android_kernel_xiaomi_sm8350/arch/i386/kernel/vmi.c

988 lines
29 KiB
C
Raw Normal View History

/*
* VMI specific paravirt-ops implementation
*
* Copyright (C) 2005, VMware, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Send feedback to zach@vmware.com
*
*/
#include <linux/module.h>
#include <linux/license.h>
#include <linux/cpu.h>
#include <linux/bootmem.h>
#include <linux/mm.h>
#include <asm/vmi.h>
#include <asm/io.h>
#include <asm/fixmap.h>
#include <asm/apicdef.h>
#include <asm/apic.h>
#include <asm/processor.h>
#include <asm/timer.h>
#include <asm/vmi_time.h>
#include <asm/kmap_types.h>
/* Convenient for calling VMI functions indirectly in the ROM */
typedef u32 __attribute__((regparm(1))) (VROMFUNC)(void);
typedef u64 __attribute__((regparm(2))) (VROMLONGFUNC)(int);
#define call_vrom_func(rom,func) \
(((VROMFUNC *)(rom->func))())
#define call_vrom_long_func(rom,func,arg) \
(((VROMLONGFUNC *)(rom->func)) (arg))
static struct vrom_header *vmi_rom;
static int license_gplok;
static int disable_pge;
static int disable_pse;
static int disable_sep;
static int disable_tsc;
static int disable_mtrr;
static int disable_noidle;
static int disable_vmi_timer;
/* Cached VMI operations */
struct {
void (*cpuid)(void /* non-c */);
void (*_set_ldt)(u32 selector);
void (*set_tr)(u32 selector);
void (*set_kernel_stack)(u32 selector, u32 esp0);
void (*allocate_page)(u32, u32, u32, u32, u32);
void (*release_page)(u32, u32);
void (*set_pte)(pte_t, pte_t *, unsigned);
void (*update_pte)(pte_t *, unsigned);
void (*set_linear_mapping)(int, u32, u32, u32);
void (*flush_tlb)(int);
void (*set_initial_ap_state)(int, int);
void (*halt)(void);
} vmi_ops;
/* XXX move this to alternative.h */
extern struct paravirt_patch __start_parainstructions[],
__stop_parainstructions[];
/*
* VMI patching routines.
*/
#define MNEM_CALL 0xe8
#define MNEM_JMP 0xe9
#define MNEM_RET 0xc3
static char irq_save_disable_callout[] = {
MNEM_CALL, 0, 0, 0, 0,
MNEM_CALL, 0, 0, 0, 0,
MNEM_RET
};
#define IRQ_PATCH_INT_MASK 0
#define IRQ_PATCH_DISABLE 5
static inline void patch_offset(unsigned char *eip, unsigned char *dest)
{
*(unsigned long *)(eip+1) = dest-eip-5;
}
static unsigned patch_internal(int call, unsigned len, void *insns)
{
u64 reloc;
struct vmi_relocation_info *const rel = (struct vmi_relocation_info *)&reloc;
reloc = call_vrom_long_func(vmi_rom, get_reloc, call);
switch(rel->type) {
case VMI_RELOCATION_CALL_REL:
BUG_ON(len < 5);
*(char *)insns = MNEM_CALL;
patch_offset(insns, rel->eip);
return 5;
case VMI_RELOCATION_JUMP_REL:
BUG_ON(len < 5);
*(char *)insns = MNEM_JMP;
patch_offset(insns, rel->eip);
return 5;
case VMI_RELOCATION_NOP:
/* obliterate the whole thing */
return 0;
case VMI_RELOCATION_NONE:
/* leave native code in place */
break;
default:
BUG();
}
return len;
}
/*
* Apply patch if appropriate, return length of new instruction
* sequence. The callee does nop padding for us.
