android_kernel_xiaomi_sm8350/kernel/rtmutex.c

991 lines
25 KiB
C
Raw Normal View History

/*
* RT-Mutexes: simple blocking mutual exclusion locks with PI support
*
* started by Ingo Molnar and Thomas Gleixner.
*
* Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
* Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
* Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
* Copyright (C) 2006 Esben Nielsen
*
* See Documentation/rt-mutex-design.txt for details.
*/
#include <linux/spinlock.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include "rtmutex_common.h"
#ifdef CONFIG_DEBUG_RT_MUTEXES
# include "rtmutex-debug.h"
#else
# include "rtmutex.h"
#endif
/*
* lock->owner state tracking:
*
* lock->owner holds the task_struct pointer of the owner. Bit 0 and 1
* are used to keep track of the "owner is pending" and "lock has
* waiters" state.
*
* owner bit1 bit0
* NULL 0 0 lock is free (fast acquire possible)
* NULL 0 1 invalid state
* NULL 1 0 Transitional State*
* NULL 1 1 invalid state
* taskpointer 0 0 lock is held (fast release possible)
* taskpointer 0 1 task is pending owner
* taskpointer 1 0 lock is held and has waiters
* taskpointer 1 1 task is pending owner and lock has more waiters
*
* Pending ownership is assigned to the top (highest priority)
* waiter of the lock, when the lock is released. The thread is woken
* up and can now take the lock. Until the lock is taken (bit 0
* cleared) a competing higher priority thread can steal the lock
* which puts the woken up thread back on the waiters list.
*
* The fast atomic compare exchange based acquire and release is only
* possible when bit 0 and 1 of lock->owner are 0.
*
* (*) There's a small time where the owner can be NULL and the
* "lock has waiters" bit is set. This can happen when grabbing the lock.
* To prevent a cmpxchg of the owner releasing the lock, we need to set this
* bit before looking at the lock, hence the reason this is a transitional
* state.
*/
static void
rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner,
unsigned long mask)
{
unsigned long val = (unsigned long)owner | mask;
if (rt_mutex_has_waiters(lock))
val |= RT_MUTEX_HAS_WAITERS;
lock->owner = (struct task_struct *)val;
}
static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
{
lock->owner = (struct task_struct *)
((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
}
static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
{
if (!rt_mutex_has_waiters(lock))
clear_rt_mutex_waiters(lock);
}
/*
* We can speed up the acquire/release, if the architecture
* supports cmpxchg and if there's no debugging state to be set up
*/
#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
# define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
{
unsigned long owner, *p = (unsigned long *) &lock->owner;
do {
owner = *p;
} while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
}
#else
# define rt_mutex_cmpxchg(l,c,n) (0)
static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
{
lock->owner = (struct task_struct *)
((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
}
#endif
/*
* Calculate task priority from the waiter list priority
*
* Return task->normal_prio when the waiter list is empty or when
* the waiter is not allowed to do priority boosting
*/
int rt_mutex_getprio(struct task_struct *task)
{
if (likely(!task_has_pi_waiters(task)))
return task->normal_prio;
return min(task_top_pi_waiter(task)->pi_list_entry.prio,
task->normal_prio);
}
/*
* Adjust the priority of a task, after its pi_waiters got modified.
*
* This can be both boosting and unboosting. task->pi_lock must be held.
*/
static void __rt_mutex_adjust_prio(struct task_struct *task)
{
int prio = rt_mutex_getprio(task);
if (task->prio != prio)
rt_mutex_setprio(task, prio);
}
/*
* Adjust task priority (undo boosting). Called from the exit path of
* rt_mutex_slowunlock() and rt_mutex_slowlock().
*
* (Note: We do this outside of the protection of lock->wait_lock to
* allow the lock to be taken while or before we readjust the priority
* of task. We do not use the spin_xx_mutex() variants here as we are
* outside of the debug path.)
*/
static void rt_mutex_adjust_prio(struct task_struct *task)
{
unsigned long flags;
spin_lock_irqsave(&task->pi_lock, flags);
__rt_mutex_adjust_prio(task);
spin_unlock_irqrestore(&task->pi_lock, flags);
}
/*
* Max number of times we'll walk the boosting chain:
*/
int max_lock_depth = 1024;
/*
* Adjust the priority chain. Also used for deadlock detection.
* Decreases task's usage by one - may thus free the task.
* Returns 0 or -EDEADLK.
*/
static int rt_mutex_adjust_prio_chain(struct task_struct *task,
int deadlock_detect,
struct rt_mutex *orig_lock,
struct rt_mutex_waiter *orig_waiter,
struct task_struct *top_task)
{
struct rt_mutex *lock;
struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
int detect_deadlock, ret = 0, depth = 0;
unsigned long flags;
detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
deadlock_detect);
/*
* The (de)boosting is a step by step approach with a lot of
* pitfalls. We want this to be preemptible and we want hold a
* maximum of two locks per step. So we have to check
* carefully whether things change under us.
