android_kernel_xiaomi_sm8350/security/security.c

1083 lines
27 KiB
C
Raw Normal View History

/*
* Security plug functions
*
* Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
* Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
* Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/capability.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/security.h>
/* things that live in dummy.c */
extern struct security_operations dummy_security_ops;
extern void security_fixup_ops(struct security_operations *ops);
struct security_operations *security_ops; /* Initialized to NULL */
unsigned long mmap_min_addr; /* 0 means no protection */
static inline int verify(struct security_operations *ops)
{
/* verify the security_operations structure exists */
if (!ops)
return -EINVAL;
security_fixup_ops(ops);
return 0;
}
static void __init do_security_initcalls(void)
{
initcall_t *call;
call = __security_initcall_start;
while (call < __security_initcall_end) {
(*call) ();
call++;
}
}
/**
* security_init - initializes the security framework
*
* This should be called early in the kernel initialization sequence.
*/
int __init security_init(void)
{
printk(KERN_INFO "Security Framework initialized\n");
if (verify(&dummy_security_ops)) {
printk(KERN_ERR "%s could not verify "
"dummy_security_ops structure.\n", __FUNCTION__);
return -EIO;
}
security_ops = &dummy_security_ops;
do_security_initcalls();
return 0;
}
/**
* register_security - registers a security framework with the kernel
* @ops: a pointer to the struct security_options that is to be registered
*
* This function is to allow a security module to register itself with the
* kernel security subsystem. Some rudimentary checking is done on the @ops
* value passed to this function.
*
* If there is already a security module registered with the kernel,
* an error will be returned. Otherwise 0 is returned on success.
*/
int register_security(struct security_operations *ops)
{
if (verify(ops)) {
printk(KERN_DEBUG "%s could not verify "
"security_operations structure.\n", __FUNCTION__);
return -EINVAL;
}
if (security_ops != &dummy_security_ops)
return -EAGAIN;
security_ops = ops;
return 0;
}
/**
* mod_reg_security - allows security modules to be "stacked"
* @name: a pointer to a string with the name of the security_options to be registered
* @ops: a pointer to the struct security_options that is to be registered
*
* This function allows security modules to be stacked if the currently loaded
* security module allows this to happen. It passes the @name and @ops to the
* register_security function of the currently loaded security module.
*
* The return value depends on the currently loaded security module, with 0 as
* success.
*/
int mod_reg_security(const char *name, struct security_operations *ops)
{
if (verify(ops)) {
printk(KERN_INFO "%s could not verify "
"security operations.\n", __FUNCTION__);
return -EINVAL;
}
if (ops == security_ops) {
printk(KERN_INFO "%s security operations "
"already registered.\n", __FUNCTION__);
return -EINVAL;
}
return security_ops->register_security(name, ops);
}
/* Security operations */
int security_ptrace(struct task_struct *parent, struct task_struct *child)
{
return security_ops->ptrace(parent, child);
}
int security_capget(struct task_struct *target,
kernel_cap_t *effective,
kernel_cap_t *inheritable,
kernel_cap_t *permitted)
{
return security_ops->capget(target, effective, inheritable, permitted);
}
int security_capset_check(struct task_struct *target,
kernel_cap_t *effective,
kernel_cap_t *inheritable,
kernel_cap_t *permitted)
{
return security_ops->capset_check(target, effective, inheritable, permitted);
}
void security_capset_set(struct task_struct *target,
kernel_cap_t *effective,
kernel_cap_t *inheritable,
kernel_cap_t *permitted)
{
security_ops->capset_set(target, effective, inheritable, permitted);
}
int security_capable(struct task_struct *tsk, int cap)
{
return security_ops->capable(tsk, cap);
}
int security_acct(struct file *file)
{
return security_ops->acct(file);
}
int security_sysctl(struct ctl_table *table, int op)
{
return security_ops->sysctl(table, op);
}
int security_quotactl(int cmds, int type, int id, struct super_block *sb)
{
return security_ops->quotactl(cmds, type, id, sb);
}
int security_quota_on(struct dentry *dentry)
{
return security_ops->quota_on(dentry);
}
int security_syslog(int type)
{
return security_ops->syslog(type);
}
int security_settime(struct timespec *ts, struct timezone *tz)
{
return security_ops->settime(ts, tz);
}
int security_vm_enough_memory(long pages)
{
return security_ops->vm_enough_memory(current->mm, pages);
}
int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
{
return security_ops->vm_enough_memory(mm, pages);
}
int security_bprm_alloc(struct linux_binprm *bprm)
{
return security_ops->bprm_alloc_security(bprm);
}
void security_bprm_free(struct linux_binprm *bprm)
{