*/
static unsigned vmi_patch(u8 type, u16 clobbers, void *insns, unsigned len)
{
switch (type) {
case PARAVIRT_IRQ_DISABLE:
return patch_internal(VMI_CALL_DisableInterrupts, len, insns);
case PARAVIRT_IRQ_ENABLE:
return patch_internal(VMI_CALL_EnableInterrupts, len, insns);
case PARAVIRT_RESTORE_FLAGS:
return patch_internal(VMI_CALL_SetInterruptMask, len, insns);
case PARAVIRT_SAVE_FLAGS:
return patch_internal(VMI_CALL_GetInterruptMask, len, insns);
case PARAVIRT_SAVE_FLAGS_IRQ_DISABLE:
if (len >= 10) {
patch_internal(VMI_CALL_GetInterruptMask, len, insns);
patch_internal(VMI_CALL_DisableInterrupts, len-5, insns+5);
return 10;
} else {
/*
* You bastards didn't leave enough room to
* patch save_flags_irq_disable inline. Patch
* to a helper
*/
BUG_ON(len < 5);
*(char *)insns = MNEM_CALL;
patch_offset(insns, irq_save_disable_callout);
return 5;
}
case PARAVIRT_INTERRUPT_RETURN:
return patch_internal(VMI_CALL_IRET, len, insns);
case PARAVIRT_STI_SYSEXIT:
return patch_internal(VMI_CALL_SYSEXIT, len, insns);
default:
break;
}
return len;
}
/* CPUID has non-C semantics, and paravirt-ops API doesn't match hardware ISA */
static void vmi_cpuid(unsigned int *eax, unsigned int *ebx,
unsigned int *ecx, unsigned int *edx)
{
int override = 0;
if (*eax == 1)
override = 1;
asm volatile ("call *%6"
: "=a" (*eax),
"=b" (*ebx),
"=c" (*ecx),
"=d" (*edx)
: "0" (*eax), "2" (*ecx), "r" (vmi_ops.cpuid));
if (override) {
if (disable_pse)
*edx &= ~X86_FEATURE_PSE;
if (disable_pge)
*edx &= ~X86_FEATURE_PGE;
if (disable_sep)
*edx &= ~X86_FEATURE_SEP;
if (disable_tsc)
*edx &= ~X86_FEATURE_TSC;
if (disable_mtrr)
*edx &= ~X86_FEATURE_MTRR;
}
}
static inline void vmi_maybe_load_tls(struct desc_struct *gdt, int nr, struct desc_struct *new)
{
if (gdt[nr].a != new->a || gdt[nr].b != new->b)
write_gdt_entry(gdt, nr, new->a, new->b);
}
static void vmi_load_tls(struct thread_struct *t, unsigned int cpu)
{
struct desc_struct *gdt = get_cpu_gdt_table(cpu);
vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 0, &t->tls_array[0]);
vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 1, &t->tls_array[1]);
vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 2, &t->tls_array[2]);
}
static void vmi_set_ldt(const void *addr, unsigned entries)
{
unsigned cpu = smp_processor_id();
u32 low, high;
pack_descriptor(&low, &high, (unsigned long)addr,
entries * sizeof(struct desc_struct) - 1,
DESCTYPE_LDT, 0);
write_gdt_entry(get_cpu_gdt_table(cpu), GDT_ENTRY_LDT, low, high);
vmi_ops._set_ldt(entries ? GDT_ENTRY_LDT*sizeof(struct desc_struct) : 0);
}
static void vmi_set_tr(void)
{
vmi_ops.set_tr(GDT_ENTRY_TSS*sizeof(struct desc_struct));
}
static void vmi_load_esp0(struct tss_struct *tss,
struct thread_struct *thread)
{
tss->esp0 = thread->esp0;
/* This can only happen when SEP is enabled, no need to test "SEP"arately */
if (unlikely(tss->ss1 != thread->sysenter_cs)) {
tss->ss1 = thread->sysenter_cs;
wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
}
vmi_ops.set_kernel_stack(__KERNEL_DS, tss->esp0);
}
static void vmi_flush_tlb_user(void)
{
vmi_ops.flush_tlb(VMI_FLUSH_TLB);
}
static void vmi_flush_tlb_kernel(void)
{
vmi_ops.flush_tlb(VMI_FLUSH_TLB | VMI_FLUSH_GLOBAL);
}
/* Stub to do nothing at all; used for delays and unimplemented calls */
static void vmi_nop(void)
{
}
/* For NO_IDLE_HZ, we stop the clock when halting the kernel */
static fastcall void vmi_safe_halt(void)
{
int idle = vmi_stop_hz_timer();
vmi_ops.halt();
if (idle) {
local_irq_disable();
vmi_account_time_restart_hz_timer();
local_irq_enable();
}
}
#ifdef CONFIG_DEBUG_PAGE_TYPE
#ifdef CONFIG_X86_PAE
#define MAX_BOOT_PTS (2048+4+1)
#else
#define MAX_BOOT_PTS (1024+1)
#endif
/*
* During boot, mem_map is not yet available in paging_init, so stash
* all the boot page allocations here.
