android_kernel_xiaomi_sm8350/drivers/message/i2o/i2o_block.c

1249 lines
31 KiB
C
Raw Normal View History

/*
* Block OSM
*
* Copyright (C) 1999-2002 Red Hat Software
*
* Written by Alan Cox, Building Number Three Ltd
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* For the purpose of avoiding doubt the preferred form of the work
* for making modifications shall be a standards compliant form such
* gzipped tar and not one requiring a proprietary or patent encumbered
* tool to unpack.
*
* Fixes/additions:
* Steve Ralston:
* Multiple device handling error fixes,
* Added a queue depth.
* Alan Cox:
* FC920 has an rmw bug. Dont or in the end marker.
* Removed queue walk, fixed for 64bitness.
* Rewrote much of the code over time
* Added indirect block lists
* Handle 64K limits on many controllers
* Don't use indirects on the Promise (breaks)
* Heavily chop down the queue depths
* Deepak Saxena:
* Independent queues per IOP
* Support for dynamic device creation/deletion
* Code cleanup
* Support for larger I/Os through merge* functions
* (taken from DAC960 driver)
* Boji T Kannanthanam:
* Set the I2O Block devices to be detected in increasing
* order of TIDs during boot.
* Search and set the I2O block device that we boot off
* from as the first device to be claimed (as /dev/i2o/hda)
* Properly attach/detach I2O gendisk structure from the
* system gendisk list. The I2O block devices now appear in
* /proc/partitions.
* Markus Lidel <Markus.Lidel@shadowconnect.com>:
* Minor bugfixes for 2.6.
*/
#include <linux/module.h>
#include <linux/i2o.h>
#include <linux/mempool.h>
#include <linux/genhd.h>
#include <linux/blkdev.h>
#include <linux/hdreg.h>
#include <scsi/scsi.h>
#include "i2o_block.h"
#define OSM_NAME "block-osm"
#define OSM_VERSION "1.325"
#define OSM_DESCRIPTION "I2O Block Device OSM"
static struct i2o_driver i2o_block_driver;
/* global Block OSM request mempool */
static struct i2o_block_mempool i2o_blk_req_pool;
/* Block OSM class handling definition */
static struct i2o_class_id i2o_block_class_id[] = {
{I2O_CLASS_RANDOM_BLOCK_STORAGE},
{I2O_CLASS_END}
};
/**
* i2o_block_device_free - free the memory of the I2O Block device
* @dev: I2O Block device, which should be cleaned up
*
* Frees the request queue, gendisk and the i2o_block_device structure.
*/
static void i2o_block_device_free(struct i2o_block_device *dev)
{
blk_cleanup_queue(dev->gd->queue);
put_disk(dev->gd);
kfree(dev);
};
/**
* i2o_block_remove - remove the I2O Block device from the system again
* @dev: I2O Block device which should be removed
*
* Remove gendisk from system and free all allocated memory.
*
* Always returns 0.
*/
static int i2o_block_remove(struct device *dev)
{
struct i2o_device *i2o_dev = to_i2o_device(dev);
struct i2o_block_device *i2o_blk_dev = dev_get_drvdata(dev);
osm_info("device removed (TID: %03x): %s\n", i2o_dev->lct_data.tid,
i2o_blk_dev->gd->disk_name);
i2o_event_register(i2o_dev, &i2o_block_driver, 0, 0);
del_gendisk(i2o_blk_dev->gd);
dev_set_drvdata(dev, NULL);
i2o_device_claim_release(i2o_dev);
i2o_block_device_free(i2o_blk_dev);
return 0;
};
/**
* i2o_block_device flush - Flush all dirty data of I2O device dev
* @dev: I2O device which should be flushed
*
* Flushes all dirty data on device dev.
*
* Returns 0 on success or negative error code on failure.
*/
static int i2o_block_device_flush(struct i2o_device *dev)
{
struct i2o_message *msg;
msg = i2o_msg_get_wait(dev->iop, I2O_TIMEOUT_MESSAGE_GET);
if (IS_ERR(msg))
return PTR_ERR(msg);
msg->u.head[0] = cpu_to_le32(FIVE_WORD_MSG_SIZE | SGL_OFFSET_0);
msg->u.head[1] =
cpu_to_le32(I2O_CMD_BLOCK_CFLUSH << 24 | HOST_TID << 12 | dev->
lct_data.tid);
msg->body[0] = cpu_to_le32(60 << 16);
osm_debug("Flushing...\n");
return i2o_msg_post_wait(dev->iop, msg, 60);
};
/**
* i2o_block_issue_flush - device-flush interface for block-layer
* @queue: the request queue of the device which should be flushed
* @disk: gendisk
* @error_sector: error offset
*
* Helper function to provide flush functionality to block-layer.
