCGIFFLAGS, &ifr) < 0) {
perror("Could not get interface flags from kernel");
close(inet);
cleanup();
exit(1);
} else {
ifr.ifr_mtu = mtu;
if (ioctl(inet, SIOCSIFMTU, &ifr) < 0) {
perror("Could not configure interface MTU");
close(inet);
cleanup();
exit(1);
}
if (ioctl(fd, TUNSETIFF, &ifr) < 0) {
perror("Could not configure network interface");
exit(1);
} else {
strcpy(if_name, ifr.ifr_name);
int inet = socket(AF_INET, SOCK_DGRAM, 0);
if (inet == -1) {
perror("Could not open AF_INET socket");
cleanup();
exit(1);
} else {
if (ioctl(inet, SIOCGIFMTU, &ifr) < 0) {
perror("Could not get interface flags from kernel");
close(inet);
cleanup();
exit(1);
} else {
ifr.ifr_mtu = mtu;
if (ioctl(inet, SIOCSIFMTU, &ifr) < 0) {
perror("Could not configure interface MTU");
close(inet);
cleanup();
exit(1);
}
if (!noup) {
ifr.ifr_flags |= IFF_UP | IFF_RUNNING;
if (ioctl(inet, SIOCSIFFLAGS, &ifr) < 0) {
perror("Could not bring up interface");
close(inet);
cleanup();
exit(1);
} else {
if (set_ipv4) {
struct ifreq a_ifr;
struct sockaddr_in addr, snm;
// Configure TX queue length
if (ioctl(inet, SIOCGIFTXQLEN, &ifr) < 0) {
perror("Could not get interface flags from kernel");
close(inet);
cleanup();
exit(1);
} else {
ifr.ifr_qlen = TXQUEUELEN;
if (ioctl(inet, SIOCSIFTXQLEN, &ifr) < 0) {
perror("Could not set interface TX queue length");
close(inet);
cleanup();
exit(1);
}
}
memset(&a_ifr, 0, sizeof(a_ifr));
memset(&addr, 0, sizeof(addr));
memset(&snm, 0, sizeof(addr));
strncpy(a_ifr.ifr_name, ifr.ifr_name, IFNAMSIZ);
addr.sin_family = AF_INET;
snm.sin_family = AF_INET;
// Configure ARP characteristics
char path_buf[256];
if (device_type == IF_TAP) {
snprintf(path_buf, sizeof(path_buf), "/proc/sys/net/ipv4/neigh/%s/base_reachable_time_ms", ifr.ifr_name);
int arp_fd = open(path_buf, O_WRONLY);
if (arp_fd < 0) {
perror("Could not open proc entry for ARP parameters");
close(inet);
cleanup();
exit(1);
} else {
if (dprintf(arp_fd, "%d", ARP_BASE_REACHABLE_TIME*1000) <= 0) {
perror("Could not configure interface ARP parameter base_reachable_time_ms");
close(inet);
close(arp_fd);
cleanup();
exit(1);
} else {
close(arp_fd);
}
}
int addr_conversion = inet_pton(AF_INET, ipv4_addr, &(addr.sin_addr));
if (addr_conversion != 1) {
printf("Error: Invalid IPv4 address specified\r\n");
close(inet);
cleanup();
exit(1);
} else {
a_ifr.ifr_addr = *(struct sockaddr*)&addr;
if (ioctl(inet, SIOCSIFADDR, &a_ifr) < 0) {
perror("Could not set IP-address");
close(inet);
cleanup();
exit(1);
} else {
if (set_netmask) {
int snm_conversion = inet_pton(AF_INET, netmask, &(snm.sin_addr));
if (snm_conversion != 1) {
printf("Error: Invalid subnet mask specified\r\n");
close(inet);
cleanup();
exit(1);
} else {
a_ifr.ifr_addr = *(struct sockaddr*)&snm;
if (ioctl(inet, SIOCSIFNETMASK, &a_ifr) < 0) {
perror("Could not set subnet mask");
close(inet);
cleanup();
exit(1);
}
}
}
}
}
}
}
}
}
}
snprintf(path_buf, sizeof(path_buf), "/proc/sys/net/ipv4/neigh/%s/retrans_time_ms", ifr.ifr_name);
arp_fd = open(path_buf, O_WRONLY);
if (arp_fd < 0) {
perror("Could not open proc entry for ARP parameters");
close(inet);
cleanup();
exit(1);
} else {
if (dprintf(arp_fd, "%d", ARP_RETRANS_TIME*1000) <= 0) {
perror("Could not configure interface ARP parameter retrans_time_ms");
close(inet);
close(arp_fd);
cleanup();
exit(1);
} else {
close(arp_fd);
}
}
}
return fd;
}
}
// Bring up if requested
if (!noup) {
if (ioctl(inet, SIOCGIFFLAGS, &ifr) < 0) {
perror("Could not get interface flags from kernel");
close(inet);
cleanup();
exit(1);
} else {
ifr.ifr_flags |= IFF_UP | IFF_RUNNING;
if (ioctl(inet, SIOCSIFFLAGS, &ifr) < 0) {
perror("Could not bring up interface");
close(inet);
cleanup();
exit(1);
} else {
if (set_ipv4) {
struct ifreq a_ifr;
