android_device_xiaomi_sm835.../gps/utils/loc_misc_utils.cpp

352 lines
12 KiB
C++
Raw Normal View History

/* Copyright (c) 2014, 2020 The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation, nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#define LOG_NDEBUG 0
#define LOG_TAG "LocSvc_misc_utils"
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include <dlfcn.h>
#include <math.h>
#include <log_util.h>
#include <loc_misc_utils.h>
#include <ctype.h>
#include <fcntl.h>
#include <inttypes.h>
#ifndef MSEC_IN_ONE_SEC
#define MSEC_IN_ONE_SEC 1000ULL
#endif
#define GET_MSEC_FROM_TS(ts) ((ts.tv_sec * MSEC_IN_ONE_SEC) + (ts.tv_nsec + 500000)/1000000)
int loc_util_split_string(char *raw_string, char **split_strings_ptr,
int max_num_substrings, char delimiter)
{
int raw_string_index=0;
int num_split_strings=0;
unsigned char end_string=0;
int raw_string_length=0;
if(!raw_string || !split_strings_ptr) {
LOC_LOGE("%s:%d]: NULL parameters", __func__, __LINE__);
num_split_strings = -1;
goto err;
}
LOC_LOGD("%s:%d]: raw string: %s\n", __func__, __LINE__, raw_string);
raw_string_length = strlen(raw_string) + 1;
split_strings_ptr[num_split_strings] = &raw_string[raw_string_index];
for(raw_string_index=0; raw_string_index < raw_string_length; raw_string_index++) {
if(raw_string[raw_string_index] == '\0')
end_string=1;
if((raw_string[raw_string_index] == delimiter) || end_string) {
raw_string[raw_string_index] = '\0';
if (num_split_strings < max_num_substrings) {
LOC_LOGD("%s:%d]: split string: %s\n",
__func__, __LINE__, split_strings_ptr[num_split_strings]);
}
num_split_strings++;
if(((raw_string_index + 1) < raw_string_length) &&
(num_split_strings < max_num_substrings)) {
split_strings_ptr[num_split_strings] = &raw_string[raw_string_index+1];
}
else {
break;
}
}
if(end_string)
break;
}
err:
LOC_LOGD("%s:%d]: num_split_strings: %d\n", __func__, __LINE__, num_split_strings);
return num_split_strings;
}
void loc_util_trim_space(char *org_string)
{
char *scan_ptr, *write_ptr;
char *first_nonspace = NULL, *last_nonspace = NULL;
if(org_string == NULL) {
LOC_LOGE("%s:%d]: NULL parameter", __func__, __LINE__);
goto err;
}
scan_ptr = write_ptr = org_string;
while (*scan_ptr) {
//Find the first non-space character
if ( !isspace(*scan_ptr) && first_nonspace == NULL) {
first_nonspace = scan_ptr;
}
//Once the first non-space character is found in the
//above check, keep shifting the characters to the left
//to replace the spaces
if (first_nonspace != NULL) {
*(write_ptr++) = *scan_ptr;
//Keep track of which was the last non-space character
//encountered
//last_nonspace will not be updated in the case where
//the string ends with spaces
if ( !isspace(*scan_ptr)) {
last_nonspace = write_ptr;
}
}
scan_ptr++;
}
//Add NULL terminator after the last non-space character
if (last_nonspace) { *last_nonspace = '\0'; }
err:
return;
}
inline void logDlError(const char* failedCall) {
const char * err = dlerror();
LOC_LOGe("%s error: %s", failedCall, (nullptr == err) ? "unknown" : err);
}
void* dlGetSymFromLib(void*& libHandle, const char* libName, const char* symName)
{
void* sym = nullptr;
if ((nullptr != libHandle || nullptr != libName) && nullptr != symName) {
if (nullptr == libHandle) {
libHandle = dlopen(libName, RTLD_NOW);
if (nullptr == libHandle) {
logDlError("dlopen");
}
}
// NOT else, as libHandle gets assigned 5 line above