*/
static struct {
u32 pfn;
int type;
} boot_page_allocations[MAX_BOOT_PTS];
static int num_boot_page_allocations;
static int boot_allocations_applied;
void vmi_apply_boot_page_allocations(void)
{
int i;
BUG_ON(!mem_map);
for (i = 0; i < num_boot_page_allocations; i++) {
struct page *page = pfn_to_page(boot_page_allocations[i].pfn);
page->type = boot_page_allocations[i].type;
page->type = boot_page_allocations[i].type &
~(VMI_PAGE_ZEROED | VMI_PAGE_CLONE);
}
boot_allocations_applied = 1;
}
static void record_page_type(u32 pfn, int type)
{
BUG_ON(num_boot_page_allocations >= MAX_BOOT_PTS);
boot_page_allocations[num_boot_page_allocations].pfn = pfn;
boot_page_allocations[num_boot_page_allocations].type = type;
num_boot_page_allocations++;
}
static void check_zeroed_page(u32 pfn, int type, struct page *page)
{
u32 *ptr;
int i;
int limit = PAGE_SIZE / sizeof(int);
if (page_address(page))
ptr = (u32 *)page_address(page);
else
ptr = (u32 *)__va(pfn << PAGE_SHIFT);
/*
* When cloning the root in non-PAE mode, only the userspace
* pdes need to be zeroed.
*/
if (type & VMI_PAGE_CLONE)
limit = USER_PTRS_PER_PGD;
for (i = 0; i < limit; i++)
BUG_ON(ptr[i]);
}
/*
* We stash the page type into struct page so we can verify the page
* types are used properly.
*/
static void vmi_set_page_type(u32 pfn, int type)
{
/* PAE can have multiple roots per page - don't track */
if (PTRS_PER_PMD > 1 && (type & VMI_PAGE_PDP))
return;
if (boot_allocations_applied) {
struct page *page = pfn_to_page(pfn);
if (type != VMI_PAGE_NORMAL)
BUG_ON(page->type);
else
BUG_ON(page->type == VMI_PAGE_NORMAL);
page->type = type & ~(VMI_PAGE_ZEROED | VMI_PAGE_CLONE);
if (type & VMI_PAGE_ZEROED)
check_zeroed_page(pfn, type, page);
} else {
record_page_type(pfn, type);
}
}
static void vmi_check_page_type(u32 pfn, int type)
{
/* PAE can have multiple roots per page - skip checks */
if (PTRS_PER_PMD > 1 && (type & VMI_PAGE_PDP))
return;
type &= ~(VMI_PAGE_ZEROED | VMI_PAGE_CLONE);
if (boot_allocations_applied) {
struct page *page = pfn_to_page(pfn);
BUG_ON((page->type ^ type) & VMI_PAGE_PAE);
BUG_ON(type == VMI_PAGE_NORMAL && page->type);
BUG_ON((type & page->type) == 0);
}
}
#else
#define vmi_set_page_type(p,t) do { } while (0)
#define vmi_check_page_type(p,t) do { } while (0)
#endif
static void vmi_map_pt_hook(int type, pte_t *va, u32 pfn)
{
/*
* Internally, the VMI ROM must map virtual addresses to physical
* addresses for processing MMU updates. By the time MMU updates
* are issued, this information is typically already lost.
* Fortunately, the VMI provides a cache of mapping slots for active
* page tables.
*
* We use slot zero for the linear mapping of physical memory, and
* in HIGHPTE kernels, slot 1 and 2 for KM_PTE0 and KM_PTE1.
*
* args: SLOT VA COUNT PFN
*/
BUG_ON(type != KM_PTE0 && type != KM_PTE1);
vmi_ops.set_linear_mapping((type - KM_PTE0)+1, (u32)va, 1, pfn);
}
static void vmi_allocate_pt(u32 pfn)
{
vmi_set_page_type(pfn, VMI_PAGE_L1);
vmi_ops.allocate_page(pfn, VMI_PAGE_L1, 0, 0, 0);
}
static void vmi_allocate_pd(u32 pfn)
{
/*
* This call comes in very early, before mem_map is setup.
* It is called only for swapper_pg_dir, which already has
* data on it.