*/
again:
if (++depth > max_lock_depth) {
static int prev_max;
/*
* Print this only once. If the admin changes the limit,
* print a new message when reaching the limit again.
*/
if (prev_max != max_lock_depth) {
prev_max = max_lock_depth;
printk(KERN_WARNING "Maximum lock depth %d reached "
"task: %s (%d)\n", max_lock_depth,
top_task->comm, top_task->pid);
}
put_task_struct(task);
return deadlock_detect ? -EDEADLK : 0;
}
retry:
/*
* Task can not go away as we did a get_task() before !
*/
spin_lock_irqsave(&task->pi_lock, flags);
waiter = task->pi_blocked_on;
/*
* Check whether the end of the boosting chain has been
* reached or the state of the chain has changed while we
* dropped the locks.
*/
if (!waiter || !waiter->task)
goto out_unlock_pi;
if (top_waiter && (!task_has_pi_waiters(task) ||
top_waiter != task_top_pi_waiter(task)))
goto out_unlock_pi;
/*
* When deadlock detection is off then we check, if further
* priority adjustment is necessary.
*/
if (!detect_deadlock && waiter->list_entry.prio == task->prio)
goto out_unlock_pi;
lock = waiter->lock;
if (!spin_trylock(&lock->wait_lock)) {
spin_unlock_irqrestore(&task->pi_lock, flags);
cpu_relax();
goto retry;
}
/* Deadlock detection */
if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
spin_unlock(&lock->wait_lock);
ret = deadlock_detect ? -EDEADLK : 0;
goto out_unlock_pi;
}
top_waiter = rt_mutex_top_waiter(lock);
/* Requeue the waiter */
plist_del(&waiter->list_entry, &lock->wait_list);
waiter->list_entry.prio = task->prio;
plist_add(&waiter->list_entry, &lock->wait_list);
/* Release the task */
spin_unlock_irqrestore(&task->pi_lock, flags);
put_task_struct(task);
/* Grab the next task */
task = rt_mutex_owner(lock);
[PATCH] clean up and remove some extra spinlocks from rtmutex Oleg brought up some interesting points about grabbing the pi_lock for some protections. In this discussion, I realized that there are some places that the pi_lock is being grabbed when it really wasn't necessary. Also this patch does a little bit of clean up. This patch basically does three things: 1) renames the "boost" variable to "chain_walk". Since it is used in the debugging case when it isn't going to be boosted. It better describes what the test is going to do if it succeeds. 2) moves get_task_struct to just before the unlocking of the wait_lock. This removes duplicate code, and makes it a little easier to read. The owner wont go away while either the pi_lock or the wait_lock are held. 3) removes the pi_locking and owner blocked checking completely from the debugging case. This is because the grabbing the lock and doing the check, then releasing the lock is just so full of races. It's just as good to go ahead and call the pi_chain_walk function, since after releasing the lock the owner can then block anyway, and we would have missed that. For the debug case, we really do want to do the chain walk to test for deadlocks anyway. [oleg@tv-sign.ru: more of the same] Signed-of-by: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Esben Nielsen <nielsen.esben@googlemail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 04:59:44 -04:00
get_task_struct(task);
spin_lock_irqsave(&task->pi_lock, flags);
if (waiter == rt_mutex_top_waiter(lock)) {
/* Boost the owner */
plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
waiter->pi_list_entry.prio = waiter->list_entry.prio;
plist_add(&waiter->pi_list_entry, &task->pi_waiters);
__rt_mutex_adjust_prio(task);
} else if (top_waiter == waiter) {
/* Deboost the owner */
plist_del(&waiter->pi_list_entry, &task->pi_waiters);
waiter = rt_mutex_top_waiter(lock);
waiter->pi_list_entry.prio = waiter->list_entry.prio;
plist_add(&waiter->pi_list_entry, &task->pi_waiters);
__rt_mutex_adjust_prio(task);
}
spin_unlock_irqrestore(&task->pi_lock, flags);
top_waiter = rt_mutex_top_waiter(lock);
spin_unlock(&lock->wait_lock);
if (!detect_deadlock && waiter != top_waiter)
goto out_put_task;
goto again;
out_unlock_pi:
spin_unlock_irqrestore(&task->pi_lock, flags);
out_put_task:
put_task_struct(task);
return ret;
}
/*
* Optimization: check if we can steal the lock from the
* assigned pending owner [which might not have taken the
* lock yet]:
*/
static inline int try_to_steal_lock(struct rt_mutex *lock)
{
struct task_struct *pendowner = rt_mutex_owner(lock);
struct rt_mutex_waiter *next;
unsigned long flags;
if (!rt_mutex_owner_pending(lock))
return 0;
if (pendowner == current)
return 1;
spin_lock_irqsave(&pendowner->pi_lock, flags);
if (current->prio >= pendowner->prio) {
spin_unlock_irqrestore(&pendowner->pi_lock, flags);
return 0;
}
/*
* Check if a waiter is enqueued on the pending owners
* pi_waiters list. Remove it and readjust pending owners
* priority.