struct sockaddr_in addr, snm;
memset(&a_ifr, 0, sizeof(a_ifr));
memset(&addr, 0, sizeof(addr));
memset(&snm, 0, sizeof(addr));
strncpy(a_ifr.ifr_name, ifr.ifr_name, IFNAMSIZ);
addr.sin_family = AF_INET;
snm.sin_family = AF_INET;
int addr_conversion = inet_pton(AF_INET, ipv4_addr, &(addr.sin_addr));
if (addr_conversion != 1) {
printf("Error: Invalid IPv4 address specified\r\n");
close(inet);
cleanup();
exit(1);
} else {
a_ifr.ifr_addr = *(struct sockaddr*)&addr;
if (ioctl(inet, SIOCSIFADDR, &a_ifr) < 0) {
perror("Could not set IP-address");
close(inet);
cleanup();
exit(1);
} else {
if (set_netmask) {
int snm_conversion = inet_pton(AF_INET, netmask, &(snm.sin_addr));
if (snm_conversion != 1) {
printf("Error: Invalid subnet mask specified\r\n");
close(inet);
cleanup();
exit(1);
} else {
a_ifr.ifr_addr = *(struct sockaddr*)&snm;
if (ioctl(inet, SIOCSIFNETMASK, &a_ifr) < 0) {
perror("Could not set subnet mask");
close(inet);
cleanup();
exit(1);
}
}
}
}
}
}
}
}
}
}
}
return fd;
}
}
}
int close_tap(int tap_fd) {
return close(tap_fd);
return close(tap_fd);
}

37
TCP.c Normal file
View File

@ -0,0 +1,37 @@
#include "TCP.h"
int open_tcp(char* ip, int port) {
int sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0) {
perror("Could not open AF_INET socket");
exit(1);
}
struct hostent *server;
struct sockaddr_in serv_addr;
server = gethostbyname(ip);
if (server == NULL) {
perror("Error resolving host");
exit(1);
}
memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
memcpy(server->h_addr, &serv_addr.sin_addr.s_addr, server->h_length);
serv_addr.sin_port = htons(port);
if (connect(sockfd, (struct sockaddr*)&serv_addr, sizeof(serv_addr)) < 0) {
perror("Could not connect TCP socket");
exit(1);
}
return sockfd;
}
int close_tcp(int fd) {
return close(fd);
}

9
TCP.h Normal file
View File

@ -0,0 +1,9 @@
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <netdb.h>
int open_tcp(char* ip, int port);
int close_tcp(int fd);

View File

@ -1,26 +1,35 @@
.DEFAULT_GOAL := all
.PHONY: all clean install uninstall tncattach
compiler = gcc
flags = -std=gnu11 -lm
RM ?= rm
INSTALL ?= install
CC ?= gcc
CFLAGS ?= -Wall -std=gnu11 -static-libgcc
LDFLAGS ?=
PREFIX ?= /usr/local
all: tncattach
rebuild: clean all
clean:
@echo "Cleaning tncattach build..."
@rm -f tncattach
$(RM) -f tncattach
tncattach:
@echo "Making tncattach..."
@echo "Compiling with: ${compiler}"
${compiler} ${flags} tncattach.c Serial.c KISS.c TAP.c -o tncattach -Wall
@echo "Compiling with: $(CC)"
$(CC) $(CFLAGS) $(LDFLAGS) tncattach.c Serial.c TCP.c KISS.c TAP.c -o tncattach
install:
@echo "Installing tncattach..."
chmod a+x tncattach
cp ./tncattach /usr/local/sbin/
$(INSTALL) -d $(DESTDIR)/$(PREFIX)/bin
$(INSTALL) -Dm755 tncattach $(DESTDIR)/$(PREFIX)/bin/tncattach
@echo "Installing man page..."
gzip -9 tncattach.8
$(INSTALL) -d $(DESTDIR)/$(PREFIX)/share/man/man8
$(INSTALL) -Dm644 tncattach.8.gz $(DESTDIR)/$(PREFIX)/share/man/man8/tncattach.8.gz
uninstall:
@echo "Uninstalling tncattach"
rm /usr/local/sbin/tncattach
$(RM) $(DESTDIR)/$(PREFIX)/bin/tncattach
$(RM) $(DESTDIR)/$(PREFIX)/share/man/man8/tncattach.8.gz

165
tncattach.8 Normal file
View File

@ -0,0 +1,165 @@
.TH tncattach 8 "September 12, 2020"
.SH NAME
.
.
tncattach \- Attach TNC devices as system network interfaces
.SH SYNOPSIS
.
.
\f[B]tncattach\f[R] [OPTION...] port baudrate
.SH DESCRIPTION
Attach KISS TNC devices as network interfaces in Linux. This program allows you to attach TNCs or any KISS-compatible device as a network interface. This program does not need any kernel modules, and has no external dependencies outside the standard Linux and GNU C libraries.
.SH OPTIONS
.
.
.TP
.BI \-m, \-\-mtu=MTU
.
Specify interface MTU
.
.