*/
vmi_set_page_type(pfn, VMI_PAGE_L2);
vmi_ops.allocate_page(pfn, VMI_PAGE_L2, 0, 0, 0);
}
static void vmi_allocate_pd_clone(u32 pfn, u32 clonepfn, u32 start, u32 count)
{
vmi_set_page_type(pfn, VMI_PAGE_L2 | VMI_PAGE_CLONE);
vmi_check_page_type(clonepfn, VMI_PAGE_L2);
vmi_ops.allocate_page(pfn, VMI_PAGE_L2 | VMI_PAGE_CLONE, clonepfn, start, count);
}
static void vmi_release_pt(u32 pfn)
{
vmi_ops.release_page(pfn, VMI_PAGE_L1);
vmi_set_page_type(pfn, VMI_PAGE_NORMAL);
}
static void vmi_release_pd(u32 pfn)
{
vmi_ops.release_page(pfn, VMI_PAGE_L2);
vmi_set_page_type(pfn, VMI_PAGE_NORMAL);
}
/*
* Helper macros for MMU update flags. We can defer updates until a flush
* or page invalidation only if the update is to the current address space
* (otherwise, there is no flush). We must check against init_mm, since
* this could be a kernel update, which usually passes init_mm, although
* sometimes this check can be skipped if we know the particular function
* is only called on user mode PTEs. We could change the kernel to pass
* current->active_mm here, but in particular, I was unsure if changing
* mm/highmem.c to do this would still be correct on other architectures.
*/
#define is_current_as(mm, mustbeuser) ((mm) == current->active_mm || \
(!mustbeuser && (mm) == &init_mm))
#define vmi_flags_addr(mm, addr, level, user) \
((level) | (is_current_as(mm, user) ? \
(VMI_PAGE_CURRENT_AS | ((addr) & VMI_PAGE_VA_MASK)) : 0))
#define vmi_flags_addr_defer(mm, addr, level, user) \
((level) | (is_current_as(mm, user) ? \
(VMI_PAGE_DEFER | VMI_PAGE_CURRENT_AS | ((addr) & VMI_PAGE_VA_MASK)) : 0))
static void vmi_update_pte(struct mm_struct *mm, u32 addr, pte_t *ptep)
{
vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
vmi_ops.update_pte(ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0));
}
static void vmi_update_pte_defer(struct mm_struct *mm, u32 addr, pte_t *ptep)
{
vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
vmi_ops.update_pte(ptep, vmi_flags_addr_defer(mm, addr, VMI_PAGE_PT, 0));
}
static void vmi_set_pte(pte_t *ptep, pte_t pte)
{
/* XXX because of set_pmd_pte, this can be called on PT or PD layers */
vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE | VMI_PAGE_PD);
vmi_ops.set_pte(pte, ptep, VMI_PAGE_PT);
}
static void vmi_set_pte_at(struct mm_struct *mm, u32 addr, pte_t *ptep, pte_t pte)
{
vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
vmi_ops.set_pte(pte, ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0));
}
static void vmi_set_pmd(pmd_t *pmdp, pmd_t pmdval)
{
#ifdef CONFIG_X86_PAE
const pte_t pte = { pmdval.pmd, pmdval.pmd >> 32 };
vmi_check_page_type(__pa(pmdp) >> PAGE_SHIFT, VMI_PAGE_PMD);
#else
const pte_t pte = { pmdval.pud.pgd.pgd };
vmi_check_page_type(__pa(pmdp) >> PAGE_SHIFT, VMI_PAGE_PGD);
#endif
vmi_ops.set_pte(pte, (pte_t *)pmdp, VMI_PAGE_PD);
}
#ifdef CONFIG_X86_PAE
static void vmi_set_pte_atomic(pte_t *ptep, pte_t pteval)
{
/*
* XXX This is called from set_pmd_pte, but at both PT
* and PD layers so the VMI_PAGE_PT flag is wrong. But
* it is only called for large page mapping changes,
* the Xen backend, doesn't support large pages, and the
* ESX backend doesn't depend on the flag.