*/
if (likely(!rt_mutex_has_waiters(lock))) {
spin_unlock_irqrestore(&pendowner->pi_lock, flags);
return 1;
}
/* No chain handling, pending owner is not blocked on anything: */
next = rt_mutex_top_waiter(lock);
plist_del(&next->pi_list_entry, &pendowner->pi_waiters);
__rt_mutex_adjust_prio(pendowner);
spin_unlock_irqrestore(&pendowner->pi_lock, flags);
/*
* We are going to steal the lock and a waiter was
* enqueued on the pending owners pi_waiters queue. So
* we have to enqueue this waiter into
* current->pi_waiters list. This covers the case,
* where current is boosted because it holds another
* lock and gets unboosted because the booster is
* interrupted, so we would delay a waiter with higher
* priority as current->normal_prio.
*
* Note: in the rare case of a SCHED_OTHER task changing
* its priority and thus stealing the lock, next->task
* might be current:
*/
if (likely(next->task != current)) {
spin_lock_irqsave(&current->pi_lock, flags);
plist_add(&next->pi_list_entry, &current->pi_waiters);
__rt_mutex_adjust_prio(current);
spin_unlock_irqrestore(&current->pi_lock, flags);
}
return 1;
}
/*
* Try to take an rt-mutex
*
* This fails
* - when the lock has a real owner
* - when a different pending owner exists and has higher priority than current
*
* Must be called with lock->wait_lock held.
*/
static int try_to_take_rt_mutex(struct rt_mutex *lock)
{
/*
* We have to be careful here if the atomic speedups are
* enabled, such that, when
* - no other waiter is on the lock
* - the lock has been released since we did the cmpxchg
* the lock can be released or taken while we are doing the
* checks and marking the lock with RT_MUTEX_HAS_WAITERS.
*
* The atomic acquire/release aware variant of
* mark_rt_mutex_waiters uses a cmpxchg loop. After setting
* the WAITERS bit, the atomic release / acquire can not
* happen anymore and lock->wait_lock protects us from the
* non-atomic case.
*
* Note, that this might set lock->owner =
* RT_MUTEX_HAS_WAITERS in the case the lock is not contended
* any more. This is fixed up when we take the ownership.
* This is the transitional state explained at the top of this file.
*/
mark_rt_mutex_waiters(lock);
if (rt_mutex_owner(lock) && !try_to_steal_lock(lock))
return 0;
/* We got the lock. */
debug_rt_mutex_lock(lock);
rt_mutex_set_owner(lock, current, 0);
rt_mutex_deadlock_account_lock(lock, current);
return 1;
}
/*
* Task blocks on lock.
*
* Prepare waiter and propagate pi chain
*
* This must be called with lock->wait_lock held.
*/
static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
struct rt_mutex_waiter *waiter,
int detect_deadlock)
{
struct task_struct *owner = rt_mutex_owner(lock);
struct rt_mutex_waiter *top_waiter = waiter;
unsigned long flags;
[PATCH] clean up and remove some extra spinlocks from rtmutex Oleg brought up some interesting points about grabbing the pi_lock for some protections. In this discussion, I realized that there are some places that the pi_lock is being grabbed when it really wasn't necessary. Also this patch does a little bit of clean up. This patch basically does three things: 1) renames the "boost" variable to "chain_walk". Since it is used in the debugging case when it isn't going to be boosted. It better describes what the test is going to do if it succeeds. 2) moves get_task_struct to just before the unlocking of the wait_lock. This removes duplicate code, and makes it a little easier to read. The owner wont go away while either the pi_lock or the wait_lock are held. 3) removes the pi_locking and owner blocked checking completely from the debugging case. This is because the grabbing the lock and doing the check, then releasing the lock is just so full of races. It's just as good to go ahead and call the pi_chain_walk function, since after releasing the lock the owner can then block anyway, and we would have missed that. For the debug case, we really do want to do the chain walk to test for deadlocks anyway. [oleg@tv-sign.ru: more of the same] Signed-of-by: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Esben Nielsen <nielsen.esben@googlemail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 04:59:44 -04:00
int chain_walk = 0, res;
spin_lock_irqsave(&current->pi_lock, flags);
__rt_mutex_adjust_prio(current);
waiter->task = current;
waiter->lock = lock;
plist_node_init(&waiter->list_entry, current->prio);
plist_node_init(&waiter->pi_list_entry, current->prio);
/* Get the top priority waiter on the lock */
if (rt_mutex_has_waiters(lock))
top_waiter = rt_mutex_top_waiter(lock);
plist_add(&waiter->list_entry, &lock->wait_list);
current->pi_blocked_on = waiter;
spin_unlock_irqrestore(&current->pi_lock, flags);
if (waiter == rt_mutex_top_waiter(lock)) {
spin_lock_irqsave(&owner->pi_lock, flags);
plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