*
* Returns 0 on success or negative error code on failure.
*/
static int i2o_block_issue_flush(request_queue_t * queue, struct gendisk *disk,
sector_t * error_sector)
{
struct i2o_block_device *i2o_blk_dev = queue->queuedata;
int rc = -ENODEV;
if (likely(i2o_blk_dev))
rc = i2o_block_device_flush(i2o_blk_dev->i2o_dev);
return rc;
}
/**
* i2o_block_device_mount - Mount (load) the media of device dev
* @dev: I2O device which should receive the mount request
* @media_id: Media Identifier
*
* Load a media into drive. Identifier should be set to -1, because the
* spec does not support any other value.
*
* Returns 0 on success or negative error code on failure.
*/
static int i2o_block_device_mount(struct i2o_device *dev, u32 media_id)
{
struct i2o_message *msg;
msg = i2o_msg_get_wait(dev->iop, I2O_TIMEOUT_MESSAGE_GET);
if (IS_ERR(msg))
return PTR_ERR(msg);
msg->u.head[0] = cpu_to_le32(FIVE_WORD_MSG_SIZE | SGL_OFFSET_0);
msg->u.head[1] =
cpu_to_le32(I2O_CMD_BLOCK_MMOUNT << 24 | HOST_TID << 12 | dev->
lct_data.tid);
msg->body[0] = cpu_to_le32(-1);
msg->body[1] = cpu_to_le32(0x00000000);
osm_debug("Mounting...\n");
return i2o_msg_post_wait(dev->iop, msg, 2);
};
/**
* i2o_block_device_lock - Locks the media of device dev
* @dev: I2O device which should receive the lock request
* @media_id: Media Identifier
*
* Lock media of device dev to prevent removal. The media identifier
* should be set to -1, because the spec does not support any other value.
*
* Returns 0 on success or negative error code on failure.
*/
static int i2o_block_device_lock(struct i2o_device *dev, u32 media_id)
{
struct i2o_message *msg;
msg = i2o_msg_get_wait(dev->iop, I2O_TIMEOUT_MESSAGE_GET);
if (IS_ERR(msg) == I2O_QUEUE_EMPTY)
return PTR_ERR(msg);
msg->u.head[0] = cpu_to_le32(FIVE_WORD_MSG_SIZE | SGL_OFFSET_0);
msg->u.head[1] =
cpu_to_le32(I2O_CMD_BLOCK_MLOCK << 24 | HOST_TID << 12 | dev->
lct_data.tid);
msg->body[0] = cpu_to_le32(-1);
osm_debug("Locking...\n");
return i2o_msg_post_wait(dev->iop, msg, 2);
};
/**
* i2o_block_device_unlock - Unlocks the media of device dev
* @dev: I2O device which should receive the unlocked request
* @media_id: Media Identifier
*
* Unlocks the media in device dev. The media identifier should be set to
* -1, because the spec does not support any other value.
*
* Returns 0 on success or negative error code on failure.
*/
static int i2o_block_device_unlock(struct i2o_device *dev, u32 media_id)
{
struct i2o_message *msg;
msg = i2o_msg_get_wait(dev->iop, I2O_TIMEOUT_MESSAGE_GET);
if (IS_ERR(msg))
return PTR_ERR(msg);
msg->u.head[0] = cpu_to_le32(FIVE_WORD_MSG_SIZE | SGL_OFFSET_0);
msg->u.head[1] =
cpu_to_le32(I2O_CMD_BLOCK_MUNLOCK << 24 | HOST_TID << 12 | dev->
lct_data.tid);
msg->body[0] = cpu_to_le32(media_id);
osm_debug("Unlocking...\n");
return i2o_msg_post_wait(dev->iop, msg, 2);
};
/**
* i2o_block_device_power - Power management for device dev
* @dev: I2O device which should receive the power management request
* @operation: Operation which should be send
*
* Send a power management request to the device dev.
*
* Returns 0 on success or negative error code on failure.
*/
static int i2o_block_device_power(struct i2o_block_device *dev, u8 op)
{
struct i2o_device *i2o_dev = dev->i2o_dev;
struct i2o_controller *c = i2o_dev->iop;
struct i2o_message *msg;
int rc;
msg = i2o_msg_get_wait(c, I2O_TIMEOUT_MESSAGE_GET);
if (IS_ERR(msg))
return PTR_ERR(msg);
msg->u.head[0] = cpu_to_le32(FOUR_WORD_MSG_SIZE | SGL_OFFSET_0);
msg->u.head[1] =
cpu_to_le32(I2O_CMD_BLOCK_POWER << 24 | HOST_TID << 12 | i2o_dev->
lct_data.tid);
msg->body[0] = cpu_to_le32(op << 24);
osm_debug("Power...\n");
rc = i2o_msg_post_wait(c, msg, 60);
if (!rc)
dev->power = op;
return rc;
};
/**
* i2o_block_request_alloc - Allocate an I2O block request struct
*
* Allocates an I2O block request struct and initialize the list.
