android_kernel_xiaomi_sm8350/drivers/soc/qcom/crypto-qti-hwkm.c

356 lines
9.8 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Crypto HWKM library for storage encryption.
*
* Copyright (c) 2020, Linux Foundation. All rights reserved.
*/
#include <linux/slab.h>
#include <linux/crypto-qti-common.h>
#include <linux/hwkm.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include "crypto-qti-ice-regs.h"
#include "crypto-qti-platform.h"
#define TPKEY_SLOT_ICEMEM_SLAVE 0x92
#define KEYMANAGER_ICE_MAP_SLOT(slot) ((slot * 2) + 10)
#define GP_KEYSLOT 140
#define RAW_SECRET_KEYSLOT 141
#define QTI_HWKM_INIT_DONE 0x1
#define SLOT_EMPTY_ERROR 0x1000
#define INLINECRYPT_CTX "inline encryption key"
#define RAW_SECRET_CTX "raw secret"
#define BYTE_ORDER_VAL 8
#define KEY_WRAPPED_SIZE 68
union crypto_cfg {
__le32 regval[2];
struct {
u8 dusize;
u8 capidx;
u8 nop;
u8 cfge;
u8 dumb[4];
};
};
static int crypto_qti_hwkm_evict_slot(unsigned int slot, bool double_key)
{
struct hwkm_cmd cmd_clear;
struct hwkm_rsp rsp_clear;
memset(&cmd_clear, 0, sizeof(cmd_clear));
cmd_clear.op = KEY_SLOT_CLEAR;
cmd_clear.clear.dks = slot;
if (double_key)
cmd_clear.clear.is_double_key = true;
return qti_hwkm_handle_cmd(&cmd_clear, &rsp_clear);
}
int crypto_qti_program_key(struct crypto_vops_qti_entry *ice_entry,
const struct blk_crypto_key *key, unsigned int slot,
unsigned int data_unit_mask, int capid)
{
int err_program = 0;
int err_clear = 0;
struct hwkm_cmd cmd_unwrap;
struct hwkm_cmd cmd_kdf;
struct hwkm_rsp rsp_unwrap;
struct hwkm_rsp rsp_kdf;
struct hwkm_key_policy policy_kdf = {
.security_lvl = MANAGED_KEY,
.hw_destination = ICEMEM_SLAVE,
.key_type = GENERIC_KEY,
.enc_allowed = true,
.dec_allowed = true,
.alg_allowed = AES256_XTS,
.km_by_nsec_allowed = true,
};
struct hwkm_bsve bsve_kdf = {
.enabled = true,
.km_swc_en = true,
.km_child_key_policy_en = true,
};
union crypto_cfg cfg;
if ((key->size) <= RAW_SECRET_SIZE) {
pr_err("%s: Incorrect key size %d\n", __func__, key->size);
return -EINVAL;
}
err_program = qti_hwkm_clocks(true);
if (err_program) {
pr_err("%s: Error enabling clocks %d\n", __func__,
err_program);
return err_program;
}
if ((ice_entry->flags & QTI_HWKM_INIT_DONE) != QTI_HWKM_INIT_DONE) {
err_program = qti_hwkm_init(ice_entry->hwkm_slave_mmio_base);
if (err_program) {
pr_err("%s: Error with HWKM init %d\n", __func__,
err_program);
qti_hwkm_clocks(false);
return -EINVAL;
}
ice_entry->flags |= QTI_HWKM_INIT_DONE;
}
//Failsafe, clear GP_KEYSLOT incase it is not empty for any reason
err_clear = crypto_qti_hwkm_evict_slot(GP_KEYSLOT, false);
if (err_clear && (err_clear != SLOT_EMPTY_ERROR)) {
pr_err("%s: Error clearing ICE slot %d, err %d\n",
__func__, GP_KEYSLOT, err_clear);
qti_hwkm_clocks(false);
return -EINVAL;
}
/* Unwrap keyblob into a non ICE slot using TP key */
cmd_unwrap.op = KEY_UNWRAP_IMPORT;
cmd_unwrap.unwrap.dks = GP_KEYSLOT;
cmd_unwrap.unwrap.kwk = TPKEY_SLOT_ICEMEM_SLAVE;
if ((key->size) == KEY_WRAPPED_SIZE) {
cmd_unwrap.unwrap.sz = key->size;
memcpy(cmd_unwrap.unwrap.wkb, key->raw,
cmd_unwrap.unwrap.sz);
} else {
cmd_unwrap.unwrap.sz = (key->size) - RAW_SECRET_SIZE;
memcpy(cmd_unwrap.unwrap.wkb, (key->raw) + RAW_SECRET_SIZE,
cmd_unwrap.unwrap.sz);
