android_kernel_xiaomi_sm8350/arch/sparc64/kernel/kprobes.c

441 lines
11 KiB
C
Raw Normal View History

/* arch/sparc64/kernel/kprobes.c
*
* Copyright (C) 2004 David S. Miller <davem@davemloft.net>
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/kprobes.h>
#include <asm/kdebug.h>
#include <asm/signal.h>
/* We do not have hardware single-stepping on sparc64.
* So we implement software single-stepping with breakpoint
* traps. The top-level scheme is similar to that used
* in the x86 kprobes implementation.
*
* In the kprobe->ainsn.insn[] array we store the original
* instruction at index zero and a break instruction at
* index one.
*
* When we hit a kprobe we:
* - Run the pre-handler
* - Remember "regs->tnpc" and interrupt level stored in
* "regs->tstate" so we can restore them later
* - Disable PIL interrupts
* - Set regs->tpc to point to kprobe->ainsn.insn[0]
* - Set regs->tnpc to point to kprobe->ainsn.insn[1]
* - Mark that we are actively in a kprobe
*
* At this point we wait for the second breakpoint at
* kprobe->ainsn.insn[1] to hit. When it does we:
* - Run the post-handler
* - Set regs->tpc to "remembered" regs->tnpc stored above,
* restore the PIL interrupt level in "regs->tstate" as well
* - Make any adjustments necessary to regs->tnpc in order
* to handle relative branches correctly. See below.
* - Mark that we are no longer actively in a kprobe.
*/
int arch_prepare_kprobe(struct kprobe *p)
{
return 0;
}
void arch_copy_kprobe(struct kprobe *p)
{
p->ainsn.insn[0] = *p->addr;
p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
[PATCH] Move kprobe [dis]arming into arch specific code The architecture independent code of the current kprobes implementation is arming and disarming kprobes at registration time. The problem is that the code is assuming that arming and disarming is a just done by a simple write of some magic value to an address. This is problematic for ia64 where our instructions look more like structures, and we can not insert break points by just doing something like: *p->addr = BREAKPOINT_INSTRUCTION; The following patch to 2.6.12-rc4-mm2 adds two new architecture dependent functions: * void arch_arm_kprobe(struct kprobe *p) * void arch_disarm_kprobe(struct kprobe *p) and then adds the new functions for each of the architectures that already implement kprobes (spar64/ppc64/i386/x86_64). I thought arch_[dis]arm_kprobe was the most descriptive of what was really happening, but each of the architectures already had a disarm_kprobe() function that was really a "disarm and do some other clean-up items as needed when you stumble across a recursive kprobe." So... I took the liberty of changing the code that was calling disarm_kprobe() to call arch_disarm_kprobe(), and then do the cleanup in the block of code dealing with the recursive kprobe case. So far this patch as been tested on i386, x86_64, and ppc64, but still needs to be tested in sparc64. Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 03:09:25 -04:00
p->opcode = *p->addr;
}
void arch_arm_kprobe(struct kprobe *p)
{
*p->addr = BREAKPOINT_INSTRUCTION;
flushi(p->addr);
}
void arch_disarm_kprobe(struct kprobe *p)
{
*p->addr = p->opcode;
flushi(p->addr);
}
void arch_remove_kprobe(struct kprobe *p)
{
}
static struct kprobe *current_kprobe;
static unsigned long current_kprobe_orig_tnpc;
static unsigned long current_kprobe_orig_tstate_pil;
static unsigned int kprobe_status;
static struct kprobe *kprobe_prev;
static unsigned long kprobe_orig_tnpc_prev;
static unsigned long kprobe_orig_tstate_pil_prev;
static unsigned int kprobe_status_prev;
static inline void save_previous_kprobe(void)
{
kprobe_status_prev = kprobe_status;
kprobe_orig_tnpc_prev = current_kprobe_orig_tnpc;
kprobe_orig_tstate_pil_prev = current_kprobe_orig_tstate_pil;
kprobe_prev = current_kprobe;
}
static inline void restore_previous_kprobe(void)
{
kprobe_status = kprobe_status_prev;
current_kprobe_orig_tnpc = kprobe_orig_tnpc_prev;
current_kprobe_orig_tstate_pil = kprobe_orig_tstate_pil_prev;
current_kprobe = kprobe_prev;
}
static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs)
{
current_kprobe_orig_tnpc = regs->tnpc;
current_kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
current_kprobe = p;
}
static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
{
regs->tstate |= TSTATE_PIL;
/*single step inline, if it a breakpoint instruction*/
if (p->opcode == BREAKPOINT_INSTRUCTION) {
regs->tpc = (unsigned long) p->addr;
regs->tnpc = current_kprobe_orig_tnpc;
} else {
regs->tpc = (unsigned long) &p->ainsn.insn[0];
regs->tnpc = (unsigned long) &p->ainsn.insn[1];
}
}
static int kprobe_handler(struct pt_regs *regs)
{
struct kprobe *p;
void *addr = (void *) regs->tpc;
int ret = 0;
preempt_disable();
if (kprobe_running()) {
/* We *are* holding lock here, so this is safe.