security_ops->bprm_free_security(bprm);
}
void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
{
security_ops->bprm_apply_creds(bprm, unsafe);
}
void security_bprm_post_apply_creds(struct linux_binprm *bprm)
{
security_ops->bprm_post_apply_creds(bprm);
}
int security_bprm_set(struct linux_binprm *bprm)
{
return security_ops->bprm_set_security(bprm);
}
int security_bprm_check(struct linux_binprm *bprm)
{
return security_ops->bprm_check_security(bprm);
}
int security_bprm_secureexec(struct linux_binprm *bprm)
{
return security_ops->bprm_secureexec(bprm);
}
int security_sb_alloc(struct super_block *sb)
{
return security_ops->sb_alloc_security(sb);
}
void security_sb_free(struct super_block *sb)
{
security_ops->sb_free_security(sb);
}
int security_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
{
return security_ops->sb_copy_data(type, orig, copy);
}
int security_sb_kern_mount(struct super_block *sb, void *data)
{
return security_ops->sb_kern_mount(sb, data);
}
int security_sb_statfs(struct dentry *dentry)
{
return security_ops->sb_statfs(dentry);
}
int security_sb_mount(char *dev_name, struct nameidata *nd,
char *type, unsigned long flags, void *data)
{
return security_ops->sb_mount(dev_name, nd, type, flags, data);
}
int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd)
{
return security_ops->sb_check_sb(mnt, nd);
}
int security_sb_umount(struct vfsmount *mnt, int flags)
{
return security_ops->sb_umount(mnt, flags);
}
void security_sb_umount_close(struct vfsmount *mnt)
{
security_ops->sb_umount_close(mnt);
}
void security_sb_umount_busy(struct vfsmount *mnt)
{
security_ops->sb_umount_busy(mnt);
}
void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
{
security_ops->sb_post_remount(mnt, flags, data);
}
void security_sb_post_mountroot(void)
{
security_ops->sb_post_mountroot();
}
void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd)
{
security_ops->sb_post_addmount(mnt, mountpoint_nd);
}
int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
{
return security_ops->sb_pivotroot(old_nd, new_nd);
}
void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
{
security_ops->sb_post_pivotroot(old_nd, new_nd);
}
int security_inode_alloc(struct inode *inode)
{
inode->i_security = NULL;
return security_ops->inode_alloc_security(inode);
}
void security_inode_free(struct inode *inode)
{
security_ops->inode_free_security(inode);
}
int security_inode_init_security(struct inode *inode, struct inode *dir,
char **name, void **value, size_t *len)
{
if (unlikely(IS_PRIVATE(inode)))
return -EOPNOTSUPP;
return security_ops->inode_init_security(inode, dir, name, value, len);
}
EXPORT_SYMBOL(security_inode_init_security);
int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return security_ops->inode_create(dir, dentry, mode);
}
int security_inode_link(struct dentry *old_dentry, struct inode *dir,
struct dentry *new_dentry)
{
if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
return 0;
return security_ops->inode_link(old_dentry, dir, new_dentry);
}
int security_inode_unlink(struct inode *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_unlink(dir, dentry);
}
int security_inode_symlink(struct inode *dir, struct dentry *dentry,
const char *old_name)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return security_ops->inode_symlink(dir, dentry, old_name);
}
int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return security_ops->inode_mkdir(dir, dentry, mode);
}
int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_rmdir(dir, dentry);
}
int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return security_ops->inode_mknod(dir, dentry, mode, dev);
}
int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry)
{
if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
(new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
return 0;
return security_ops->inode_rename(old_dir, old_dentry,
new_dir, new_dentry);
}
int security_inode_readlink(struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_readlink(dentry);
}
int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_follow_link(dentry, nd);
}
int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
{
if (unlikely(IS_PRIVATE(inode)))
return 0;
return security_ops->inode_permission(inode, mask, nd);
}
int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_setattr(dentry, attr);
}
int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_getattr(mnt, dentry);
}
void security_inode_delete(struct inode *inode)
{
if (unlikely(IS_PRIVATE(inode)))
return;
security_ops->inode_delete(inode);
}
int security_inode_setxattr(struct dentry *dentry, char *name,
void *value, size_t size, int flags)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_setxattr(dentry, name, value, size, flags);
}
void security_inode_post_setxattr(struct dentry *dentry, char *name,
void *value, size_t size, int flags)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return;