*/
set_64bit((unsigned long long *)ptep,pte_val(pteval));
vmi_ops.update_pte(ptep, VMI_PAGE_PT);
}
static void vmi_set_pte_present(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte)
{
vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
vmi_ops.set_pte(pte, ptep, vmi_flags_addr_defer(mm, addr, VMI_PAGE_PT, 1));
}
static void vmi_set_pud(pud_t *pudp, pud_t pudval)
{
/* Um, eww */
const pte_t pte = { pudval.pgd.pgd, pudval.pgd.pgd >> 32 };
vmi_check_page_type(__pa(pudp) >> PAGE_SHIFT, VMI_PAGE_PGD);
vmi_ops.set_pte(pte, (pte_t *)pudp, VMI_PAGE_PDP);
}
static void vmi_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
const pte_t pte = { 0 };
vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
vmi_ops.set_pte(pte, ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0));
}
void vmi_pmd_clear(pmd_t *pmd)
{
const pte_t pte = { 0 };
vmi_check_page_type(__pa(pmd) >> PAGE_SHIFT, VMI_PAGE_PMD);
vmi_ops.set_pte(pte, (pte_t *)pmd, VMI_PAGE_PD);
}
#endif
#ifdef CONFIG_SMP
extern void setup_pda(void);
static void __devinit
vmi_startup_ipi_hook(int phys_apicid, unsigned long start_eip,
unsigned long start_esp)
{
struct vmi_ap_state ap;
/* Default everything to zero. This is fine for most GPRs. */
memset(&ap, 0, sizeof(struct vmi_ap_state));
ap.gdtr_limit = GDT_SIZE - 1;
ap.gdtr_base = (unsigned long) get_cpu_gdt_table(phys_apicid);
ap.idtr_limit = IDT_ENTRIES * 8 - 1;
ap.idtr_base = (unsigned long) idt_table;
ap.ldtr = 0;
ap.cs = __KERNEL_CS;
ap.eip = (unsigned long) start_eip;
ap.ss = __KERNEL_DS;
ap.esp = (unsigned long) start_esp;
ap.ds = __USER_DS;
ap.es = __USER_DS;
ap.fs = __KERNEL_PDA;
ap.gs = 0;
ap.eflags = 0;
setup_pda();
#ifdef CONFIG_X86_PAE
/* efer should match BSP efer. */
if (cpu_has_nx) {
unsigned l, h;
rdmsr(MSR_EFER, l, h);
ap.efer = (unsigned long long) h << 32 | l;
}
#endif
ap.cr3 = __pa(swapper_pg_dir);
/* Protected mode, paging, AM, WP, NE, MP. */
ap.cr0 = 0x80050023;
ap.cr4 = mmu_cr4_features;
vmi_ops.set_initial_ap_state((u32)&ap, phys_apicid);
}
#endif
static inline int __init check_vmi_rom(struct vrom_header *rom)
{
struct pci_header *pci;
struct pnp_header *pnp;
const char *manufacturer = "UNKNOWN";
const char *product = "UNKNOWN";
const char *license = "unspecified";
if (rom->rom_signature != 0xaa55)
return 0;
if (rom->vrom_signature != VMI_SIGNATURE)
return 0;
if (rom->api_version_maj != VMI_API_REV_MAJOR ||
rom->api_version_min+1 < VMI_API_REV_MINOR+1) {
printk(KERN_WARNING "VMI: Found mismatched rom version %d.%d\n",
rom->api_version_maj,
rom->api_version_min);
return 0;
}
/*
* Relying on the VMI_SIGNATURE field is not 100% safe, so check
* the PCI header and device type to make sure this is really a
* VMI device.
*/
if (!rom->pci_header_offs) {
printk(KERN_WARNING "VMI: ROM does not contain PCI header.\n");
return 0;
}
pci = (struct pci_header *)((char *)rom+rom->pci_header_offs);
if (pci->vendorID != PCI_VENDOR_ID_VMWARE ||
pci->deviceID != PCI_DEVICE_ID_VMWARE_VMI) {
/* Allow it to run... anyways, but warn */
printk(KERN_WARNING "VMI: ROM from unknown manufacturer\n");
}
if (rom->pnp_header_offs) {
pnp = (struct pnp_header *)((char *)rom+rom->pnp_header_offs);
if (pnp->manufacturer_offset)
manufacturer = (const char *)rom+pnp->manufacturer_offset;
if (pnp->product_offset)
product = (const char *)rom+pnp->product_offset;
}
if (rom->license_offs)
license = (char *)rom+rom->license_offs;
printk(KERN_INFO "VMI: Found %s %s, API version %d.%d, ROM version %d.%d\n",
manufacturer, product,
rom->api_version_maj, rom->api_version_min,
pci->rom_version_maj, pci->rom_version_min);
license_gplok = license_is_gpl_compatible(license);
if (!license_gplok) {
printk(KERN_WARNING "VMI: ROM license '%s' taints kernel... "
"inlining disabled\n",
license);
add_taint(TAINT_PROPRIETARY_MODULE);
}
return 1;
}
/*
* Probe for the VMI option ROM
*/
static inline int __init probe_vmi_rom(void)
{
unsigned long base;
/* VMI ROM is in option ROM area, check signature */
for (base = 0xC0000; base < 0xE0000; base += 2048) {
struct vrom_header *romstart;
romstart = (struct vrom_header *)isa_bus_to_virt(base);
if (check_vmi_rom(romstart)) {
vmi_rom = romstart;
return 1;
}
}
return 0;
}
/*
* VMI setup common to all processors
*/
void vmi_bringup(void)
{
/* We must establish the lowmem mapping for MMU ops to work */
if (vmi_ops.set_linear_mapping)
vmi_ops.set_linear_mapping(0, __PAGE_OFFSET, max_low_pfn, 0);
}
/*
* Return a pointer to a VMI function or NULL if unimplemented
*/
static void *vmi_get_function(int vmicall)
{
u64 reloc;
const struct vmi_relocation_info *rel = (struct vmi_relocation_info *)&reloc;
reloc = call_vrom_long_func(vmi_rom, get_reloc, vmicall);
BUG_ON(rel->type == VMI_RELOCATION_JUMP_REL);
if (rel->type == VMI_RELOCATION_CALL_REL)
return (void *)rel->eip;
else
return NULL;
}
/*
* Helper macro for making the VMI paravirt-ops fill code readable.