*
* Returns a i2o_block_request pointer on success or negative error code
* on failure.
*/
static inline struct i2o_block_request *i2o_block_request_alloc(void)
{
struct i2o_block_request *ireq;
ireq = mempool_alloc(i2o_blk_req_pool.pool, GFP_ATOMIC);
if (!ireq)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&ireq->queue);
return ireq;
};
/**
* i2o_block_request_free - Frees a I2O block request
* @ireq: I2O block request which should be freed
*
* Fres the allocated memory (give it back to the request mempool).
*/
static inline void i2o_block_request_free(struct i2o_block_request *ireq)
{
mempool_free(ireq, i2o_blk_req_pool.pool);
};
/**
* i2o_block_sglist_alloc - Allocate the SG list and map it
* @c: I2O controller to which the request belongs
* @ireq: I2O block request
*
* Builds the SG list and map it to be accessable by the controller.
*
* Returns 0 on failure or 1 on success.
*/
static inline int i2o_block_sglist_alloc(struct i2o_controller *c,
struct i2o_block_request *ireq,
u32 ** mptr)
{
int nents;
enum dma_data_direction direction;
ireq->dev = &c->pdev->dev;
nents = blk_rq_map_sg(ireq->req->q, ireq->req, ireq->sg_table);
if (rq_data_dir(ireq->req) == READ)
direction = PCI_DMA_FROMDEVICE;
else
direction = PCI_DMA_TODEVICE;
ireq->sg_nents = nents;
return i2o_dma_map_sg(c, ireq->sg_table, nents, direction, mptr);
};
/**
* i2o_block_sglist_free - Frees the SG list
* @ireq: I2O block request from which the SG should be freed
*
* Frees the SG list from the I2O block request.
*/
static inline void i2o_block_sglist_free(struct i2o_block_request *ireq)
{
enum dma_data_direction direction;
if (rq_data_dir(ireq->req) == READ)
direction = PCI_DMA_FROMDEVICE;
else
direction = PCI_DMA_TODEVICE;
dma_unmap_sg(ireq->dev, ireq->sg_table, ireq->sg_nents, direction);
};
/**
* i2o_block_prep_req_fn - Allocates I2O block device specific struct
* @q: request queue for the request
* @req: the request to prepare
*
* Allocate the necessary i2o_block_request struct and connect it to
* the request. This is needed that we not loose the SG list later on.
*
* Returns BLKPREP_OK on success or BLKPREP_DEFER on failure.
*/
static int i2o_block_prep_req_fn(struct request_queue *q, struct request *req)
{
struct i2o_block_device *i2o_blk_dev = q->queuedata;
struct i2o_block_request *ireq;
if (unlikely(!i2o_blk_dev)) {
osm_err("block device already removed\n");
return BLKPREP_KILL;
}
/* request is already processed by us, so return */
if (req->flags & REQ_SPECIAL) {
osm_debug("REQ_SPECIAL already set!\n");
req->flags |= REQ_DONTPREP;
return BLKPREP_OK;
}
/* connect the i2o_block_request to the request */
if (!req->special) {
ireq = i2o_block_request_alloc();
if (unlikely(IS_ERR(ireq))) {
osm_debug("unable to allocate i2o_block_request!\n");
return BLKPREP_DEFER;
}
ireq->i2o_blk_dev = i2o_blk_dev;
req->special = ireq;
ireq->req = req;
} else
ireq = req->special;
/* do not come back here */
req->flags |= REQ_DONTPREP | REQ_SPECIAL;
return BLKPREP_OK;
};
/**
* i2o_block_delayed_request_fn - delayed request queue function
* delayed_request: the delayed request with the queue to start
*
* If the request queue is stopped for a disk, and there is no open
* request, a new event is created, which calls this function to start
* the queue after I2O_BLOCK_REQUEST_TIME. Otherwise the queue will never
* be started again.
*/
static void i2o_block_delayed_request_fn(void *delayed_request)
{
struct i2o_block_delayed_request *dreq = delayed_request;
struct request_queue *q = dreq->queue;
unsigned long flags;
spin_lock_irqsave(q->queue_lock, flags);
blk_start_queue(q);
spin_unlock_irqrestore(q->queue_lock, flags);
kfree(dreq);
};
/**
* i2o_block_end_request - Post-processing of completed commands
* @req: request which should be completed
* @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
* @nr_bytes: number of bytes to complete
*
* Mark the request as complete. The lock must not be held when entering.