security_ops->inode_post_setxattr(dentry, name, value, size, flags);
}
int security_inode_getxattr(struct dentry *dentry, char *name)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_getxattr(dentry, name);
}
int security_inode_listxattr(struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_listxattr(dentry);
}
int security_inode_removexattr(struct dentry *dentry, char *name)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_removexattr(dentry, name);
}
Implement file posix capabilities Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 02:31:36 -04:00
int security_inode_need_killpriv(struct dentry *dentry)
{
return security_ops->inode_need_killpriv(dentry);
}
int security_inode_killpriv(struct dentry *dentry)
{
return security_ops->inode_killpriv(dentry);
}
int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
{
if (unlikely(IS_PRIVATE(inode)))
return 0;
return security_ops->inode_getsecurity(inode, name, buffer, size, err);
}
int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
{
if (unlikely(IS_PRIVATE(inode)))
return 0;
return security_ops->inode_setsecurity(inode, name, value, size, flags);
}
int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
{
if (unlikely(IS_PRIVATE(inode)))
return 0;
return security_ops->inode_listsecurity(inode, buffer, buffer_size);
}
int security_file_permission(struct file *file, int mask)
{
return security_ops->file_permission(file, mask);
}
int security_file_alloc(struct file *file)
{
return security_ops->file_alloc_security(file);
}
void security_file_free(struct file *file)
{
security_ops->file_free_security(file);
}
int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
return security_ops->file_ioctl(file, cmd, arg);
}
int security_file_mmap(struct file *file, unsigned long reqprot,
unsigned long prot, unsigned long flags,
unsigned long addr, unsigned long addr_only)
{
return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
}
int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
unsigned long prot)
{
return security_ops->file_mprotect(vma, reqprot, prot);
}
int security_file_lock(struct file *file, unsigned int cmd)
{
return security_ops->file_lock(file, cmd);
}
int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
{
return security_ops->file_fcntl(file, cmd, arg);
}
int security_file_set_fowner(struct file *file)
{
return security_ops->file_set_fowner(file);
}
int security_file_send_sigiotask(struct task_struct *tsk,
struct fown_struct *fown, int sig)
{
return security_ops->file_send_sigiotask(tsk, fown, sig);
}
int security_file_receive(struct file *file)
{
return security_ops->file_receive(file);
}
int security_dentry_open(struct file *file)
{
return security_ops->dentry_open(file);
}
int security_task_create(unsigned long clone_flags)
{
return security_ops->task_create(clone_flags);
}
int security_task_alloc(struct task_struct *p)
{
return security_ops->task_alloc_security(p);
}
void security_task_free(struct task_struct *p)
{
security_ops->task_free_security(p);
}
int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
{
return security_ops->task_setuid(id0, id1, id2, flags);
}
int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
uid_t old_suid, int flags)
{
return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
}
int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
{
return security_ops->task_setgid(id0, id1, id2, flags);
}
int security_task_setpgid(struct task_struct *p, pid_t pgid)
{
return security_ops->task_setpgid(p, pgid);
}
int security_task_getpgid(struct task_struct *p)
{
return security_ops->task_getpgid(p);
}
int security_task_getsid(struct task_struct *p)
{
return security_ops->task_getsid(p);
}
void security_task_getsecid(struct task_struct *p, u32 *secid)
{
security_ops->task_getsecid(p, secid);
}
EXPORT_SYMBOL(security_task_getsecid);
int security_task_setgroups(struct group_info *group_info)
{
return security_ops->task_setgroups(group_info);
}
int security_task_setnice(struct task_struct *p, int nice)
{
return security_ops->task_setnice(p, nice);
}
int security_task_setioprio(struct task_struct *p, int ioprio)
{
return security_ops->task_setioprio(p, ioprio);
}
int security_task_getioprio(struct task_struct *p)
{
return security_ops->task_getioprio(p);
}
int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
{
return security_ops->task_setrlimit(resource, new_rlim);
}
int security_task_setscheduler(struct task_struct *p,
int policy, struct sched_param *lp)
{
return security_ops->task_setscheduler(p, policy, lp);
}
int security_task_getscheduler(struct task_struct *p)
{
return security_ops->task_getscheduler(p);
}
int security_task_movememory(struct task_struct *p)
{
return security_ops->task_movememory(p);
}
int security_task_kill(struct task_struct *p, struct siginfo *info,
int sig, u32 secid)
{
return security_ops->task_kill(p, info, sig, secid);
}
int security_task_wait(struct task_struct *p)