.TP
.BI \-e, \-\-ethernet
Create a full ethernet device
.
.
.TP
.BI \-i, \-\-ipv4=IP_ADDRESS
Configure an IPv4 address on interface
.
.
.TP
.BI \-n, \-\-noipv6
Filter IPv6 traffic from reaching TNC
.
.
.TP
.BI \-\-noup
Only create interface, don't bring it up
.
.
.TP
.BI \-T, \-\-kisstcp
Use KISS over TCP instead of serial port
.
.
.TP
.BI \-H, \-\-tcphost=TCP_HOST
Host to connect to when using KISS over TCP
.
.
.TP
.BI \-P, \-\-tcpport=TCP_PORT
TCP port when using KISS over TCP
.
.
.TP
.BI \-t, \-\-interval=SECONDS
Maximum interval between station identifications
.
.
.TP
.B \-s, \-\-id=CALLSIGN
Station identification data
.
.
.TP
.BI \-d, \-\-daemon
Run tncattach as a daemon
.
.
.TP
.BI \-v, \-\-verbose
Enable verbose output
.
.
.TP
.BI \-?, \-\-help
Show help
.
.
.TP
.BI \-\-usage
Give a short usage message
.
.
.TP
.BI \-V, \-\-version
Print program version
.
.
.SH USAGE
The program supports attaching TNCs as point-to-point tunnel devices, or generic ethernet devices. The ethernet mode is suitable for point-to-multipoint setups, and can be enabled with the corresponding command line switch. If you only need point-to-point links, it is advisable to just use the standard point-to-point mode, since it doesn't incur the ethernet header overhead on each packet.
.P
If you want to connect to a virtual KISS TNC over a TCP connection, you can use the -T option, along with the -H and -P options to specify the host and port.
.P
Additionally, it is worth noting that tncattach can filter out IPv6 packets from reaching the TNC. Most operating systems attempts to autoconfigure IPv6 when an interface is brought up, which results in a substantial amount of IPv6 traffic generated by router solicitations and similar, which is usually unwanted for packet radio links and similar.
.P
If you intend to use tncattach on a system with mDNS services enabled (avahi-daemon, for example), you may want to consider modifying your mDNS setup to exclude TNC interfaces, or turning it off entirely, since it will generate a lot of traffic that might be unwanted.
.SH STATION IDENTIFICATION
You can configure tncattach to automatically transmit station identification beacons according to a given interval, by using the --id and --interval options. Identification will be transmitted as raw data frames with whatever content has been specified in the --id option. Useful for amateur radio use, or other areas where station identification is necessary.
.P
Identification beacons will be transmitted when:
.P
.IP
There is outgoing data to send, and the specified interval has elapsed.
.IP
The specified interval elapses, and data has been sent since the last ID beacon.
.IP
The program exits, if any data frames have been transmitted since the last ID beacon.
.P
The above methodology should comply with station identification rules for amateur radio in most parts of the world, and complies with US Part 97 rules.
.SH EXAMPLES
.
Create an ethernet device with a USB-connected TNC, set the MTU, filter IPv6 traffic, and set an IPv4 address:
.IP
sudo tncattach /dev/ttyUSB0 115200 --ethernet --mtu 576 --noipv6 --ipv4 10.92.0.10/24
.P
Create an ethernet device with a TCP-connected TNC, set the MTU, filter IPv6 traffic, and set an IPv4 address:
.IP
sudo tncattach -T -H localhost -P 8001 --ethernet --mtu 576 --noipv6 --ipv4 10.92.0.10/24
.P
You can interact with the interface like any other using the ip or ifconfig utilities.
.p
Check interface is running:
.P
# ifconfig
.br
tnc0: flags=4305<UP,POINTOPOINT,RUNNING,NOARP,MULTICAST> mtu 400
.br
inet 10.93.0.1 netmask 255.255.255.255 destination 10.93.0.2
.br
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 500 (UNSPEC)
.br
RX packets 0 bytes 0 (0.0 B)
.br
RX errors 0 dropped 0 overruns 0 frame 0
.br
TX packets 0 bytes 0 (0.0 B)
.br
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
.P
.SH WORTH KNOWING ON RASPBIAN
On some versions of Raspbian (and probably other operating systems), the DHCP client daemon dhcpcd interferes with TNC interfaces, by overriding their MTU and trying to auto-configure link-local addresses. You probably don't want this, and it can be disabled by editing the /etc/dhcpcd.conf file, adding a statement telling dhcpcd to ignore your TNC interface:
.P
# Add the following statement somewhere at the beginning
.br
# of /etc/dhcpcd.conf to prevent dhcpcd from changing MTU
.br
denyinterfaces tnc0
.SH SEE ALSO
rnodeconfigutil(8)
.SH AUTHOR
Mark Qvist

View File

@ -5,9 +5,11 @@
#include <argp.h>
#include <syslog.h>
#include <sys/stat.h>
#include <time.h>
#include "Constants.h"
#include "Serial.h"
#include "KISS.h"
#include "TCP.h"
#include "TAP.h"
#define BAUDRATE_DEFAULT 0
@ -33,372 +35,489 @@ bool noup = false;
bool daemonize = false;
bool set_ipv4 = false;
bool set_netmask = false;
bool kiss_over_tcp = false;
char* ipv4_addr;
char* netmask;
char* tcp_host;
int tcp_port;
int mtu;
int device_type = IF_TUN;
void cleanup(void) {
close_port(attached_tnc);
close_tap(attached_if);
}
char* id;
int id_interval = -1;
time_t last_id = 0;
bool tx_since_last_id = false;
void signal_handler(int signal) {
if (daemonize) {
cleanup();
syslog(LOG_NOTICE, "tncattach daemon exiting");
exit(0);
} else {
cleanup();
exit(0);
}
void cleanup(void) {
if (kiss_over_tcp) {
close_tcp(attached_tnc);
} else {
close_port(attached_tnc);
}
close_tap(attached_if);
}
bool is_ipv6(uint8_t* frame) {
if (device_type == IF_TAP) {
if (frame[12] == 0x86 && frame[13] == 0xdd) {
return true;
} else {
return false;
}
} else if (device_type == IF_TUN) {
if (frame[2] == 0x86 && frame[3] == 0xdd) {
return true;
} else {
return false;
}
} else {
printf("Error: Unsupported interface type\r\n");
cleanup();
exit(1);
}
if (device_type == IF_TAP) {
if (frame[12] == 0x86 && frame[13] == 0xdd) {
return true;
} else {
return false;
}
} else if (device_type == IF_TUN) {
if (frame[2] == 0x86 && frame[3] == 0xdd) {
return true;
} else {
return false;
}
} else {
printf("Error: Unsupported interface type\r\n");
cleanup();
exit(1);
}
}
time_t time_now(void) {
time_t now = time(NULL);
if (now == -1) {
if (daemonize) {
syslog(LOG_ERR, "Could not get system time, exiting now");
} else {
printf("Error: Could not get system time, exiting now\r\n");
}
cleanup();
exit(1);
} else {
return now;
}
}
void transmit_id(void) {
time_t now = time(NULL);
int id_len = strlen(id);
if (verbose) {
if (!daemonize) {
printf("Transmitting %d bytes of identification data on %s: %s\r\n", id_len, if_name, id);
}
}
uint8_t* id_frame = malloc(strlen(id));
memcpy(id_frame, id, id_len);
kiss_write_frame(attached_tnc, id_frame, id_len);
last_id = now;
tx_since_last_id = false;
}
bool should_id(void) {
if (id_interval != -1) {
time_t now = time_now();
return now > last_id + id_interval;
} else {
return false;
}
}
void signal_handler(int signal) {
if (daemonize) syslog(LOG_NOTICE, "tncattach daemon exiting");
// Transmit final ID if necessary
if (id_interval != -1 && tx_since_last_id) transmit_id();
cleanup();
exit(0);
}
void read_loop(void) {
bool should_continue = true;
int min_frame_size;
if (device_type == IF_TAP) {
min_frame_size = ETHERNET_MIN_FRAME_SIZE;
} else if (device_type == IF_TUN) {
min_frame_size = TUN_MIN_FRAME_SIZE;
} else {
if (daemonize) {
syslog(LOG_ERR, "Unsupported interface type");
} else {
printf("Error: Unsupported interface type\r\n");
}
cleanup();
exit(1);
}
bool should_continue = true;
int min_frame_size;
if (device_type == IF_TAP) {
min_frame_size = ETHERNET_MIN_FRAME_SIZE;
} else if (device_type == IF_TUN) {
min_frame_size = TUN_MIN_FRAME_SIZE;
} else {
if (daemonize) {
syslog(LOG_ERR, "Unsupported interface type");
} else {
printf("Error: Unsupported interface type\r\n");
}
while (should_continue) {
cleanup();
exit(1);
}
int poll_result = poll(fds, 2, -1);
if (poll_result != -1) {
for (int fdi = 0; fdi < N_FDS; fdi++) {
if (fds[fdi].revents != 0) {
// Check for hangup event
if (fds[fdi].revents & POLLHUP) {
if (fdi == IF_FD_INDEX) {
if (daemonize) {
syslog(LOG_ERR, "Received hangup from interface");
} else {
printf("Received hangup from interface\r\n");
}
cleanup();
exit(1);
}
if (fdi == TNC_FD_INDEX) {
if (daemonize) {
syslog(LOG_ERR, "Received hangup from TNC");
} else {
printf("Received hangup from TNC\r\n");
}
cleanup();
exit(1);
}
}
int poll_timeout = 1000;
while (should_continue) {
int poll_result = poll(fds, 2, poll_timeout);
if (poll_result != -1) {
if (poll_result == 0) {
// No resources are ready for reading,
// run scheduled tasks instead.