*
*/
static void i2o_block_end_request(struct request *req, int uptodate,
int nr_bytes)
{
struct i2o_block_request *ireq = req->special;
struct i2o_block_device *dev = ireq->i2o_blk_dev;
request_queue_t *q = req->q;
unsigned long flags;
if (end_that_request_chunk(req, uptodate, nr_bytes)) {
int leftover = (req->hard_nr_sectors << KERNEL_SECTOR_SHIFT);
if (blk_pc_request(req))
leftover = req->data_len;
if (end_io_error(uptodate))
end_that_request_chunk(req, 0, leftover);
}
add_disk_randomness(req->rq_disk);
spin_lock_irqsave(q->queue_lock, flags);
end_that_request_last(req, uptodate);
if (likely(dev)) {
dev->open_queue_depth--;
list_del(&ireq->queue);
}
blk_start_queue(q);
spin_unlock_irqrestore(q->queue_lock, flags);
i2o_block_sglist_free(ireq);
i2o_block_request_free(ireq);
};
/**
* i2o_block_reply - Block OSM reply handler.
* @c: I2O controller from which the message arrives
* @m: message id of reply
* qmsg: the actuall I2O message reply
*
* This function gets all the message replies.
*
*/
static int i2o_block_reply(struct i2o_controller *c, u32 m,
struct i2o_message *msg)
{
struct request *req;
int uptodate = 1;
req = i2o_cntxt_list_get(c, le32_to_cpu(msg->u.s.tcntxt));
if (unlikely(!req)) {
osm_err("NULL reply received!\n");
return -1;
}
/*
* Lets see what is cooking. We stuffed the
* request in the context.
*/
if ((le32_to_cpu(msg->body[0]) >> 24) != 0) {
u32 status = le32_to_cpu(msg->body[0]);
/*
* Device not ready means two things. One is that the
* the thing went offline (but not a removal media)
*
* The second is that you have a SuperTrak 100 and the
* firmware got constipated. Unlike standard i2o card
* setups the supertrak returns an error rather than
* blocking for the timeout in these cases.
*
* Don't stick a supertrak100 into cache aggressive modes
*/
osm_err("TID %03x error status: 0x%02x, detailed status: "
"0x%04x\n", (le32_to_cpu(msg->u.head[1]) >> 12 & 0xfff),
status >> 24, status & 0xffff);
req->errors++;
uptodate = 0;
}
i2o_block_end_request(req, uptodate, le32_to_cpu(msg->body[1]));
return 1;
};
static void i2o_block_event(struct i2o_event *evt)
{
osm_debug("event received\n");
kfree(evt);
};
/*
* SCSI-CAM for ioctl geometry mapping
* Duplicated with SCSI - this should be moved into somewhere common
* perhaps genhd ?
*
* LBA -> CHS mapping table taken from:
*
* "Incorporating the I2O Architecture into BIOS for Intel Architecture
* Platforms"
*
* This is an I2O document that is only available to I2O members,
* not developers.
*
* From my understanding, this is how all the I2O cards do this
*
* Disk Size | Sectors | Heads | Cylinders
* ---------------+---------+-------+-------------------
* 1 < X <= 528M | 63 | 16 | X/(63 * 16 * 512)
* 528M < X <= 1G | 63 | 32 | X/(63 * 32 * 512)
* 1 < X <528M | 63 | 16 | X/(63 * 16 * 512)
* 1 < X <528M | 63 | 16 | X/(63 * 16 * 512)
*
*/
#define BLOCK_SIZE_528M 1081344
#define BLOCK_SIZE_1G 2097152
#define BLOCK_SIZE_21G 4403200
#define BLOCK_SIZE_42G 8806400
#define BLOCK_SIZE_84G 17612800
static void i2o_block_biosparam(unsigned long capacity, unsigned short *cyls,
unsigned char *hds, unsigned char *secs)
{
unsigned long heads, sectors, cylinders;
sectors = 63L; /* Maximize sectors per track */
if (capacity <= BLOCK_SIZE_528M)
heads = 16;
else if (capacity <= BLOCK_SIZE_1G)
heads = 32;
else if (capacity <= BLOCK_SIZE_21G)
heads = 64;
else if (capacity <= BLOCK_SIZE_42G)
heads = 128;
else
heads = 255;
cylinders = (unsigned long)capacity / (heads * sectors);
*cyls = (unsigned short)cylinders; /* Stuff return values */
*secs = (unsigned char)sectors;
*hds = (unsigned char)heads;
}
/**
* i2o_block_open - Open the block device
*
* Power up the device, mount and lock the media. This function is called,
* if the block device is opened for access.