{
return security_ops->task_wait(p);
}
int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
unsigned long arg4, unsigned long arg5)
{
return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
}
void security_task_reparent_to_init(struct task_struct *p)
{
security_ops->task_reparent_to_init(p);
}
void security_task_to_inode(struct task_struct *p, struct inode *inode)
{
security_ops->task_to_inode(p, inode);
}
int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
{
return security_ops->ipc_permission(ipcp, flag);
}
int security_msg_msg_alloc(struct msg_msg *msg)
{
return security_ops->msg_msg_alloc_security(msg);
}
void security_msg_msg_free(struct msg_msg *msg)
{
security_ops->msg_msg_free_security(msg);
}
int security_msg_queue_alloc(struct msg_queue *msq)
{
return security_ops->msg_queue_alloc_security(msq);
}
void security_msg_queue_free(struct msg_queue *msq)
{
security_ops->msg_queue_free_security(msq);
}
int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
{
return security_ops->msg_queue_associate(msq, msqflg);
}
int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
{
return security_ops->msg_queue_msgctl(msq, cmd);
}
int security_msg_queue_msgsnd(struct msg_queue *msq,
struct msg_msg *msg, int msqflg)
{
return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
}
int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
struct task_struct *target, long type, int mode)
{
return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
}
int security_shm_alloc(struct shmid_kernel *shp)
{
return security_ops->shm_alloc_security(shp);
}
void security_shm_free(struct shmid_kernel *shp)
{
security_ops->shm_free_security(shp);
}
int security_shm_associate(struct shmid_kernel *shp, int shmflg)
{
return security_ops->shm_associate(shp, shmflg);
}
int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
{
return security_ops->shm_shmctl(shp, cmd);
}
int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
{
return security_ops->shm_shmat(shp, shmaddr, shmflg);
}
int security_sem_alloc(struct sem_array *sma)
{
return security_ops->sem_alloc_security(sma);
}
void security_sem_free(struct sem_array *sma)
{
security_ops->sem_free_security(sma);
}
int security_sem_associate(struct sem_array *sma, int semflg)
{
return security_ops->sem_associate(sma, semflg);
}
int security_sem_semctl(struct sem_array *sma, int cmd)
{
return security_ops->sem_semctl(sma, cmd);
}
int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
unsigned nsops, int alter)
{
return security_ops->sem_semop(sma, sops, nsops, alter);
}
void security_d_instantiate(struct dentry *dentry, struct inode *inode)
{
if (unlikely(inode && IS_PRIVATE(inode)))
return;
security_ops->d_instantiate(dentry, inode);
}
EXPORT_SYMBOL(security_d_instantiate);
int security_getprocattr(struct task_struct *p, char *name, char **value)
{
return security_ops->getprocattr(p, name, value);
}
int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
{
return security_ops->setprocattr(p, name, value, size);
}
int security_netlink_send(struct sock *sk, struct sk_buff *skb)
{
return security_ops->netlink_send(sk, skb);
}
int security_netlink_recv(struct sk_buff *skb, int cap)
{
return security_ops->netlink_recv(skb, cap);
}
EXPORT_SYMBOL(security_netlink_recv);
int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
{
return security_ops->secid_to_secctx(secid, secdata, seclen);
}
EXPORT_SYMBOL(security_secid_to_secctx);
void security_release_secctx(char *secdata, u32 seclen)
{
return security_ops->release_secctx(secdata, seclen);
}
EXPORT_SYMBOL(security_release_secctx);
#ifdef CONFIG_SECURITY_NETWORK
int security_unix_stream_connect(struct socket *sock, struct socket *other,
struct sock *newsk)
{
return security_ops->unix_stream_connect(sock, other, newsk);
}
EXPORT_SYMBOL(security_unix_stream_connect);
int security_unix_may_send(struct socket *sock, struct socket *other)
{
return security_ops->unix_may_send(sock, other);
}
EXPORT_SYMBOL(security_unix_may_send);
int security_socket_create(int family, int type, int protocol, int kern)
{
return security_ops->socket_create(family, type, protocol, kern);
}
int security_socket_post_create(struct socket *sock, int family,
int type, int protocol, int kern)
{
return security_ops->socket_post_create(sock, family, type,
protocol, kern);
}
int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
{
return security_ops->socket_bind(sock, address, addrlen);
}
int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
{
return security_ops->socket_connect(sock, address, addrlen);
}
int security_socket_listen(struct socket *sock, int backlog)
{
return security_ops->socket_listen(sock, backlog);
}
int security_socket_accept(struct socket *sock, struct socket *newsock)
{
return security_ops->socket_accept(sock, newsock);
}
void security_socket_post_accept(struct socket *sock, struct socket *newsock)
{