if (id_interval != -1 && tx_since_last_id) {
time_t now = time_now();
if (now > last_id + id_interval) transmit_id();
}
} else {
for (int fdi = 0; fdi < N_FDS; fdi++) {
if (fds[fdi].revents != 0) {
// Check for hangup event
if (fds[fdi].revents & POLLHUP) {
if (fdi == IF_FD_INDEX) {
if (daemonize) {
syslog(LOG_ERR, "Received hangup from interface");
} else {
printf("Received hangup from interface\r\n");
}
cleanup();
exit(1);
}
if (fdi == TNC_FD_INDEX) {
if (daemonize) {
syslog(LOG_ERR, "Received hangup from TNC");
} else {
printf("Received hangup from TNC\r\n");
}
cleanup();
exit(1);
}
}
// Check for error event
if (fds[fdi].revents & POLLERR) {
if (fdi == IF_FD_INDEX) {
if (daemonize) {
syslog(LOG_ERR, "Received error event from interface");
} else {
perror("Received error event from interface\r\n");
}
cleanup();
exit(1);
}
if (fdi == TNC_FD_INDEX) {
if (daemonize) {
syslog(LOG_ERR, "Received error event from TNC");
} else {
perror("Received error event from TNC\r\n");
}
cleanup();
exit(1);
}
}
// Check for error event
if (fds[fdi].revents & POLLERR) {
if (fdi == IF_FD_INDEX) {
if (daemonize) {
syslog(LOG_ERR, "Received error event from interface");
} else {
perror("Received error event from interface\r\n");
}
cleanup();
exit(1);
}
if (fdi == TNC_FD_INDEX) {
if (daemonize) {
syslog(LOG_ERR, "Received error event from TNC");
} else {
perror("Received error event from TNC\r\n");
}
cleanup();
exit(1);
}
}
// If data is ready, read it
if (fds[fdi].revents & POLLIN) {
if (fdi == IF_FD_INDEX) {
int if_len = read(attached_if, if_buffer, sizeof(if_buffer));
if (if_len > 0) {
if (if_len >= min_frame_size) {
if (!noipv6 || (noipv6 && !is_ipv6(if_buffer))) {
kiss_write_frame(attached_tnc, if_buffer, if_len);
}
}
} else {
if (daemonize) {
syslog(LOG_ERR, "Could not read from network interface, exiting now");
} else {
printf("Error: Could not read from network interface, exiting now\r\n");
}
cleanup();
exit(1);
}
}
// If data is ready, read it
if (fds[fdi].revents & POLLIN) {
if (fdi == IF_FD_INDEX) {
int if_len = read(attached_if, if_buffer, sizeof(if_buffer));
if (if_len > 0) {
if (if_len >= min_frame_size) {
if (!noipv6 || (noipv6 && !is_ipv6(if_buffer))) {
if (fdi == TNC_FD_INDEX) {
int tnc_len = read(attached_tnc, serial_buffer, sizeof(serial_buffer));
if (tnc_len > 0) {
if (verbose) printf("Data from TNC: %d bytes.\r\n", tnc_len);
for (int i = 0; i < tnc_len; i++) {
kiss_serial_read(serial_buffer[i]);
}
} else {
if (daemonize) {
syslog(LOG_ERR, "Could not read from TNC, exiting now");
} else {
printf("Error: Could not read from TNC, exiting now\r\n");
}
cleanup();
exit(1);
}
}
}
}
}
} else {
should_continue = false;
}
}
cleanup();
exit(1);
int tnc_written = kiss_write_frame(attached_tnc, if_buffer, if_len);
if (verbose && !daemonize) printf("Got %d bytes from interface, wrote %d bytes (KISS-framed and escaped) to TNC\r\n", if_len, tnc_written);
tx_since_last_id = true;
if (should_id()) transmit_id();
}
}
} else {
if (daemonize) {
syslog(LOG_ERR, "Could not read from network interface, exiting now");
} else {
printf("Error: Could not read from network interface, exiting now\r\n");
}
cleanup();
exit(1);
}
}
if (fdi == TNC_FD_INDEX) {
int tnc_len = read(attached_tnc, serial_buffer, sizeof(serial_buffer));
if (tnc_len > 0) {
for (int i = 0; i < tnc_len; i++) {
kiss_serial_read(serial_buffer[i]);
}
} else {
if (daemonize) {
syslog(LOG_ERR, "Could not read from TNC, exiting now");
} else {
printf("Error: Could not read from TNC, exiting now\r\n");
}
cleanup();
exit(1);
}
}
}
}
}
}
} else {
should_continue = false;
}
}
cleanup();
exit(1);
}
const char *argp_program_version = "tncattach 0.1.2";
const char *argp_program_version = "tncattach 0.1.9";
const char *argp_program_bug_address = "<mark@unsigned.io>";
static char doc[] = "\r\nAttach TNC devices as system network interfaces\vAs an example, to attach the TNC connected to /dev/ttyUSB0 as a full ethernet device with an MTU of 576 bytes and assign an IPv4 address, use the following command:\r\n\r\n\ttncattach /dev/ttyUSB0 115200 -m 576 -e --ipv4 10.0.0.1/24\r\n\r\nTo create an interface that doesn't use ethernet, but transports IP directly, and filters IPv6 packets out, a command like the following can be used:\r\n\r\n\ttncattach /dev/ttyUSB0 115200 --noipv6 --ipv4 10.0.0.1/24";