}
err_program = qti_hwkm_handle_cmd(&cmd_unwrap, &rsp_unwrap);
if (err_program) {
pr_err("%s: Error with key unwrap %d\n", __func__,
err_program);
qti_hwkm_clocks(false);
return -EINVAL;
}
//Failsafe, clear ICE keyslot incase it is not empty for any reason
err_clear = crypto_qti_hwkm_evict_slot(KEYMANAGER_ICE_MAP_SLOT(slot),
true);
if (err_clear && (err_clear != SLOT_EMPTY_ERROR)) {
pr_err("%s: Error clearing ICE slot %d, err %d\n",
__func__, KEYMANAGER_ICE_MAP_SLOT(slot), err_clear);
qti_hwkm_clocks(false);
return -EINVAL;
}
/* Derive a 512-bit key which will be the key to encrypt/decrypt data */
cmd_kdf.op = SYSTEM_KDF;
cmd_kdf.kdf.dks = KEYMANAGER_ICE_MAP_SLOT(slot);
cmd_kdf.kdf.kdk = GP_KEYSLOT;
cmd_kdf.kdf.policy = policy_kdf;
cmd_kdf.kdf.bsve = bsve_kdf;
cmd_kdf.kdf.sz = round_up(strlen(INLINECRYPT_CTX), BYTE_ORDER_VAL);
memset(cmd_kdf.kdf.ctx, 0, HWKM_MAX_CTX_SIZE);
memcpy(cmd_kdf.kdf.ctx, INLINECRYPT_CTX, strlen(INLINECRYPT_CTX));
memset(&cfg, 0, sizeof(cfg));
cfg.dusize = data_unit_mask;
cfg.capidx = capid;
cfg.cfge = 0x80;
ice_writel(ice_entry, 0x0, (ICE_LUT_KEYS_CRYPTOCFG_R_16 +
ICE_LUT_KEYS_CRYPTOCFG_OFFSET*slot));
/* Make sure CFGE is cleared */
wmb();
err_program = qti_hwkm_handle_cmd(&cmd_kdf, &rsp_kdf);
if (err_program) {
pr_err("%s: Error programming key %d, slot %d\n", __func__,
err_program, slot);
err_clear = crypto_qti_hwkm_evict_slot(GP_KEYSLOT, false);
if (err_clear) {
pr_err("%s: Error clearing slot %d err %d\n",
__func__, GP_KEYSLOT, err_clear);
}
qti_hwkm_clocks(false);
return -EINVAL;
}
err_clear = crypto_qti_hwkm_evict_slot(GP_KEYSLOT, false);
if (err_clear) {
pr_err("%s: Error unwrapped slot clear %d\n", __func__,
err_clear);
qti_hwkm_clocks(false);
return -EINVAL;
}
ice_writel(ice_entry, cfg.regval[0], (ICE_LUT_KEYS_CRYPTOCFG_R_16 +
ICE_LUT_KEYS_CRYPTOCFG_OFFSET*slot));
/* Make sure CFGE is enabled before moving forward */
wmb();
qti_hwkm_clocks(false);
return err_program;
}
EXPORT_SYMBOL(crypto_qti_program_key);
int crypto_qti_invalidate_key(struct crypto_vops_qti_entry *ice_entry,
unsigned int slot)
{
int err = 0;
err = qti_hwkm_clocks(true);
if (err) {
pr_err("%s: Error enabling clocks %d\n", __func__, err);
return err;
}
/* Clear key from ICE keyslot */
err = crypto_qti_hwkm_evict_slot(KEYMANAGER_ICE_MAP_SLOT(slot), true);
if (err) {
pr_err("%s: Error with key clear %d, slot %d\n",
__func__, err, slot);
err = -EINVAL;
}
qti_hwkm_clocks(false);
return err;
}
EXPORT_SYMBOL(crypto_qti_invalidate_key);
void crypto_qti_disable_platform(struct crypto_vops_qti_entry *ice_entry)
{
ice_entry->flags &= ~QTI_HWKM_INIT_DONE;
}
EXPORT_SYMBOL(crypto_qti_disable_platform);
int crypto_qti_derive_raw_secret_platform(
struct crypto_vops_qti_entry *ice_entry,
const u8 *wrapped_key,
unsigned int wrapped_key_size, u8 *secret,
unsigned int secret_size)
{
int err_program = 0;
int err_clear = 0;
struct hwkm_cmd cmd_unwrap;
struct hwkm_cmd cmd_kdf;
struct hwkm_cmd cmd_read;
struct hwkm_rsp rsp_unwrap;
struct hwkm_rsp rsp_kdf;
struct hwkm_rsp rsp_read;
struct hwkm_key_policy policy_kdf = {
.security_lvl = SW_KEY,
.hw_destination = ICEMEM_SLAVE,
.key_type = GENERIC_KEY,
.enc_allowed = true,
.dec_allowed = true,
.alg_allowed = AES256_CBC,