*
* Returns 0 on success or negative error code on failure.
*/
static int i2o_block_open(struct inode *inode, struct file *file)
{
struct i2o_block_device *dev = inode->i_bdev->bd_disk->private_data;
if (!dev->i2o_dev)
return -ENODEV;
if (dev->power > 0x1f)
i2o_block_device_power(dev, 0x02);
i2o_block_device_mount(dev->i2o_dev, -1);
i2o_block_device_lock(dev->i2o_dev, -1);
osm_debug("Ready.\n");
return 0;
};
/**
* i2o_block_release - Release the I2O block device
*
* Unlock and unmount the media, and power down the device. Gets called if
* the block device is closed.
*
* Returns 0 on success or negative error code on failure.
*/
static int i2o_block_release(struct inode *inode, struct file *file)
{
struct gendisk *disk = inode->i_bdev->bd_disk;
struct i2o_block_device *dev = disk->private_data;
u8 operation;
/*
* This is to deail with the case of an application
* opening a device and then the device dissapears while
* it's in use, and then the application tries to release
* it. ex: Unmounting a deleted RAID volume at reboot.
* If we send messages, it will just cause FAILs since
* the TID no longer exists.
*/
if (!dev->i2o_dev)
return 0;
i2o_block_device_flush(dev->i2o_dev);
i2o_block_device_unlock(dev->i2o_dev, -1);
if (dev->flags & (1 << 3 | 1 << 4)) /* Removable */
operation = 0x21;
else
operation = 0x24;
i2o_block_device_power(dev, operation);
return 0;
}
static int i2o_block_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
i2o_block_biosparam(get_capacity(bdev->bd_disk),
&geo->cylinders, &geo->heads, &geo->sectors);
return 0;
}
/**
* i2o_block_ioctl - Issue device specific ioctl calls.
* @cmd: ioctl command
* @arg: arg
*
* Handles ioctl request for the block device.
*
* Return 0 on success or negative error on failure.
*/
static int i2o_block_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct gendisk *disk = inode->i_bdev->bd_disk;
struct i2o_block_device *dev = disk->private_data;
/* Anyone capable of this syscall can do *real bad* things */
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
switch (cmd) {
case BLKI2OGRSTRAT:
return put_user(dev->rcache, (int __user *)arg);
case BLKI2OGWSTRAT:
return put_user(dev->wcache, (int __user *)arg);
case BLKI2OSRSTRAT:
if (arg < 0 || arg > CACHE_SMARTFETCH)
return -EINVAL;
dev->rcache = arg;
break;
case BLKI2OSWSTRAT:
if (arg != 0
&& (arg < CACHE_WRITETHROUGH || arg > CACHE_SMARTBACK))
return -EINVAL;
dev->wcache = arg;
break;
}
return -ENOTTY;
};
/**
* i2o_block_media_changed - Have we seen a media change?
* @disk: gendisk which should be verified
*
* Verifies if the media has changed.
*
* Returns 1 if the media was changed or 0 otherwise.
*/
static int i2o_block_media_changed(struct gendisk *disk)
{
struct i2o_block_device *p = disk->private_data;
if (p->media_change_flag) {
p->media_change_flag = 0;
return 1;
}
return 0;
}
/**
* i2o_block_transfer - Transfer a request to/from the I2O controller
* @req: the request which should be transfered
*
* This function converts the request into a I2O message. The necessary
* DMA buffers are allocated and after everything is setup post the message
* to the I2O controller. No cleanup is done by this function. It is done
* on the interrupt side when the reply arrives.
*
* Return 0 on success or negative error code on failure.