static char doc[] = "\r\nAttach TNC devices as system network interfaces\vTo attach the TNC connected to /dev/ttyUSB0 as an ethernet device with an MTU of 512 bytes and assign an IPv4 address, while filtering IPv6 traffic, use:\r\n\r\n\ttncattach /dev/ttyUSB0 115200 -m 512 -e --noipv6 --ipv4 10.0.0.1/24\r\n\r\nStation identification can be performed automatically to comply with Part 97 rules. See the README for a complete description. Use the --id and --interval options, which should commonly be set to your callsign, and 600 seconds.";
static char args_doc[] = "port baudrate";
static struct argp_option options[] = {
{ "mtu", 'm', "MTU", 0, "Specify interface MTU"},
{ "daemon", 'd', 0, 0, "Run tncattach as a daemon"},
{ "ethernet", 'e', 0, 0, "Create a full ethernet device"},
{ "ipv4", 'i', "IP_ADDRESS", 0, "Configure an IPv4 address on interface"},
{ "noipv6", 'n', 0, 0, "Filter IPv6 traffic from reaching TNC"},
{ "noup", 1, 0, 0, "Only create interface, don't bring it up"},
{ "verbose", 'v', 0, 0, "Enable verbose output"},
{ 0 }
static struct argp_option options[] = {
{ "mtu", 'm', "MTU", 0, "Specify interface MTU", 1},
{ "ethernet", 'e', 0, 0, "Create a full ethernet device", 2},
{ "ipv4", 'i', "IP_ADDRESS", 0, "Configure an IPv4 address on interface", 3},
{ "noipv6", 'n', 0, 0, "Filter IPv6 traffic from reaching TNC", 4},
{ "noup", 1, 0, 0, "Only create interface, don't bring it up", 5},
{ "kisstcp", 'T', 0, 0, "Use KISS over TCP instead of serial port", 6},
{ "tcphost", 'H', "TCP_HOST", 0, "Host to connect to when using KISS over TCP", 7},
{ "tcpport", 'P', "TCP_PORT", 0, "TCP port when using KISS over TCP", 8},
{ "interval", 't', "SECONDS", 0, "Maximum interval between station identifications", 9},
{ "id", 's', "CALLSIGN", 0, "Station identification data", 10},
{ "daemon", 'd', 0, 0, "Run tncattach as a daemon", 11},
{ "verbose", 'v', 0, 0, "Enable verbose output", 12},
{ 0 }
};
#define N_ARGS 2
struct arguments {
char *args[N_ARGS];
char *ipv4;
int baudrate;
int mtu;
bool tap;
bool daemon;
bool verbose;
bool set_ipv4;
bool set_netmask;
bool noipv6;
bool noup;
char *args[N_ARGS];
char *ipv4;
char *id;
bool valid_id;
int id_interval;
int baudrate;
int tcpport;
int mtu;
bool tap;
bool daemon;
bool verbose;
bool set_ipv4;
bool set_netmask;
bool noipv6;
bool noup;
bool kiss_over_tcp;
bool set_tcp_host;
bool set_tcp_port;
};
static error_t parse_opt(int key, char *arg, struct argp_state *state) {
struct arguments *arguments = state->input;
struct arguments *arguments = state->input;
switch (key) {
case 'v':
arguments->verbose = true;
break;
switch (key) {
case 'v':
arguments->verbose = true;
break;
case 'e':
arguments->tap = true;
break;
case 'e':
arguments->tap = true;
break;
case 'm':
arguments->mtu = atoi(arg);
if (arguments->mtu < MTU_MIN || arguments->mtu > MTU_MAX) {
printf("Error: Invalid MTU specified\r\n\r\n");
argp_usage(state);
}
break;
case 'm':
arguments->mtu = atoi(arg);
if (arguments->mtu < MTU_MIN || arguments->mtu > MTU_MAX) {
printf("Error: Invalid MTU specified\r\n\r\n");
argp_usage(state);
}
break;
case 'i':
arguments->ipv4 = arg;
arguments->set_ipv4 = true;
case 't':
arguments->id_interval = atoi(arg);
if (arguments->id_interval < 0) {
printf("Error: Invalid identification interval specified\r\n\r\n");
argp_usage(state);
}
break;
if (strchr(arg, '/')) {
char* net = strchr(arg, '/');
int pos = net-arg;
ipv4_addr = (char*)malloc(pos+1);
int mask = atoi(net+1);
strncpy(ipv4_addr, arg, pos);
switch (mask) {
case 0:
netmask = "0.0.0.0";
break;
case 1:
netmask = "128.0.0.0";
break;
case 2:
netmask = "192.0.0.0";
break;
case 3:
netmask = "224.0.0.0";
break;
case 4:
netmask = "240.0.0.0";
break;
case 5:
netmask = "248.0.0.0";
break;
case 6:
netmask = "252.0.0.0";
break;
case 7:
netmask = "254.0.0.0";
break;
case 8:
netmask = "255.0.0.0";
break;
case 9:
netmask = "255.128.0.0";
break;
case 10:
netmask = "255.192.0.0";
break;
case 11:
netmask = "255.224.0.0";
break;
case 12:
netmask = "255.240.0.0";