.km_by_nsec_allowed = true,
};
struct hwkm_bsve bsve_kdf = {
.enabled = true,
.km_swc_en = true,
.km_child_key_policy_en = true,
};
if (wrapped_key_size != KEY_WRAPPED_SIZE) {
memcpy(secret, wrapped_key, secret_size);
return 0;
}
err_program = qti_hwkm_clocks(true);
if (err_program) {
pr_err("%s: Error enabling clocks %d\n", __func__,
err_program);
return err_program;
}
if ((ice_entry->flags & QTI_HWKM_INIT_DONE) != QTI_HWKM_INIT_DONE) {
err_program = qti_hwkm_init(ice_entry->hwkm_slave_mmio_base);
if (err_program) {
pr_err("%s: Error with HWKM init %d\n", __func__,
err_program);
qti_hwkm_clocks(false);
return -EINVAL;
}
ice_entry->flags |= QTI_HWKM_INIT_DONE;
}
//Failsafe, clear GP_KEYSLOT incase it is not empty for any reason
err_clear = crypto_qti_hwkm_evict_slot(GP_KEYSLOT, false);
if (err_clear && (err_clear != SLOT_EMPTY_ERROR)) {
pr_err("%s: Error clearing GP slot %d, err %d\n",
__func__, GP_KEYSLOT, err_clear);
qti_hwkm_clocks(false);
return -EINVAL;
}
/* Unwrap keyblob into a non ICE slot using TP key */
cmd_unwrap.op = KEY_UNWRAP_IMPORT;
cmd_unwrap.unwrap.dks = GP_KEYSLOT;
cmd_unwrap.unwrap.kwk = TPKEY_SLOT_ICEMEM_SLAVE;
cmd_unwrap.unwrap.sz = wrapped_key_size;
memcpy(cmd_unwrap.unwrap.wkb, wrapped_key,
cmd_unwrap.unwrap.sz);
err_program = qti_hwkm_handle_cmd(&cmd_unwrap, &rsp_unwrap);
if (err_program) {
pr_err("%s: Error with key unwrap %d\n", __func__,
err_program);
qti_hwkm_clocks(false);
return -EINVAL;
}
//Failsafe, clear RAW_SECRET_KEYSLOT incase it is not empty
err_clear = crypto_qti_hwkm_evict_slot(RAW_SECRET_KEYSLOT, false);
if (err_clear && (err_clear != SLOT_EMPTY_ERROR)) {
pr_err("%s: Error clearing raw secret slot %d, err %d\n",
__func__, RAW_SECRET_KEYSLOT, err_clear);
qti_hwkm_clocks(false);
return -EINVAL;
}
/* Derive a 512-bit key which will be the key to encrypt/decrypt data */
cmd_kdf.op = SYSTEM_KDF;
cmd_kdf.kdf.dks = RAW_SECRET_KEYSLOT;
cmd_kdf.kdf.kdk = GP_KEYSLOT;
cmd_kdf.kdf.policy = policy_kdf;
cmd_kdf.kdf.bsve = bsve_kdf;
cmd_kdf.kdf.sz = round_up(strlen(RAW_SECRET_CTX), BYTE_ORDER_VAL);
memset(cmd_kdf.kdf.ctx, 0, HWKM_MAX_CTX_SIZE);
memcpy(cmd_kdf.kdf.ctx, RAW_SECRET_CTX, strlen(RAW_SECRET_CTX));
err_program = qti_hwkm_handle_cmd(&cmd_kdf, &rsp_kdf);
if (err_program) {
pr_err("%s: Error deriving secret %d, slot %d\n", __func__,
err_program, RAW_SECRET_KEYSLOT);
err_program = -EINVAL;
}
//Read the KDF key for raw secret
cmd_read.op = KEY_SLOT_RDWR;
cmd_read.rdwr.slot = RAW_SECRET_KEYSLOT;
cmd_read.rdwr.is_write = false;
err_program = qti_hwkm_handle_cmd(&cmd_read, &rsp_read);
if (err_program) {
pr_err("%s: Error with key read %d\n", __func__, err_program);
err_program = -EINVAL;
}
memcpy(secret, rsp_read.rdwr.key, rsp_read.rdwr.sz);
err_clear = crypto_qti_hwkm_evict_slot(GP_KEYSLOT, false);
if (err_clear)
pr_err("%s: GP slot clear %d\n", __func__, err_clear);
err_clear = crypto_qti_hwkm_evict_slot(RAW_SECRET_KEYSLOT, false);
if (err_clear)
pr_err("%s: raw secret slot clear %d\n", __func__, err_clear);
qti_hwkm_clocks(false);
return err_program;
}
EXPORT_SYMBOL(crypto_qti_derive_raw_secret_platform);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Crypto HWKM library for storage encryption");