* For unimplemented operations, fall back to default, unless nop
* is returned by the ROM.
*/
#define para_fill(opname, vmicall) \
do { \
reloc = call_vrom_long_func(vmi_rom, get_reloc, \
VMI_CALL_##vmicall); \
if (rel->type != VMI_RELOCATION_NONE) { \
BUG_ON(rel->type != VMI_RELOCATION_CALL_REL); \
paravirt_ops.opname = (void *)rel->eip; \
} else if (rel->type == VMI_RELOCATION_NOP) \
paravirt_ops.opname = (void *)vmi_nop; \
} while (0)
/*
* Helper macro for making the VMI paravirt-ops fill code readable.
* For cached operations which do not match the VMI ROM ABI and must
* go through a tranlation stub. Ignore NOPs, since it is not clear
* a NOP * VMI function corresponds to a NOP paravirt-op when the
* functions are not in 1-1 correspondence.
*/
#define para_wrap(opname, wrapper, cache, vmicall) \
do { \
reloc = call_vrom_long_func(vmi_rom, get_reloc, \
VMI_CALL_##vmicall); \
BUG_ON(rel->type == VMI_RELOCATION_JUMP_REL); \
if (rel->type == VMI_RELOCATION_CALL_REL) { \
paravirt_ops.opname = wrapper; \
vmi_ops.cache = (void *)rel->eip; \
} \
} while (0)
/*
* Activate the VMI interface and switch into paravirtualized mode
*/
static inline int __init activate_vmi(void)
{
short kernel_cs;
u64 reloc;
const struct vmi_relocation_info *rel = (struct vmi_relocation_info *)&reloc;
if (call_vrom_func(vmi_rom, vmi_init) != 0) {
printk(KERN_ERR "VMI ROM failed to initialize!");
return 0;
}
savesegment(cs, kernel_cs);
paravirt_ops.paravirt_enabled = 1;
paravirt_ops.kernel_rpl = kernel_cs & SEGMENT_RPL_MASK;
paravirt_ops.patch = vmi_patch;
paravirt_ops.name = "vmi";
/*
* Many of these operations are ABI compatible with VMI.
* This means we can fill in the paravirt-ops with direct
* pointers into the VMI ROM. If the calling convention for
* these operations changes, this code needs to be updated.