* Disarm the probe we just hit, and ignore it.
*/
p = get_kprobe(addr);
if (p) {
if (kprobe_status == KPROBE_HIT_SS) {
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
current_kprobe_orig_tstate_pil);
unlock_kprobes();
goto no_kprobe;
}
/* We have reentered the kprobe_handler(), since
* another probe was hit while within the handler.
* We here save the original kprobes variables and
* just single step on the instruction of the new probe
* without calling any user handlers.
*/
save_previous_kprobe();
set_current_kprobe(p, regs);
p->nmissed++;
kprobe_status = KPROBE_REENTER;
prepare_singlestep(p, regs);
return 1;
} else {
p = current_kprobe;
if (p->break_handler && p->break_handler(p, regs))
goto ss_probe;
}
/* If it's not ours, can't be delete race, (we hold lock). */
goto no_kprobe;
}
lock_kprobes();
p = get_kprobe(addr);
if (!p) {
unlock_kprobes();
if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
/*
* The breakpoint instruction was removed right
* after we hit it. Another cpu has removed
* either a probepoint or a debugger breakpoint
* at this address. In either case, no further
* handling of this interrupt is appropriate.
*/
ret = 1;
}
/* Not one of ours: let kernel handle it */
goto no_kprobe;
}
set_current_kprobe(p, regs);
kprobe_status = KPROBE_HIT_ACTIVE;
if (p->pre_handler && p->pre_handler(p, regs))
return 1;
ss_probe:
prepare_singlestep(p, regs);
kprobe_status = KPROBE_HIT_SS;
return 1;
no_kprobe:
preempt_enable_no_resched();
return ret;
}
/* If INSN is a relative control transfer instruction,
* return the corrected branch destination value.
*
* The original INSN location was REAL_PC, it actually
* executed at PC and produced destination address NPC.
*/
static unsigned long relbranch_fixup(u32 insn, unsigned long real_pc,
unsigned long pc, unsigned long npc)
{
/* Branch not taken, no mods necessary. */
if (npc == pc + 0x4UL)
return real_pc + 0x4UL;
/* The three cases are call, branch w/prediction,
* and traditional branch.
*/
if ((insn & 0xc0000000) == 0x40000000 ||
(insn & 0xc1c00000) == 0x00400000 ||
(insn & 0xc1c00000) == 0x00800000) {
/* The instruction did all the work for us
* already, just apply the offset to the correct
* instruction location.
*/
return (real_pc + (npc - pc));
}
return real_pc + 0x4UL;
}
/* If INSN is an instruction which writes it's PC location
* into a destination register, fix that up.
*/
static void retpc_fixup(struct pt_regs *regs, u32 insn, unsigned long real_pc)
{
unsigned long *slot = NULL;
/* Simplest cast is call, which always uses %o7 */
if ((insn & 0xc0000000) == 0x40000000) {
slot = &regs->u_regs[UREG_I7];
}
/* Jmpl encodes the register inside of the opcode */
if ((insn & 0xc1f80000) == 0x81c00000) {
unsigned long rd = ((insn >> 25) & 0x1f);
if (rd <= 15) {
slot = &regs->u_regs[rd];
} else {
/* Hard case, it goes onto the stack. */
flushw_all();
rd -= 16;
slot = (unsigned long *)
(regs->u_regs[UREG_FP] + STACK_BIAS);
slot += rd;
}
}
if (slot != NULL)
*slot = real_pc;
}
/*
* Called after single-stepping. p->addr is the address of the
* instruction whose first byte has been replaced by the breakpoint
* instruction. To avoid the SMP problems that can occur when we
* temporarily put back the original opcode to single-step, we
* single-stepped a copy of the instruction. The address of this
* copy is p->ainsn.insn.
*
* This function prepares to return from the post-single-step
* breakpoint trap.