__rt_mutex_adjust_prio(owner);
[PATCH] clean up and remove some extra spinlocks from rtmutex Oleg brought up some interesting points about grabbing the pi_lock for some protections. In this discussion, I realized that there are some places that the pi_lock is being grabbed when it really wasn't necessary. Also this patch does a little bit of clean up. This patch basically does three things: 1) renames the "boost" variable to "chain_walk". Since it is used in the debugging case when it isn't going to be boosted. It better describes what the test is going to do if it succeeds. 2) moves get_task_struct to just before the unlocking of the wait_lock. This removes duplicate code, and makes it a little easier to read. The owner wont go away while either the pi_lock or the wait_lock are held. 3) removes the pi_locking and owner blocked checking completely from the debugging case. This is because the grabbing the lock and doing the check, then releasing the lock is just so full of races. It's just as good to go ahead and call the pi_chain_walk function, since after releasing the lock the owner can then block anyway, and we would have missed that. For the debug case, we really do want to do the chain walk to test for deadlocks anyway. [oleg@tv-sign.ru: more of the same] Signed-of-by: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Esben Nielsen <nielsen.esben@googlemail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 04:59:44 -04:00
if (owner->pi_blocked_on)
chain_walk = 1;
spin_unlock_irqrestore(&owner->pi_lock, flags);
}
[PATCH] clean up and remove some extra spinlocks from rtmutex Oleg brought up some interesting points about grabbing the pi_lock for some protections. In this discussion, I realized that there are some places that the pi_lock is being grabbed when it really wasn't necessary. Also this patch does a little bit of clean up. This patch basically does three things: 1) renames the "boost" variable to "chain_walk". Since it is used in the debugging case when it isn't going to be boosted. It better describes what the test is going to do if it succeeds. 2) moves get_task_struct to just before the unlocking of the wait_lock. This removes duplicate code, and makes it a little easier to read. The owner wont go away while either the pi_lock or the wait_lock are held. 3) removes the pi_locking and owner blocked checking completely from the debugging case. This is because the grabbing the lock and doing the check, then releasing the lock is just so full of races. It's just as good to go ahead and call the pi_chain_walk function, since after releasing the lock the owner can then block anyway, and we would have missed that. For the debug case, we really do want to do the chain walk to test for deadlocks anyway. [oleg@tv-sign.ru: more of the same] Signed-of-by: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Esben Nielsen <nielsen.esben@googlemail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 04:59:44 -04:00
else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
chain_walk = 1;
if (!chain_walk)
return 0;
[PATCH] clean up and remove some extra spinlocks from rtmutex Oleg brought up some interesting points about grabbing the pi_lock for some protections. In this discussion, I realized that there are some places that the pi_lock is being grabbed when it really wasn't necessary. Also this patch does a little bit of clean up. This patch basically does three things: 1) renames the "boost" variable to "chain_walk". Since it is used in the debugging case when it isn't going to be boosted. It better describes what the test is going to do if it succeeds. 2) moves get_task_struct to just before the unlocking of the wait_lock. This removes duplicate code, and makes it a little easier to read. The owner wont go away while either the pi_lock or the wait_lock are held. 3) removes the pi_locking and owner blocked checking completely from the debugging case. This is because the grabbing the lock and doing the check, then releasing the lock is just so full of races. It's just as good to go ahead and call the pi_chain_walk function, since after releasing the lock the owner can then block anyway, and we would have missed that. For the debug case, we really do want to do the chain walk to test for deadlocks anyway. [oleg@tv-sign.ru: more of the same] Signed-of-by: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Esben Nielsen <nielsen.esben@googlemail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 04:59:44 -04:00
/*
* The owner can't disappear while holding a lock,
* so the owner struct is protected by wait_lock.
* Gets dropped in rt_mutex_adjust_prio_chain()!
*/
get_task_struct(owner);
spin_unlock(&lock->wait_lock);
res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
current);
spin_lock(&lock->wait_lock);
return res;
}
/*
* Wake up the next waiter on the lock.
*
* Remove the top waiter from the current tasks waiter list and from
* the lock waiter list. Set it as pending owner. Then wake it up.
*
* Called with lock->wait_lock held.