break;
case 13:
netmask = "255.248.0.0";
break;
case 14:
netmask = "255.252.0.0";
break;
case 15:
netmask = "255.254.0.0";
break;
case 16:
netmask = "255.255.0.0";
break;
case 17:
netmask = "255.255.128.0";
break;
case 18:
netmask = "255.255.192.0";
break;
case 19:
netmask = "255.255.224.0";
break;
case 20:
netmask = "255.255.240.0";
break;
case 21:
netmask = "255.255.248.0";
break;
case 22:
netmask = "255.255.252.0";
break;
case 23:
netmask = "255.255.254.0";
break;
case 24:
netmask = "255.255.255.0";
break;
case 25:
netmask = "255.255.255.128";
break;
case 26:
netmask = "255.255.255.192";
break;
case 27:
netmask = "255.255.255.224";
break;
case 28:
netmask = "255.255.255.240";
break;
case 29:
netmask = "255.255.255.248";
break;
case 30:
netmask = "255.255.255.252";
break;
case 31:
netmask = "255.255.255.254";
break;
case 32:
netmask = "255.255.255.255";
break;
default:
printf("Error: Invalid subnet mask specified\r\n");
cleanup();
exit(1);
}
case 's':
arguments->id = arg;
if (strlen(arg) < 1 || strlen(arg) > arguments->mtu) {
printf("Error: Invalid identification string specified\r\n\r\n");
argp_usage(state);
} else {
arguments->valid_id = true;
}
break;
arguments->set_netmask = true;
} else {
arguments->set_netmask = false;
ipv4_addr = (char*)malloc(strlen(arg)+1);
strcpy(ipv4_addr, arg);
}
case 'i':
arguments->ipv4 = arg;
arguments->set_ipv4 = true;
break;
if (strchr(arg, '/')) {
char* net = strchr(arg, '/');
int pos = net-arg;
ipv4_addr = (char*)malloc(pos+1);
int mask = atoi(net+1);
strncpy(ipv4_addr, arg, pos);
switch (mask) {
case 0:
netmask = "0.0.0.0";
break;
case 1:
netmask = "128.0.0.0";
break;
case 2:
netmask = "192.0.0.0";
break;
case 3:
netmask = "224.0.0.0";
break;
case 4:
netmask = "240.0.0.0";
break;
case 5:
netmask = "248.0.0.0";
break;
case 6:
netmask = "252.0.0.0";
break;
case 7:
netmask = "254.0.0.0";
break;
case 8:
netmask = "255.0.0.0";
break;
case 9:
netmask = "255.128.0.0";
break;
case 10:
netmask = "255.192.0.0";
break;
case 11:
netmask = "255.224.0.0";
break;
case 12:
netmask = "255.240.0.0";
break;
case 13:
netmask = "255.248.0.0";
break;
case 14:
netmask = "255.252.0.0";
break;
case 15:
netmask = "255.254.0.0";
break;
case 16:
netmask = "255.255.0.0";
break;
case 17:
netmask = "255.255.128.0";
break;
case 18:
netmask = "255.255.192.0";
break;
case 19:
netmask = "255.255.224.0";
break;
case 20:
netmask = "255.255.240.0";
break;
case 21:
netmask = "255.255.248.0";
break;
case 22:
netmask = "255.255.252.0";
break;
case 23:
netmask = "255.255.254.0";
break;
case 24:
netmask = "255.255.255.0";
break;
case 25:
netmask = "255.255.255.128";
break;
case 26:
netmask = "255.255.255.192";
break;
case 27:
netmask = "255.255.255.224";
break;
case 28:
netmask = "255.255.255.240";
break;
case 29:
netmask = "255.255.255.248";
break;
case 30:
netmask = "255.255.255.252";
break;
case 31:
netmask = "255.255.255.254";
break;
case 32:
netmask = "255.255.255.255";
break;
case 'n':
arguments->noipv6 = true;
break;
default:
printf("Error: Invalid subnet mask specified\r\n");
cleanup();
exit(1);
}
case 'd':
arguments->daemon = true;
arguments->verbose = false;
break;
arguments->set_netmask = true;
} else {
arguments->set_netmask = false;
ipv4_addr = (char*)malloc(strlen(arg)+1);
strcpy(ipv4_addr, arg);
}
case 1:
arguments->noup = true;
break;
break;
case ARGP_KEY_ARG:
// Check if there's now too many text arguments
if (state->arg_num >= N_ARGS) argp_usage(state);
case 'n':
arguments->noipv6 = true;
break;
// If not add to args
arguments->args[state->arg_num] = arg;
break;
case 'd':
arguments->daemon = true;
arguments->verbose = false;
break;
case ARGP_KEY_END:
// Check if there's too few text arguments
if (state->arg_num < N_ARGS) argp_usage(state);
break;
case 'T':
arguments->kiss_over_tcp = true;
break;
default:
return ARGP_ERR_UNKNOWN;
}
case 'H':
arguments->set_tcp_host = true;
tcp_host = (char*)malloc(strlen(arg)+1);
strcpy(tcp_host, arg);
break;
return 0;
case 'P':
arguments->set_tcp_port = true;
tcp_port = atoi(arg);
break;
case 1:
arguments->noup = true;
break;
case ARGP_KEY_ARG:
// Check if there's now too many text arguments