*/
static int i2o_block_transfer(struct request *req)
{
struct i2o_block_device *dev = req->rq_disk->private_data;
struct i2o_controller *c;
int tid = dev->i2o_dev->lct_data.tid;
struct i2o_message *msg;
u32 *mptr;
struct i2o_block_request *ireq = req->special;
u32 tcntxt;
u32 sgl_offset = SGL_OFFSET_8;
u32 ctl_flags = 0x00000000;
int rc;
u32 cmd;
if (unlikely(!dev->i2o_dev)) {
osm_err("transfer to removed drive\n");
rc = -ENODEV;
goto exit;
}
c = dev->i2o_dev->iop;
msg = i2o_msg_get(c);
if (IS_ERR(msg)) {
rc = PTR_ERR(msg);
goto exit;
}
tcntxt = i2o_cntxt_list_add(c, req);
if (!tcntxt) {
rc = -ENOMEM;
goto nop_msg;
}
msg->u.s.icntxt = cpu_to_le32(i2o_block_driver.context);
msg->u.s.tcntxt = cpu_to_le32(tcntxt);
mptr = &msg->body[0];
if (rq_data_dir(req) == READ) {
cmd = I2O_CMD_BLOCK_READ << 24;
switch (dev->rcache) {
case CACHE_PREFETCH:
ctl_flags = 0x201F0008;
break;
case CACHE_SMARTFETCH:
if (req->nr_sectors > 16)
ctl_flags = 0x201F0008;
else
ctl_flags = 0x001F0000;
break;
default:
break;
}
} else {
cmd = I2O_CMD_BLOCK_WRITE << 24;
switch (dev->wcache) {
case CACHE_WRITETHROUGH:
ctl_flags = 0x001F0008;
break;
case CACHE_WRITEBACK:
ctl_flags = 0x001F0010;
break;
case CACHE_SMARTBACK:
if (req->nr_sectors > 16)
ctl_flags = 0x001F0004;
else
ctl_flags = 0x001F0010;
break;
case CACHE_SMARTTHROUGH:
if (req->nr_sectors > 16)
ctl_flags = 0x001F0004;
else
ctl_flags = 0x001F0010;
default:
break;
}
}
#ifdef CONFIG_I2O_EXT_ADAPTEC
if (c->adaptec) {
u8 cmd[10];
u32 scsi_flags;
u16 hwsec = queue_hardsect_size(req->q) >> KERNEL_SECTOR_SHIFT;
memset(cmd, 0, 10);
sgl_offset = SGL_OFFSET_12;
msg->u.head[1] =
cpu_to_le32(I2O_CMD_PRIVATE << 24 | HOST_TID << 12 | tid);
*mptr++ = cpu_to_le32(I2O_VENDOR_DPT << 16 | I2O_CMD_SCSI_EXEC);
*mptr++ = cpu_to_le32(tid);
/*
* ENABLE_DISCONNECT
* SIMPLE_TAG
* RETURN_SENSE_DATA_IN_REPLY_MESSAGE_FRAME
*/
if (rq_data_dir(req) == READ) {
cmd[0] = READ_10;
scsi_flags = 0x60a0000a;
} else {
cmd[0] = WRITE_10;
scsi_flags = 0xa0a0000a;
}
*mptr++ = cpu_to_le32(scsi_flags);
*((u32 *) & cmd[2]) = cpu_to_be32(req->sector * hwsec);
*((u16 *) & cmd[7]) = cpu_to_be16(req->nr_sectors * hwsec);
memcpy(mptr, cmd, 10);
mptr += 4;
*mptr++ = cpu_to_le32(req->nr_sectors << KERNEL_SECTOR_SHIFT);
} else
#endif
{
msg->u.head[1] = cpu_to_le32(cmd | HOST_TID << 12 | tid);
*mptr++ = cpu_to_le32(ctl_flags);
*mptr++ = cpu_to_le32(req->nr_sectors << KERNEL_SECTOR_SHIFT);
*mptr++ =
cpu_to_le32((u32) (req->sector << KERNEL_SECTOR_SHIFT));
*mptr++ =
cpu_to_le32(req->sector >> (32 - KERNEL_SECTOR_SHIFT));
}
if (!i2o_block_sglist_alloc(c, ireq, &mptr)) {
rc = -ENOMEM;
goto context_remove;
}
msg->u.head[0] =
cpu_to_le32(I2O_MESSAGE_SIZE(mptr - &msg->u.head[0]) | sgl_offset);
list_add_tail(&ireq->queue, &dev->open_queue);
dev->open_queue_depth++;
i2o_msg_post(c, msg);
return 0;
context_remove:
i2o_cntxt_list_remove(c, req);
nop_msg:
i2o_msg_nop(c, msg);
exit:
return rc;
};
/**
* i2o_block_request_fn - request queue handling function
* q: request queue from which the request could be fetched
*
* Takes the next request from the queue, transfers it and if no error
* occurs dequeue it from the queue. On arrival of the reply the message
* will be processed further. If an error occurs requeue the request.