if (nullptr != libHandle) {
sym = dlsym(libHandle, symName);
if (nullptr == sym) {
logDlError("dlsym");
}
}
} else {
LOC_LOGe("Either libHandle (%p) or libName (%p) must not be null; "
"symName (%p) can not be null.", libHandle, libName, symName);
}
return sym;
}
uint64_t getQTimerTickCount()
{
uint64_t qTimerCount = 0;
#if __aarch64__
asm volatile("mrs %0, cntvct_el0" : "=r" (qTimerCount));
#elif defined (__i386__) || defined (__x86_64__)
/* Qtimer not supported in x86 architecture */
qTimerCount = 0;
#else
asm volatile("mrrc p15, 1, %Q0, %R0, c14" : "=r" (qTimerCount));
#endif
return qTimerCount;
}
uint64_t getQTimerDeltaNanos()
{
char qtimer_val_string[100];
char *temp;
uint64_t local_qtimer = 0, remote_qtimer = 0;
int mdm_fd = -1, wlan_fd = -1, ret = 0;
uint64_t delta = 0;
memset(qtimer_val_string, '\0', sizeof(qtimer_val_string));
char devNode[] = "/sys/bus/mhi/devices/0306_00.01.00/time_us";
for (; devNode[27] < 3 && mdm_fd < 0; devNode[27]++) {
mdm_fd = ::open(devNode, O_RDONLY);
if (mdm_fd < 0) {
LOC_LOGe("MDM open file: %s error: %s", devNode, strerror(errno));
}
}
if (mdm_fd > 0) {
ret = read(mdm_fd, qtimer_val_string, sizeof(qtimer_val_string)-1);
::close(mdm_fd);
if (ret < 0) {
LOC_LOGe("MDM read time_us file error: %s", strerror(errno));
} else {
temp = qtimer_val_string;
temp = strchr(temp, ':');
temp = temp + 2;
local_qtimer = atoll(temp);
temp = strchr(temp, ':');
temp = temp + 2;
remote_qtimer = atoll(temp);
if (local_qtimer >= remote_qtimer) {
delta = (local_qtimer - remote_qtimer) * 1000;
}
LOC_LOGv("qtimer values in microseconds: local:%" PRIi64 " remote:%" PRIi64 ""
" delta in nanoseconds:%" PRIi64 "",
local_qtimer, remote_qtimer, delta);
}
}
return delta;
}
uint64_t getQTimerFreq()
{
#if __aarch64__
uint64_t val = 0;
asm volatile("mrs %0, cntfrq_el0" : "=r" (val));
#elif defined (__i386__) || defined (__x86_64__)
/* Qtimer not supported in x86 architecture */
uint64_t val = 0;
#else
uint32_t val = 0;
asm volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (val));
#endif
return val;
}
uint64_t getBootTimeMilliSec()
{
struct timespec curTs;
clock_gettime(CLOCK_BOOTTIME, &curTs);
return (uint64_t)GET_MSEC_FROM_TS(curTs);
}
// Used for convert position/velocity from GSNS antenna based to VRP based
void Matrix_MxV(float a[3][3], float b[3], float c[3]) {
int i, j;
for (i=0; i<3; i++) {
c[i] = 0.0f;
for (j=0; j<3; j++)
c[i] += a[i][j] * b[j];
}
}
// Used for convert position/velocity from GNSS antenna based to VRP based
void Matrix_Skew(float a[3], float c[3][3]) {
c[0][0] = 0.0f;
c[0][1] = -a[2];
c[0][2] = a[1];
c[1][0] = a[2];
c[1][1] = 0.0f;
c[1][2] = -a[0];
c[2][0] = -a[1];
c[2][1] = a[0];
c[2][2] = 0.0f;
}
// Used for convert position/velocity from GNSS antenna based to VRP based
void Euler2Dcm(float euler[3], float dcm[3][3]) {
float cr = 0.0, sr = 0.0, cp = 0.0, sp = 0.0, ch = 0.0, sh = 0.0;
cr = cosf(euler[0]);
sr = sinf(euler[0]);
cp = cosf(euler[1]);
sp = sinf(euler[1]);
ch = cosf(euler[2]);
sh = sinf(euler[2]);
dcm[0][0] = cp * ch;
dcm[0][1] = (sp*sr*ch) - (cr*sh);
dcm[0][2] = (cr*sp*ch) + (sh*sr);
dcm[1][0] = cp * sh;
dcm[1][1] = (sr*sp*sh) + (cr*ch);
dcm[1][2] = (cr*sp*sh) - (sr*ch);
dcm[2][0] = -sp;
dcm[2][1] = sr * cp;
dcm[2][2] = cr * cp;
}
// Used for convert position from GSNS based to VRP based
// The converted position will be stored in the llaInfo parameter.