*/
static void wakeup_next_waiter(struct rt_mutex *lock)
{
struct rt_mutex_waiter *waiter;
struct task_struct *pendowner;
unsigned long flags;
spin_lock_irqsave(&current->pi_lock, flags);
waiter = rt_mutex_top_waiter(lock);
plist_del(&waiter->list_entry, &lock->wait_list);
/*
* Remove it from current->pi_waiters. We do not adjust a
* possible priority boost right now. We execute wakeup in the
* boosted mode and go back to normal after releasing
* lock->wait_lock.
*/
plist_del(&waiter->pi_list_entry, &current->pi_waiters);
pendowner = waiter->task;
waiter->task = NULL;
rt_mutex_set_owner(lock, pendowner, RT_MUTEX_OWNER_PENDING);
spin_unlock_irqrestore(&current->pi_lock, flags);
/*
* Clear the pi_blocked_on variable and enqueue a possible
* waiter into the pi_waiters list of the pending owner. This
* prevents that in case the pending owner gets unboosted a
* waiter with higher priority than pending-owner->normal_prio
* is blocked on the unboosted (pending) owner.
*/
spin_lock_irqsave(&pendowner->pi_lock, flags);
WARN_ON(!pendowner->pi_blocked_on);
WARN_ON(pendowner->pi_blocked_on != waiter);
WARN_ON(pendowner->pi_blocked_on->lock != lock);
pendowner->pi_blocked_on = NULL;
if (rt_mutex_has_waiters(lock)) {
struct rt_mutex_waiter *next;
next = rt_mutex_top_waiter(lock);
plist_add(&next->pi_list_entry, &pendowner->pi_waiters);
}
spin_unlock_irqrestore(&pendowner->pi_lock, flags);
wake_up_process(pendowner);
}
/*
* Remove a waiter from a lock
*
* Must be called with lock->wait_lock held
*/
static void remove_waiter(struct rt_mutex *lock,
struct rt_mutex_waiter *waiter)
{
int first = (waiter == rt_mutex_top_waiter(lock));
struct task_struct *owner = rt_mutex_owner(lock);
unsigned long flags;
[PATCH] clean up and remove some extra spinlocks from rtmutex Oleg brought up some interesting points about grabbing the pi_lock for some protections. In this discussion, I realized that there are some places that the pi_lock is being grabbed when it really wasn't necessary. Also this patch does a little bit of clean up. This patch basically does three things: 1) renames the "boost" variable to "chain_walk". Since it is used in the debugging case when it isn't going to be boosted. It better describes what the test is going to do if it succeeds. 2) moves get_task_struct to just before the unlocking of the wait_lock. This removes duplicate code, and makes it a little easier to read. The owner wont go away while either the pi_lock or the wait_lock are held. 3) removes the pi_locking and owner blocked checking completely from the debugging case. This is because the grabbing the lock and doing the check, then releasing the lock is just so full of races. It's just as good to go ahead and call the pi_chain_walk function, since after releasing the lock the owner can then block anyway, and we would have missed that. For the debug case, we really do want to do the chain walk to test for deadlocks anyway. [oleg@tv-sign.ru: more of the same] Signed-of-by: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Esben Nielsen <nielsen.esben@googlemail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 04:59:44 -04:00
int chain_walk = 0;
spin_lock_irqsave(&current->pi_lock, flags);
plist_del(&waiter->list_entry, &lock->wait_list);
waiter->task = NULL;
current->pi_blocked_on = NULL;
spin_unlock_irqrestore(&current->pi_lock, flags);
if (first && owner != current) {
spin_lock_irqsave(&owner->pi_lock, flags);
plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
if (rt_mutex_has_waiters(lock)) {
struct rt_mutex_waiter *next;
next = rt_mutex_top_waiter(lock);
plist_add(&next->pi_list_entry, &owner->pi_waiters);
}
__rt_mutex_adjust_prio(owner);
[PATCH] clean up and remove some extra spinlocks from rtmutex Oleg brought up some interesting points about grabbing the pi_lock for some protections. In this discussion, I realized that there are some places that the pi_lock is being grabbed when it really wasn't necessary. Also this patch does a little bit of clean up. This patch basically does three things: 1) renames the "boost" variable to "chain_walk". Since it is used in the debugging case when it isn't going to be boosted. It better describes what the test is going to do if it succeeds. 2) moves get_task_struct to just before the unlocking of the wait_lock. This removes duplicate code, and makes it a little easier to read. The owner wont go away while either the pi_lock or the wait_lock are held. 3) removes the pi_locking and owner blocked checking completely from the debugging case. This is because the grabbing the lock and doing the check, then releasing the lock is just so full of races. It's just as good to go ahead and call the pi_chain_walk function, since after releasing the lock the owner can then block anyway, and we would have missed that. For the debug case, we really do want to do the chain walk to test for deadlocks anyway. [oleg@tv-sign.ru: more of the same] Signed-of-by: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Esben Nielsen <nielsen.esben@googlemail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 04:59:44 -04:00
if (owner->pi_blocked_on)
chain_walk = 1;
spin_unlock_irqrestore(&owner->pi_lock, flags);
}
WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