*
* Exceptions
* CPUID paravirt-op uses pointers, not the native ISA
* halt has no VMI equivalent; all VMI halts are "safe"
* no MSR support yet - just trap and emulate. VMI uses the
* same ABI as the native ISA, but Linux wants exceptions
* from bogus MSR read / write handled
* rdpmc is not yet used in Linux
*/
/* CPUID is special, so very special it gets wrapped like a present */
para_wrap(cpuid, vmi_cpuid, cpuid, CPUID);
para_fill(clts, CLTS);
para_fill(get_debugreg, GetDR);
para_fill(set_debugreg, SetDR);
para_fill(read_cr0, GetCR0);
para_fill(read_cr2, GetCR2);
para_fill(read_cr3, GetCR3);
para_fill(read_cr4, GetCR4);
para_fill(write_cr0, SetCR0);
para_fill(write_cr2, SetCR2);
para_fill(write_cr3, SetCR3);
para_fill(write_cr4, SetCR4);
para_fill(save_fl, GetInterruptMask);
para_fill(restore_fl, SetInterruptMask);
para_fill(irq_disable, DisableInterrupts);
para_fill(irq_enable, EnableInterrupts);
/* irq_save_disable !!! sheer pain */
patch_offset(&irq_save_disable_callout[IRQ_PATCH_INT_MASK],
(char *)paravirt_ops.save_fl);
patch_offset(&irq_save_disable_callout[IRQ_PATCH_DISABLE],
(char *)paravirt_ops.irq_disable);
para_fill(wbinvd, WBINVD);
para_fill(read_tsc, RDTSC);
/* The following we emulate with trap and emulate for now */
/* paravirt_ops.read_msr = vmi_rdmsr */
/* paravirt_ops.write_msr = vmi_wrmsr */
/* paravirt_ops.rdpmc = vmi_rdpmc */
/* TR interface doesn't pass TR value, wrap */
para_wrap(load_tr_desc, vmi_set_tr, set_tr, SetTR);
/* LDT is special, too */
para_wrap(set_ldt, vmi_set_ldt, _set_ldt, SetLDT);
para_fill(load_gdt, SetGDT);
para_fill(load_idt, SetIDT);
para_fill(store_gdt, GetGDT);
para_fill(store_idt, GetIDT);
para_fill(store_tr, GetTR);
paravirt_ops.load_tls = vmi_load_tls;
para_fill(write_ldt_entry, WriteLDTEntry);
para_fill(write_gdt_entry, WriteGDTEntry);
para_fill(write_idt_entry, WriteIDTEntry);
para_wrap(load_esp0, vmi_load_esp0, set_kernel_stack, UpdateKernelStack);
para_fill(set_iopl_mask, SetIOPLMask);
para_fill(io_delay, IODelay);
para_fill(set_lazy_mode, SetLazyMode);
/* user and kernel flush are just handled with different flags to FlushTLB */
para_wrap(flush_tlb_user, vmi_flush_tlb_user, flush_tlb, FlushTLB);
para_wrap(flush_tlb_kernel, vmi_flush_tlb_kernel, flush_tlb, FlushTLB);
para_fill(flush_tlb_single, InvalPage);
/*
* Until a standard flag format can be agreed on, we need to
* implement these as wrappers in Linux. Get the VMI ROM
* function pointers for the two backend calls.
*/
#ifdef CONFIG_X86_PAE
vmi_ops.set_pte = vmi_get_function(VMI_CALL_SetPxELong);
vmi_ops.update_pte = vmi_get_function(VMI_CALL_UpdatePxELong);
#else
vmi_ops.set_pte = vmi_get_function(VMI_CALL_SetPxE);
vmi_ops.update_pte = vmi_get_function(VMI_CALL_UpdatePxE);
#endif
if (vmi_ops.set_pte) {
paravirt_ops.set_pte = vmi_set_pte;
paravirt_ops.set_pte_at = vmi_set_pte_at;
paravirt_ops.set_pmd = vmi_set_pmd;
#ifdef CONFIG_X86_PAE
paravirt_ops.set_pte_atomic = vmi_set_pte_atomic;
paravirt_ops.set_pte_present = vmi_set_pte_present;
paravirt_ops.set_pud = vmi_set_pud;
paravirt_ops.pte_clear = vmi_pte_clear;
paravirt_ops.pmd_clear = vmi_pmd_clear;
#endif
}
if (vmi_ops.update_pte) {
paravirt_ops.pte_update = vmi_update_pte;
paravirt_ops.pte_update_defer = vmi_update_pte_defer;
}
vmi_ops.allocate_page = vmi_get_function(VMI_CALL_AllocatePage);
if (vmi_ops.allocate_page) {
paravirt_ops.alloc_pt = vmi_allocate_pt;
paravirt_ops.alloc_pd = vmi_allocate_pd;
paravirt_ops.alloc_pd_clone = vmi_allocate_pd_clone;
}
vmi_ops.release_page = vmi_get_function(VMI_CALL_ReleasePage);
if (vmi_ops.release_page) {
paravirt_ops.release_pt = vmi_release_pt;
paravirt_ops.release_pd = vmi_release_pd;
}
para_wrap(map_pt_hook, vmi_map_pt_hook, set_linear_mapping,
SetLinearMapping);
/*
* These MUST always be patched. Don't support indirect jumps
* through these operations, as the VMI interface may use either
* a jump or a call to get to these operations, depending on
* the backend. They are performance critical anyway, so requiring
* a patch is not a big problem.