*/
static void i2o_block_request_fn(struct request_queue *q)
{
struct request *req;
while (!blk_queue_plugged(q)) {
req = elv_next_request(q);
if (!req)
break;
if (blk_fs_request(req)) {
struct i2o_block_delayed_request *dreq;
struct i2o_block_request *ireq = req->special;
unsigned int queue_depth;
queue_depth = ireq->i2o_blk_dev->open_queue_depth;
if (queue_depth < I2O_BLOCK_MAX_OPEN_REQUESTS) {
if (!i2o_block_transfer(req)) {
blkdev_dequeue_request(req);
continue;
} else
osm_info("transfer error\n");
}
if (queue_depth)
break;
/* stop the queue and retry later */
dreq = kmalloc(sizeof(*dreq), GFP_ATOMIC);
if (!dreq)
continue;
dreq->queue = q;
INIT_WORK(&dreq->work, i2o_block_delayed_request_fn,
dreq);
if (!queue_delayed_work(i2o_block_driver.event_queue,
&dreq->work,
I2O_BLOCK_RETRY_TIME))
kfree(dreq);
else {
blk_stop_queue(q);
break;
}
} else
end_request(req, 0);
}
};
/* I2O Block device operations definition */
static struct block_device_operations i2o_block_fops = {
.owner = THIS_MODULE,
.open = i2o_block_open,
.release = i2o_block_release,
.ioctl = i2o_block_ioctl,
.getgeo = i2o_block_getgeo,
.media_changed = i2o_block_media_changed
};
/**
* i2o_block_device_alloc - Allocate memory for a I2O Block device
*
* Allocate memory for the i2o_block_device struct, gendisk and request
* queue and initialize them as far as no additional information is needed.
*
* Returns a pointer to the allocated I2O Block device on succes or a
* negative error code on failure.
*/
static struct i2o_block_device *i2o_block_device_alloc(void)
{
struct i2o_block_device *dev;
struct gendisk *gd;
struct request_queue *queue;
int rc;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev) {
osm_err("Insufficient memory to allocate I2O Block disk.\n");
rc = -ENOMEM;
goto exit;
}
INIT_LIST_HEAD(&dev->open_queue);
spin_lock_init(&dev->lock);
dev->rcache = CACHE_PREFETCH;
dev->wcache = CACHE_WRITEBACK;
/* allocate a gendisk with 16 partitions */
gd = alloc_disk(16);
if (!gd) {
osm_err("Insufficient memory to allocate gendisk.\n");
rc = -ENOMEM;
goto cleanup_dev;
}
/* initialize the request queue */
queue = blk_init_queue(i2o_block_request_fn, &dev->lock);
if (!queue) {
osm_err("Insufficient memory to allocate request queue.\n");
rc = -ENOMEM;
goto cleanup_queue;
}
blk_queue_prep_rq(queue, i2o_block_prep_req_fn);
blk_queue_issue_flush_fn(queue, i2o_block_issue_flush);
gd->major = I2O_MAJOR;
gd->queue = queue;
gd->fops = &i2o_block_fops;
gd->private_data = dev;
dev->gd = gd;
return dev;
cleanup_queue:
put_disk(gd);
cleanup_dev:
kfree(dev);
exit:
return ERR_PTR(rc);
};
/**
* i2o_block_probe - verify if dev is a I2O Block device and install it
* @dev: device to verify if it is a I2O Block device
*
* We only verify if the user_tid of the device is 0xfff and then install
* the device. Otherwise it is used by some other device (e. g. RAID).
*
* Returns 0 on success or negative error code on failure.
*/
static int i2o_block_probe(struct device *dev)
{
struct i2o_device *i2o_dev = to_i2o_device(dev);
struct i2o_controller *c = i2o_dev->iop;
struct i2o_block_device *i2o_blk_dev;
struct gendisk *gd;
struct request_queue *queue;
static int unit = 0;
int rc;
u64 size;
u32 blocksize;
u16 body_size = 4;
u16 power;
unsigned short max_sectors;
#ifdef CONFIG_I2O_EXT_ADAPTEC
if (c->adaptec)
body_size = 8;
#endif
if (c->limit_sectors)
max_sectors = I2O_MAX_SECTORS_LIMITED;
else
max_sectors = I2O_MAX_SECTORS;
/* skip devices which are used by IOP */
if (i2o_dev->lct_data.user_tid != 0xfff) {
osm_debug("skipping used device %03x\n", i2o_dev->lct_data.tid);
return -ENODEV;
}
if (i2o_device_claim(i2o_dev)) {
osm_warn("Unable to claim device. Installation aborted\n");
rc = -EFAULT;
goto exit;
}
i2o_blk_dev = i2o_block_device_alloc();
if (IS_ERR(i2o_blk_dev)) {
osm_err("could not alloc a new I2O block device");
rc = PTR_ERR(i2o_blk_dev);
goto claim_release;
}
i2o_blk_dev->i2o_dev = i2o_dev;
dev_set_drvdata(dev, i2o_blk_dev);