if (state->arg_num >= N_ARGS) argp_usage(state);
// If not add to args
arguments->args[state->arg_num] = arg;
break;
case ARGP_KEY_END:
// Check if there's too few text arguments
if (!arguments->kiss_over_tcp && state->arg_num < N_ARGS) argp_usage(state);
// Check if text arguments were given when
// KISS over TCP was specified
if (arguments->kiss_over_tcp && state->arg_num != 0) argp_usage(state);
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
static void become_daemon() {
@ -406,8 +525,8 @@ static void become_daemon() {
pid = fork();
if (pid < 0) {
perror("Fork failed");
exit(EXIT_FAILURE);
perror("Fork failed");
exit(EXIT_FAILURE);
}
if (pid > 0) {
@ -431,45 +550,86 @@ static void become_daemon() {
static struct argp argp = {options, parse_opt, args_doc, doc};
int main(int argc, char **argv) {
struct arguments arguments;
signal(SIGINT, signal_handler);
struct arguments arguments;
signal(SIGINT, signal_handler);
arguments.baudrate = BAUDRATE_DEFAULT;
arguments.mtu = MTU_DEFAULT;
arguments.tap = false;
arguments.verbose = false;
arguments.set_ipv4 = false;
arguments.set_netmask = false;
arguments.noipv6 = false;
arguments.daemon = false;
arguments.noup = false;
arguments.baudrate = BAUDRATE_DEFAULT;
arguments.mtu = MTU_DEFAULT;
arguments.tap = false;
arguments.verbose = false;
arguments.set_ipv4 = false;
arguments.set_netmask = false;
arguments.noipv6 = false;
arguments.daemon = false;
arguments.noup = false;
arguments.id_interval = -1;
arguments.valid_id = false;
arguments.kiss_over_tcp = false;
argp_parse(&argp, argc, argv, 0, 0, &arguments);
arguments.baudrate = atoi(arguments.args[1]);
argp_parse(&argp, argc, argv, 0, 0, &arguments);
if (arguments.daemon) daemonize = true;
if (arguments.verbose) verbose = true;
if (arguments.tap) device_type = IF_TAP;
if (arguments.noipv6) noipv6 = true;
if (arguments.set_ipv4) set_ipv4 = true;
if (arguments.set_netmask) set_netmask = true;
if (arguments.noup) noup = true;
mtu = arguments.mtu;
if (arguments.kiss_over_tcp) kiss_over_tcp = true;
attached_if = open_tap();
attached_tnc = open_port(arguments.args[0]);
if (setup_port(attached_tnc, arguments.baudrate)) {
printf("TNC interface configured as %s\r\n", if_name);
fds[IF_FD_INDEX].fd = attached_if;
fds[IF_FD_INDEX].events = POLLIN;
fds[TNC_FD_INDEX].fd = attached_tnc;
fds[TNC_FD_INDEX].events = POLLIN;
if (daemonize) {
become_daemon();
syslog(LOG_NOTICE, "tncattach daemon running");
}
read_loop();
}
return 0;
if (!kiss_over_tcp) {
arguments.baudrate = atoi(arguments.args[1]);
} else {
if (!(arguments.set_tcp_host && arguments.set_tcp_port)) {
if (!arguments.set_tcp_host) printf("Error: KISS over TCP was requested, but no host was specified\r\n");
if (!arguments.set_tcp_port) printf("Error: KISS over TCP was requested, but no port was specified\r\n");
exit(1);
}
}
if (arguments.daemon) daemonize = true;
if (arguments.verbose) verbose = true;
if (arguments.tap) device_type = IF_TAP;
if (arguments.noipv6) noipv6 = true;
if (arguments.set_ipv4) set_ipv4 = true;
if (arguments.set_netmask) set_netmask = true;
if (arguments.noup) noup = true;
mtu = arguments.mtu;
if (arguments.id_interval >= 0) {
if (!arguments.valid_id) {
printf("Error: Periodic identification requested, but no valid indentification data specified\r\n");
cleanup();
exit(1);
} else {
id_interval = arguments.id_interval;
id = malloc(strlen(arguments.id));
strcpy(id, arguments.id);
}
} else if (arguments.valid_id && arguments.id_interval == -1) {
printf("Error: Periodic identification requested, but no indentification interval specified\r\n");
cleanup();
exit(1);
}
attached_if = open_tap();
if (!arguments.kiss_over_tcp) {
attached_tnc = open_port(arguments.args[0]);
if (!setup_port(attached_tnc, arguments.baudrate)) {
printf("Error during serial port setup");
return 0;
}
} else {
attached_tnc = open_tcp(tcp_host, tcp_port);
}
printf("TNC interface configured as %s\r\n", if_name);
fds[IF_FD_INDEX].fd = attached_if;
fds[IF_FD_INDEX].events = POLLIN;
fds[TNC_FD_INDEX].fd = attached_tnc;
fds[TNC_FD_INDEX].events = POLLIN;
if (daemonize) {
become_daemon();
syslog(LOG_NOTICE, "tncattach daemon running");
}
read_loop();
return 0;
}