*/
paravirt_ops.irq_enable_sysexit = (void *)0xfeedbab0;
paravirt_ops.iret = (void *)0xbadbab0;
#ifdef CONFIG_SMP
para_wrap(startup_ipi_hook, vmi_startup_ipi_hook, set_initial_ap_state, SetInitialAPState);
#endif
#ifdef CONFIG_X86_LOCAL_APIC
para_fill(apic_read, APICRead);
para_fill(apic_write, APICWrite);
para_fill(apic_write_atomic, APICWrite);
#endif
/*
* Check for VMI timer functionality by probing for a cycle frequency method
*/
reloc = call_vrom_long_func(vmi_rom, get_reloc, VMI_CALL_GetCycleFrequency);
if (!disable_vmi_timer && rel->type != VMI_RELOCATION_NONE) {
vmi_timer_ops.get_cycle_frequency = (void *)rel->eip;
vmi_timer_ops.get_cycle_counter =
vmi_get_function(VMI_CALL_GetCycleCounter);
vmi_timer_ops.get_wallclock =
vmi_get_function(VMI_CALL_GetWallclockTime);
vmi_timer_ops.wallclock_updated =
vmi_get_function(VMI_CALL_WallclockUpdated);
vmi_timer_ops.set_alarm = vmi_get_function(VMI_CALL_SetAlarm);
vmi_timer_ops.cancel_alarm =
vmi_get_function(VMI_CALL_CancelAlarm);
paravirt_ops.time_init = vmi_time_init;
paravirt_ops.get_wallclock = vmi_get_wallclock;
paravirt_ops.set_wallclock = vmi_set_wallclock;
#ifdef CONFIG_X86_LOCAL_APIC
paravirt_ops.setup_boot_clock = vmi_timer_setup_boot_alarm;
paravirt_ops.setup_secondary_clock = vmi_timer_setup_secondary_alarm;
#endif
paravirt_ops.get_scheduled_cycles = vmi_get_sched_cycles;
paravirt_ops.get_cpu_khz = vmi_cpu_khz;
/* We have true wallclock functions; disable CMOS clock sync */
no_sync_cmos_clock = 1;
} else {
disable_noidle = 1;
disable_vmi_timer = 1;
}
/* No idle HZ mode only works if VMI timer and no idle is enabled */
if (disable_noidle || disable_vmi_timer)
para_fill(safe_halt, Halt);
else
para_wrap(safe_halt, vmi_safe_halt, halt, Halt);
/*
* Alternative instruction rewriting doesn't happen soon enough
* to convert VMI_IRET to a call instead of a jump; so we have
* to do this before IRQs get reenabled. Fortunately, it is
* idempotent.
*/
apply_paravirt(__start_parainstructions, __stop_parainstructions);
vmi_bringup();
return 1;
}
#undef para_fill
void __init vmi_init(void)
{
unsigned long flags;
if (!vmi_rom)
probe_vmi_rom();
else
check_vmi_rom(vmi_rom);
/* In case probing for or validating the ROM failed, basil */
if (!vmi_rom)
return;
reserve_top_address(-vmi_rom->virtual_top);
local_irq_save(flags);
activate_vmi();
#ifdef CONFIG_X86_IO_APIC
/* This is virtual hardware; timer routing is wired correctly */
no_timer_check = 1;
#endif
local_irq_restore(flags & X86_EFLAGS_IF);
}
static int __init parse_vmi(char *arg)
{
if (!arg)
return -EINVAL;
if (!strcmp(arg, "disable_pge")) {
clear_bit(X86_FEATURE_PGE, boot_cpu_data.x86_capability);
disable_pge = 1;
} else if (!strcmp(arg, "disable_pse")) {
clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability);
disable_pse = 1;
} else if (!strcmp(arg, "disable_sep")) {
clear_bit(X86_FEATURE_SEP, boot_cpu_data.x86_capability);
disable_sep = 1;
} else if (!strcmp(arg, "disable_tsc")) {
clear_bit(X86_FEATURE_TSC, boot_cpu_data.x86_capability);
disable_tsc = 1;
} else if (!strcmp(arg, "disable_mtrr")) {
clear_bit(X86_FEATURE_MTRR, boot_cpu_data.x86_capability);
disable_mtrr = 1;
} else if (!strcmp(arg, "disable_timer")) {
disable_vmi_timer = 1;
disable_noidle = 1;
} else if (!strcmp(arg, "disable_noidle"))
disable_noidle = 1;
return 0;
}
early_param("vmi", parse_vmi);