*/
static void resume_execution(struct kprobe *p, struct pt_regs *regs)
{
u32 insn = p->ainsn.insn[0];
regs->tpc = current_kprobe_orig_tnpc;
regs->tnpc = relbranch_fixup(insn,
(unsigned long) p->addr,
(unsigned long) &p->ainsn.insn[0],
regs->tnpc);
retpc_fixup(regs, insn, (unsigned long) p->addr);
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
current_kprobe_orig_tstate_pil);
}
static inline int post_kprobe_handler(struct pt_regs *regs)
{
if (!kprobe_running())
return 0;
if ((kprobe_status != KPROBE_REENTER) && current_kprobe->post_handler) {
kprobe_status = KPROBE_HIT_SSDONE;
current_kprobe->post_handler(current_kprobe, regs, 0);
}
resume_execution(current_kprobe, regs);
/*Restore back the original saved kprobes variables and continue. */
if (kprobe_status == KPROBE_REENTER) {
restore_previous_kprobe();
goto out;
}
unlock_kprobes();
out:
preempt_enable_no_resched();
return 1;
}
/* Interrupts disabled, kprobe_lock held. */
static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{
if (current_kprobe->fault_handler
&& current_kprobe->fault_handler(current_kprobe, regs, trapnr))
return 1;
if (kprobe_status & KPROBE_HIT_SS) {
resume_execution(current_kprobe, regs);
unlock_kprobes();
preempt_enable_no_resched();
}
return 0;
}
/*
* Wrapper routine to for handling exceptions.
*/
int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
void *data)
{
struct die_args *args = (struct die_args *)data;
switch (val) {
case DIE_DEBUG:
if (kprobe_handler(args->regs))
return NOTIFY_STOP;
break;
case DIE_DEBUG_2:
if (post_kprobe_handler(args->regs))
return NOTIFY_STOP;
break;
case DIE_GPF:
if (kprobe_running() &&
kprobe_fault_handler(args->regs, args->trapnr))
return NOTIFY_STOP;
break;
case DIE_PAGE_FAULT:
if (kprobe_running() &&
kprobe_fault_handler(args->regs, args->trapnr))
return NOTIFY_STOP;
break;
default:
break;
}
return NOTIFY_DONE;
}
asmlinkage void kprobe_trap(unsigned long trap_level, struct pt_regs *regs)
{
BUG_ON(trap_level != 0x170 && trap_level != 0x171);
if (user_mode(regs)) {
local_irq_enable();
bad_trap(regs, trap_level);
return;
}
/* trap_level == 0x170 --> ta 0x70
* trap_level == 0x171 --> ta 0x71
*/
if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
(trap_level == 0x170) ? "debug" : "debug_2",
regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
bad_trap(regs, trap_level);
}
/* Jprobes support. */
static struct pt_regs jprobe_saved_regs;
static struct pt_regs *jprobe_saved_regs_location;
static struct sparc_stackf jprobe_saved_stack;
int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
struct jprobe *jp = container_of(p, struct jprobe, kp);
jprobe_saved_regs_location = regs;
memcpy(&jprobe_saved_regs, regs, sizeof(*regs));
/* Save a whole stack frame, this gets arguments
* pushed onto the stack after using up all the
* arg registers.
*/
memcpy(&jprobe_saved_stack,
(char *) (regs->u_regs[UREG_FP] + STACK_BIAS),
sizeof(jprobe_saved_stack));
regs->tpc = (unsigned long) jp->entry;
regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
regs->tstate |= TSTATE_PIL;
return 1;
}
void jprobe_return(void)
{
preempt_enable_no_resched();
__asm__ __volatile__(
".globl jprobe_return_trap_instruction\n"
"jprobe_return_trap_instruction:\n\t"
"ta 0x70");
}
extern void jprobe_return_trap_instruction(void);
extern void __show_regs(struct pt_regs * regs);
int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
{
u32 *addr = (u32 *) regs->tpc;
if (addr == (u32 *) jprobe_return_trap_instruction) {
if (jprobe_saved_regs_location != regs) {
printk("JPROBE: Current regs (%p) does not match "
"saved regs (%p).\n",
regs, jprobe_saved_regs_location);
printk("JPROBE: Saved registers\n");
__show_regs(jprobe_saved_regs_location);
printk("JPROBE: Current registers\n");
__show_regs(regs);
BUG();
}
/* Restore old register state. Do pt_regs
* first so that UREG_FP is the original one for
* the stack frame restore.
*/
memcpy(regs, &jprobe_saved_regs, sizeof(*regs));
memcpy((char *) (regs->u_regs[UREG_FP] + STACK_BIAS),
&jprobe_saved_stack,
sizeof(jprobe_saved_stack));
return 1;
}
return 0;
}
/* architecture specific initialization */
int arch_init_kprobes(void)
{
return 0;
}