/* setup gendisk */
gd = i2o_blk_dev->gd;
gd->first_minor = unit << 4;
sprintf(gd->disk_name, "i2o/hd%c", 'a' + unit);
sprintf(gd->devfs_name, "i2o/hd%c", 'a' + unit);
gd->driverfs_dev = &i2o_dev->device;
/* setup request queue */
queue = gd->queue;
queue->queuedata = i2o_blk_dev;
blk_queue_max_phys_segments(queue, I2O_MAX_PHYS_SEGMENTS);
blk_queue_max_sectors(queue, max_sectors);
blk_queue_max_hw_segments(queue, i2o_sg_tablesize(c, body_size));
osm_debug("max sectors = %d\n", queue->max_phys_segments);
osm_debug("phys segments = %d\n", queue->max_sectors);
osm_debug("max hw segments = %d\n", queue->max_hw_segments);
/*
* Ask for the current media data. If that isn't supported
* then we ask for the device capacity data
*/
if (!i2o_parm_field_get(i2o_dev, 0x0004, 1, &blocksize, 4) ||
!i2o_parm_field_get(i2o_dev, 0x0000, 3, &blocksize, 4)) {
blk_queue_hardsect_size(queue, le32_to_cpu(blocksize));
} else
osm_warn("unable to get blocksize of %s\n", gd->disk_name);
if (!i2o_parm_field_get(i2o_dev, 0x0004, 0, &size, 8) ||
!i2o_parm_field_get(i2o_dev, 0x0000, 4, &size, 8)) {
set_capacity(gd, le64_to_cpu(size) >> KERNEL_SECTOR_SHIFT);
} else
osm_warn("could not get size of %s\n", gd->disk_name);
if (!i2o_parm_field_get(i2o_dev, 0x0000, 2, &power, 2))
i2o_blk_dev->power = power;
i2o_event_register(i2o_dev, &i2o_block_driver, 0, 0xffffffff);
add_disk(gd);
unit++;
osm_info("device added (TID: %03x): %s\n", i2o_dev->lct_data.tid,
i2o_blk_dev->gd->disk_name);
return 0;
claim_release:
i2o_device_claim_release(i2o_dev);
exit:
return rc;
};
/* Block OSM driver struct */
static struct i2o_driver i2o_block_driver = {
.name = OSM_NAME,
.event = i2o_block_event,
.reply = i2o_block_reply,
.classes = i2o_block_class_id,
.driver = {
.probe = i2o_block_probe,
.remove = i2o_block_remove,
},
};
/**
* i2o_block_init - Block OSM initialization function
*
* Allocate the slab and mempool for request structs, registers i2o_block
* block device and finally register the Block OSM in the I2O core.
*
* Returns 0 on success or negative error code on failure.
*/
static int __init i2o_block_init(void)
{
int rc;
int size;
printk(KERN_INFO OSM_DESCRIPTION " v" OSM_VERSION "\n");
/* Allocate request mempool and slab */
size = sizeof(struct i2o_block_request);
i2o_blk_req_pool.slab = kmem_cache_create("i2o_block_req", size, 0,
SLAB_HWCACHE_ALIGN, NULL,
NULL);
if (!i2o_blk_req_pool.slab) {
osm_err("can't init request slab\n");
rc = -ENOMEM;
goto exit;
}
i2o_blk_req_pool.pool =
mempool_create_slab_pool(I2O_BLOCK_REQ_MEMPOOL_SIZE,
i2o_blk_req_pool.slab);
if (!i2o_blk_req_pool.pool) {
osm_err("can't init request mempool\n");
rc = -ENOMEM;
goto free_slab;
}
/* Register the block device interfaces */
rc = register_blkdev(I2O_MAJOR, "i2o_block");
if (rc) {
osm_err("unable to register block device\n");
goto free_mempool;
}
#ifdef MODULE
osm_info("registered device at major %d\n", I2O_MAJOR);
#endif
/* Register Block OSM into I2O core */
rc = i2o_driver_register(&i2o_block_driver);
if (rc) {
osm_err("Could not register Block driver\n");
goto unregister_blkdev;
}
return 0;
unregister_blkdev:
unregister_blkdev(I2O_MAJOR, "i2o_block");
free_mempool:
mempool_destroy(i2o_blk_req_pool.pool);
free_slab:
kmem_cache_destroy(i2o_blk_req_pool.slab);
exit:
return rc;
};
/**
* i2o_block_exit - Block OSM exit function
*
* Unregisters Block OSM from I2O core, unregisters i2o_block block device
* and frees the mempool and slab.
*/
static void __exit i2o_block_exit(void)
{
/* Unregister I2O Block OSM from I2O core */
i2o_driver_unregister(&i2o_block_driver);
/* Unregister block device */
unregister_blkdev(I2O_MAJOR, "i2o_block");
/* Free request mempool and slab */
mempool_destroy(i2o_blk_req_pool.pool);
kmem_cache_destroy(i2o_blk_req_pool.slab);
};
MODULE_AUTHOR("Red Hat");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION(OSM_DESCRIPTION);
MODULE_VERSION(OSM_VERSION);
module_init(i2o_block_init);
module_exit(i2o_block_exit);