[PATCH] clean up and remove some extra spinlocks from rtmutex Oleg brought up some interesting points about grabbing the pi_lock for some protections. In this discussion, I realized that there are some places that the pi_lock is being grabbed when it really wasn't necessary. Also this patch does a little bit of clean up. This patch basically does three things: 1) renames the "boost" variable to "chain_walk". Since it is used in the debugging case when it isn't going to be boosted. It better describes what the test is going to do if it succeeds. 2) moves get_task_struct to just before the unlocking of the wait_lock. This removes duplicate code, and makes it a little easier to read. The owner wont go away while either the pi_lock or the wait_lock are held. 3) removes the pi_locking and owner blocked checking completely from the debugging case. This is because the grabbing the lock and doing the check, then releasing the lock is just so full of races. It's just as good to go ahead and call the pi_chain_walk function, since after releasing the lock the owner can then block anyway, and we would have missed that. For the debug case, we really do want to do the chain walk to test for deadlocks anyway. [oleg@tv-sign.ru: more of the same] Signed-of-by: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Esben Nielsen <nielsen.esben@googlemail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 04:59:44 -04:00
if (!chain_walk)
return;
[PATCH] clean up and remove some extra spinlocks from rtmutex Oleg brought up some interesting points about grabbing the pi_lock for some protections. In this discussion, I realized that there are some places that the pi_lock is being grabbed when it really wasn't necessary. Also this patch does a little bit of clean up. This patch basically does three things: 1) renames the "boost" variable to "chain_walk". Since it is used in the debugging case when it isn't going to be boosted. It better describes what the test is going to do if it succeeds. 2) moves get_task_struct to just before the unlocking of the wait_lock. This removes duplicate code, and makes it a little easier to read. The owner wont go away while either the pi_lock or the wait_lock are held. 3) removes the pi_locking and owner blocked checking completely from the debugging case. This is because the grabbing the lock and doing the check, then releasing the lock is just so full of races. It's just as good to go ahead and call the pi_chain_walk function, since after releasing the lock the owner can then block anyway, and we would have missed that. For the debug case, we really do want to do the chain walk to test for deadlocks anyway. [oleg@tv-sign.ru: more of the same] Signed-of-by: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Esben Nielsen <nielsen.esben@googlemail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 04:59:44 -04:00
/* gets dropped in rt_mutex_adjust_prio_chain()! */
get_task_struct(owner);
spin_unlock(&lock->wait_lock);
rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
spin_lock(&lock->wait_lock);
}
/*
* Recheck the pi chain, in case we got a priority setting
*
* Called from sched_setscheduler
*/
void rt_mutex_adjust_pi(struct task_struct *task)
{
struct rt_mutex_waiter *waiter;
unsigned long flags;
spin_lock_irqsave(&task->pi_lock, flags);
waiter = task->pi_blocked_on;
if (!waiter || waiter->list_entry.prio == task->prio) {
spin_unlock_irqrestore(&task->pi_lock, flags);
return;
}
spin_unlock_irqrestore(&task->pi_lock, flags);
[PATCH] clean up and remove some extra spinlocks from rtmutex Oleg brought up some interesting points about grabbing the pi_lock for some protections. In this discussion, I realized that there are some places that the pi_lock is being grabbed when it really wasn't necessary. Also this patch does a little bit of clean up. This patch basically does three things: 1) renames the "boost" variable to "chain_walk". Since it is used in the debugging case when it isn't going to be boosted. It better describes what the test is going to do if it succeeds. 2) moves get_task_struct to just before the unlocking of the wait_lock. This removes duplicate code, and makes it a little easier to read. The owner wont go away while either the pi_lock or the wait_lock are held. 3) removes the pi_locking and owner blocked checking completely from the debugging case. This is because the grabbing the lock and doing the check, then releasing the lock is just so full of races. It's just as good to go ahead and call the pi_chain_walk function, since after releasing the lock the owner can then block anyway, and we would have missed that. For the debug case, we really do want to do the chain walk to test for deadlocks anyway. [oleg@tv-sign.ru: more of the same] Signed-of-by: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Esben Nielsen <nielsen.esben@googlemail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 04:59:44 -04:00
/* gets dropped in rt_mutex_adjust_prio_chain()! */
get_task_struct(task);
rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
}
/*
* Slow path lock function:
*/
static int __sched
rt_mutex_slowlock(struct rt_mutex *lock, int state,
struct hrtimer_sleeper *timeout,
int detect_deadlock)
{
struct rt_mutex_waiter waiter;
int ret = 0;
debug_rt_mutex_init_waiter(&waiter);
waiter.task = NULL;
spin_lock(&lock->wait_lock);
/* Try to acquire the lock again: */
if (try_to_take_rt_mutex(lock)) {
spin_unlock(&lock->wait_lock);
return 0;
}
set_current_state(state);
/* Setup the timer, when timeout != NULL */
if (unlikely(timeout))
hrtimer_start(&timeout->timer, timeout->timer.expires,
HRTIMER_ABS);
for (;;) {
/* Try to acquire the lock: */
if (try_to_take_rt_mutex(lock))
break;
/*
* TASK_INTERRUPTIBLE checks for signals and
* timeout. Ignored otherwise.