#define A6DOF_WGS_A (6378137.0f)
#define A6DOF_WGS_B (6335439.0f)
#define A6DOF_WGS_E2 (0.00669437999014f)
void loc_convert_lla_gnss_to_vrp(double lla[3], float rollPitchYaw[3],
float leverArm[3]) {
LOC_LOGv("lla: %f, %f, %f, lever arm: %f %f %f, "
"rollpitchyaw: %f %f %f",
lla[0], lla[1], lla[2],
leverArm[0], leverArm[1], leverArm[2],
rollPitchYaw[0], rollPitchYaw[1], rollPitchYaw[2]);
float cnb[3][3];
memset(cnb, 0, sizeof(cnb));
Euler2Dcm(rollPitchYaw, cnb);
float sl = sin(lla[0]);
float cl = cos(lla[0]);
float sf = 1.0f / (1.0f - A6DOF_WGS_E2 * sl* sl);
float sfr = sqrtf(sf);
float rn = A6DOF_WGS_B * sf * sfr + lla[2];
float re = A6DOF_WGS_A * sfr + lla[2];
float deltaNEU[3];
// gps_pos_lla = imu_pos_lla + Cbn*la_b .* [1/geo.Rn; 1/(geo.Re*geo.cL); -1];
Matrix_MxV(cnb, leverArm, deltaNEU);
// NED to lla conversion
lla[0] = lla[0] + deltaNEU[0] / rn;
lla[1] = lla[1] + deltaNEU[1] / (re * cl);
lla[2] = lla[2] + deltaNEU[2];
}
// Used for convert velocity from GSNS based to VRP based
// The converted velocity will be stored in the enuVelocity parameter.
void loc_convert_velocity_gnss_to_vrp(float enuVelocity[3], float rollPitchYaw[3],
float rollPitchYawRate[3], float leverArm[3]) {
LOC_LOGv("enu velocity: %f, %f, %f, lever arm: %f %f %f, roll pitch yaw: %f %f %f,"
"rollpitchyawRate: %f %f %f",
enuVelocity[0], enuVelocity[1], enuVelocity[2],
leverArm[0], leverArm[1], leverArm[2],
rollPitchYaw[0], rollPitchYaw[1], rollPitchYaw[2],
rollPitchYawRate[0], rollPitchYawRate[1], rollPitchYawRate[2]);
float cnb[3][3];
memset(cnb, 0, sizeof(cnb));
Euler2Dcm(rollPitchYaw, cnb);
float skewLA[3][3];
memset(skewLA, 0, sizeof(skewLA));
Matrix_Skew(leverArm, skewLA);
float tmp[3];
float deltaEnuVelocity[3];
memset(tmp, 0, sizeof(tmp));
memset(deltaEnuVelocity, 0, sizeof(deltaEnuVelocity));
Matrix_MxV(skewLA, rollPitchYawRate, tmp);
Matrix_MxV(cnb, tmp, deltaEnuVelocity);
enuVelocity[0] = enuVelocity[0] - deltaEnuVelocity[0];
enuVelocity[1] = enuVelocity[1] - deltaEnuVelocity[1];
enuVelocity[2] = enuVelocity[2] - deltaEnuVelocity[2];
}