security_ops->socket_post_accept(sock, newsock);
}
int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
{
return security_ops->socket_sendmsg(sock, msg, size);
}
int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
int size, int flags)
{
return security_ops->socket_recvmsg(sock, msg, size, flags);
}
int security_socket_getsockname(struct socket *sock)
{
return security_ops->socket_getsockname(sock);
}
int security_socket_getpeername(struct socket *sock)
{
return security_ops->socket_getpeername(sock);
}
int security_socket_getsockopt(struct socket *sock, int level, int optname)
{
return security_ops->socket_getsockopt(sock, level, optname);
}
int security_socket_setsockopt(struct socket *sock, int level, int optname)
{
return security_ops->socket_setsockopt(sock, level, optname);
}
int security_socket_shutdown(struct socket *sock, int how)
{
return security_ops->socket_shutdown(sock, how);
}
int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
{
return security_ops->socket_sock_rcv_skb(sk, skb);
}
EXPORT_SYMBOL(security_sock_rcv_skb);
int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
int __user *optlen, unsigned len)
{
return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
}
int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
{
return security_ops->socket_getpeersec_dgram(sock, skb, secid);
}
EXPORT_SYMBOL(security_socket_getpeersec_dgram);
int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
{
return security_ops->sk_alloc_security(sk, family, priority);
}
void security_sk_free(struct sock *sk)
{
return security_ops->sk_free_security(sk);
}
void security_sk_clone(const struct sock *sk, struct sock *newsk)
{
return security_ops->sk_clone_security(sk, newsk);
}
void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
{
security_ops->sk_getsecid(sk, &fl->secid);
}
EXPORT_SYMBOL(security_sk_classify_flow);
void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
{
security_ops->req_classify_flow(req, fl);
}
EXPORT_SYMBOL(security_req_classify_flow);
void security_sock_graft(struct sock *sk, struct socket *parent)
{
security_ops->sock_graft(sk, parent);
}
EXPORT_SYMBOL(security_sock_graft);
int security_inet_conn_request(struct sock *sk,
struct sk_buff *skb, struct request_sock *req)
{
return security_ops->inet_conn_request(sk, skb, req);
}
EXPORT_SYMBOL(security_inet_conn_request);
void security_inet_csk_clone(struct sock *newsk,
const struct request_sock *req)
{
security_ops->inet_csk_clone(newsk, req);
}
void security_inet_conn_established(struct sock *sk,
struct sk_buff *skb)
{
security_ops->inet_conn_established(sk, skb);
}
#endif /* CONFIG_SECURITY_NETWORK */
#ifdef CONFIG_SECURITY_NETWORK_XFRM
int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
{
return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
}
EXPORT_SYMBOL(security_xfrm_policy_alloc);
int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
{
return security_ops->xfrm_policy_clone_security(old, new);
}
void security_xfrm_policy_free(struct xfrm_policy *xp)
{
security_ops->xfrm_policy_free_security(xp);
}
EXPORT_SYMBOL(security_xfrm_policy_free);
int security_xfrm_policy_delete(struct xfrm_policy *xp)
{
return security_ops->xfrm_policy_delete_security(xp);
}
int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
{
return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
}
EXPORT_SYMBOL(security_xfrm_state_alloc);
int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
struct xfrm_sec_ctx *polsec, u32 secid)
{
if (!polsec)
return 0;
/*
* We want the context to be taken from secid which is usually
* from the sock.
*/
return security_ops->xfrm_state_alloc_security(x, NULL, secid);
}
int security_xfrm_state_delete(struct xfrm_state *x)
{
return security_ops->xfrm_state_delete_security(x);
}
EXPORT_SYMBOL(security_xfrm_state_delete);
void security_xfrm_state_free(struct xfrm_state *x)
{
security_ops->xfrm_state_free_security(x);
}
int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
{
return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
}
int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
struct xfrm_policy *xp, struct flowi *fl)
{
return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
}
int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
{
return security_ops->xfrm_decode_session(skb, secid, 1);
}
void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
{
int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
BUG_ON(rc);
}
EXPORT_SYMBOL(security_skb_classify_flow);
#endif /* CONFIG_SECURITY_NETWORK_XFRM */
#ifdef CONFIG_KEYS
int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
{
return security_ops->key_alloc(key, tsk, flags);
}
void security_key_free(struct key *key)
{
security_ops->key_free(key);
}
int security_key_permission(key_ref_t key_ref,
struct task_struct *context, key_perm_t perm)
{
return security_ops->key_permission(key_ref, context, perm);
}
#endif /* CONFIG_KEYS */