*/
if (unlikely(state == TASK_INTERRUPTIBLE)) {
/* Signal pending? */
if (signal_pending(current))
ret = -EINTR;
if (timeout && !timeout->task)
ret = -ETIMEDOUT;
if (ret)
break;
}
/*
* waiter.task is NULL the first time we come here and
* when we have been woken up by the previous owner
* but the lock got stolen by a higher prio task.
*/
if (!waiter.task) {
ret = task_blocks_on_rt_mutex(lock, &waiter,
detect_deadlock);
/*
* If we got woken up by the owner then start loop
* all over without going into schedule to try
* to get the lock now:
*/
if (unlikely(!waiter.task))
continue;
if (unlikely(ret))
break;
}
spin_unlock(&lock->wait_lock);
debug_rt_mutex_print_deadlock(&waiter);
if (waiter.task)
schedule_rt_mutex(lock);
spin_lock(&lock->wait_lock);
set_current_state(state);
}
set_current_state(TASK_RUNNING);
if (unlikely(waiter.task))
remove_waiter(lock, &waiter);
/*
* try_to_take_rt_mutex() sets the waiter bit
* unconditionally. We might have to fix that up.
*/
fixup_rt_mutex_waiters(lock);
spin_unlock(&lock->wait_lock);
/* Remove pending timer: */
if (unlikely(timeout))
hrtimer_cancel(&timeout->timer);
/*
* Readjust priority, when we did not get the lock. We might
* have been the pending owner and boosted. Since we did not
* take the lock, the PI boost has to go.
*/
if (unlikely(ret))
rt_mutex_adjust_prio(current);
debug_rt_mutex_free_waiter(&waiter);
return ret;
}
/*
* Slow path try-lock function:
*/
static inline int
rt_mutex_slowtrylock(struct rt_mutex *lock)
{
int ret = 0;
spin_lock(&lock->wait_lock);
if (likely(rt_mutex_owner(lock) != current)) {
ret = try_to_take_rt_mutex(lock);
/*
* try_to_take_rt_mutex() sets the lock waiters
* bit unconditionally. Clean this up.
*/
fixup_rt_mutex_waiters(lock);
}
spin_unlock(&lock->wait_lock);
return ret;
}
/*
* Slow path to release a rt-mutex:
*/
static void __sched
rt_mutex_slowunlock(struct rt_mutex *lock)
{
spin_lock(&lock->wait_lock);
debug_rt_mutex_unlock(lock);
rt_mutex_deadlock_account_unlock(current);
if (!rt_mutex_has_waiters(lock)) {
lock->owner = NULL;
spin_unlock(&lock->wait_lock);
return;
}
wakeup_next_waiter(lock);
spin_unlock(&lock->wait_lock);
/* Undo pi boosting if necessary: */
rt_mutex_adjust_prio(current);
}
/*
* debug aware fast / slowpath lock,trylock,unlock
*
* The atomic acquire/release ops are compiled away, when either the
* architecture does not support cmpxchg or when debugging is enabled.
*/
static inline int
rt_mutex_fastlock(struct rt_mutex *lock, int state,
int detect_deadlock,
int (*slowfn)(struct rt_mutex *lock, int state,
struct hrtimer_sleeper *timeout,
int detect_deadlock))
{
if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
rt_mutex_deadlock_account_lock(lock, current);
return 0;
} else
return slowfn(lock, state, NULL, detect_deadlock);
}
static inline int
rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
struct hrtimer_sleeper *timeout, int detect_deadlock,
int (*slowfn)(struct rt_mutex *lock, int state,
struct hrtimer_sleeper *timeout,
int detect_deadlock))
{
if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
rt_mutex_deadlock_account_lock(lock, current);
return 0;
} else
return slowfn(lock, state, timeout, detect_deadlock);
}
static inline int
rt_mutex_fasttrylock(struct rt_mutex *lock,
int (*slowfn)(struct rt_mutex *lock))
{
if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
rt_mutex_deadlock_account_lock(lock, current);
return 1;
}
return slowfn(lock);
}
static inline void
rt_mutex_fastunlock(struct rt_mutex *lock,
void (*slowfn)(struct rt_mutex *lock))
{
if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
rt_mutex_deadlock_account_unlock(current);
else
slowfn(lock);
}
/**
* rt_mutex_lock - lock a rt_mutex
*
* @lock: the rt_mutex to be locked
*/
void __sched rt_mutex_lock(struct rt_mutex *lock)
{
might_sleep();
rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
}
EXPORT_SYMBOL_GPL(rt_mutex_lock);
/**
* rt_mutex_lock_interruptible - lock a rt_mutex interruptible
*
* @lock: the rt_mutex to be locked
* @detect_deadlock: deadlock detection on/off
*
* Returns:
* 0 on success
* -EINTR when interrupted by a signal
* -EDEADLK when the lock would deadlock (when deadlock detection is on)
*/
int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
int detect_deadlock)
{
might_sleep();
return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
detect_deadlock, rt_mutex_slowlock);
}
EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
/**
* rt_mutex_lock_interruptible_ktime - lock a rt_mutex interruptible
* the timeout structure is provided
* by the caller
*
* @lock: the rt_mutex to be locked
* @timeout: timeout structure or NULL (no timeout)
* @detect_deadlock: deadlock detection on/off
*
* Returns:
* 0 on success
* -EINTR when interrupted by a signal
* -ETIMEOUT when the timeout expired
* -EDEADLK when the lock would deadlock (when deadlock detection is on)
*/
int
rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
int detect_deadlock)
{
might_sleep();
return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
detect_deadlock, rt_mutex_slowlock);
}
EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
/**
* rt_mutex_trylock - try to lock a rt_mutex
*
* @lock: the rt_mutex to be locked
*
* Returns 1 on success and 0 on contention
*/
int __sched rt_mutex_trylock(struct rt_mutex *lock)
{
return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
}
EXPORT_SYMBOL_GPL(rt_mutex_trylock);
/**
* rt_mutex_unlock - unlock a rt_mutex
*
* @lock: the rt_mutex to be unlocked
*/
void __sched rt_mutex_unlock(struct rt_mutex *lock)
{
rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
}
EXPORT_SYMBOL_GPL(rt_mutex_unlock);
/***
* rt_mutex_destroy - mark a mutex unusable
* @lock: the mutex to be destroyed
*
* This function marks the mutex uninitialized, and any subsequent
* use of the mutex is forbidden. The mutex must not be locked when
* this function is called.
*/
void rt_mutex_destroy(struct rt_mutex *lock)
{
WARN_ON(rt_mutex_is_locked(lock));
#ifdef CONFIG_DEBUG_RT_MUTEXES
lock->magic = NULL;
#endif
}
EXPORT_SYMBOL_GPL(rt_mutex_destroy);
/**
* __rt_mutex_init - initialize the rt lock
*
* @lock: the rt lock to be initialized
*
* Initialize the rt lock to unlocked state.
*
* Initializing of a locked rt lock is not allowed
*/
void __rt_mutex_init(struct rt_mutex *lock, const char *name)
{
lock->owner = NULL;
spin_lock_init(&lock->wait_lock);
plist_head_init(&lock->wait_list, &lock->wait_lock);
debug_rt_mutex_init(lock, name);
}
EXPORT_SYMBOL_GPL(__rt_mutex_init);
/**
* rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
* proxy owner
*
* @lock: the rt_mutex to be locked
* @proxy_owner:the task to set as owner
*
* No locking. Caller has to do serializing itself
* Special API call for PI-futex support
*/
void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
struct task_struct *proxy_owner)
{
__rt_mutex_init(lock, NULL);
debug_rt_mutex_proxy_lock(lock, proxy_owner);
rt_mutex_set_owner(lock, proxy_owner, 0);
rt_mutex_deadlock_account_lock(lock, proxy_owner);
}
/**
* rt_mutex_proxy_unlock - release a lock on behalf of owner
*
* @lock: the rt_mutex to be locked
*
* No locking. Caller has to do serializing itself
* Special API call for PI-futex support
*/
void rt_mutex_proxy_unlock(struct rt_mutex *lock,
struct task_struct *proxy_owner)
{
debug_rt_mutex_proxy_unlock(lock);
rt_mutex_set_owner(lock, NULL, 0);
rt_mutex_deadlock_account_unlock(proxy_owner);
}
/**
* rt_mutex_next_owner - return the next owner of the lock
*
* @lock: the rt lock query
*
* Returns the next owner of the lock or NULL
*
* Caller has to serialize against other accessors to the lock
* itself.
*
* Special API call for PI-futex support
*/
struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
{
if (!rt_mutex_has_waiters(lock))
return NULL;
return rt_mutex_top_waiter(lock)->task;
}