android_kernel_xiaomi_sm8350/arch/powerpc/lib/dma-noncoherent.c

238 lines
5.8 KiB
C
Raw Normal View History

/*
* PowerPC version derived from arch/arm/mm/consistent.c
* Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
*
* Copyright (C) 2000 Russell King
*
* Consistent memory allocators. Used for DMA devices that want to
* share uncached memory with the processor core. The function return
* is the virtual address and 'dma_handle' is the physical address.
* Mostly stolen from the ARM port, with some changes for PowerPC.
* -- Dan
*
* Reorganized to get rid of the arch-specific consistent_* functions
* and provide non-coherent implementations for the DMA API. -Matt
*
* Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent()
* implementation. This is pulled straight from ARM and barely
* modified. -Matt
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/highmem.h>
#include <linux/dma-mapping.h>
#include <linux/vmalloc.h>
#include <asm/tlbflush.h>
/*
* Allocate DMA-coherent memory space and return both the kernel remapped
* virtual and bus address for that space.
*/
void *
__dma_alloc_coherent(size_t size, dma_addr_t *handle, gfp_t gfp)
{
struct page *page;
unsigned long order;
int i;
unsigned int nr_pages = PAGE_ALIGN(size)>>PAGE_SHIFT;
unsigned int array_size = nr_pages * sizeof(struct page *);
struct page **pages;
struct page *end;
u64 mask = 0x00ffffff, limit; /* ISA default */
struct vm_struct *area;
BUG_ON(!mem_init_done);
size = PAGE_ALIGN(size);
limit = (mask + 1) & ~mask;
if (limit && size >= limit) {
printk(KERN_WARNING "coherent allocation too big (requested "
"%#x mask %#Lx)\n", size, mask);
return NULL;
}
order = get_order(size);
if (mask != 0xffffffff)
gfp |= GFP_DMA;
page = alloc_pages(gfp, order);
if (!page)
goto no_page;
end = page + (1 << order);
/*
* Invalidate any data that might be lurking in the
* kernel direct-mapped region for device DMA.
*/
{
unsigned long kaddr = (unsigned long)page_address(page);
memset(page_address(page), 0, size);
flush_dcache_range(kaddr, kaddr + size);
}
split_page(page, order);
/*
* Set the "dma handle"
*/
*handle = page_to_phys(page);
area = get_vm_area_caller(size, VM_IOREMAP,
__builtin_return_address(1));
if (!area)
goto out_free_pages;
if (array_size > PAGE_SIZE) {
pages = vmalloc(array_size);
area->flags |= VM_VPAGES;
} else {
pages = kmalloc(array_size, GFP_KERNEL);
}
if (!pages)
goto out_free_area;
area->pages = pages;
area->nr_pages = nr_pages;
for (i = 0; i < nr_pages; i++)
pages[i] = page + i;
if (map_vm_area(area, pgprot_noncached(PAGE_KERNEL), &pages))
goto out_unmap;
/*
* Free the otherwise unused pages.
*/
page += nr_pages;
while (page < end) {
__free_page(page);
page++;
}
return area->addr;
out_unmap:
vunmap(area->addr);
if (array_size > PAGE_SIZE)
vfree(pages);
else
kfree(pages);
goto out_free_pages;
out_free_area:
free_vm_area(area);
out_free_pages:
if (page)
__free_pages(page, order);
no_page:
return NULL;
}
EXPORT_SYMBOL(__dma_alloc_coherent);
/*
* free a page as defined by the above mapping.
*/
void __dma_free_coherent(size_t size, void *vaddr)
{
vfree(vaddr);
}
EXPORT_SYMBOL(__dma_free_coherent);
/*
* make an area consistent.
*/
void __dma_sync(void *vaddr, size_t size, int direction)
{
unsigned long start = (unsigned long)vaddr;
unsigned long end = start + size;
switch (direction) {
case DMA_NONE:
BUG();
case DMA_FROM_DEVICE:
/*
* invalidate only when cache-line aligned otherwise there is
* the potential for discarding uncommitted data from the cache
*/
if ((start & (L1_CACHE_BYTES - 1)) || (size & (L1_CACHE_BYTES - 1)))
flush_dcache_range(start, end);
else
invalidate_dcache_range(start, end);
break;
case DMA_TO_DEVICE: /* writeback only */
clean_dcache_range(start, end);
break;
case DMA_BIDIRECTIONAL: /* writeback and invalidate */
flush_dcache_range(start, end);
break;
}
}
EXPORT_SYMBOL(__dma_sync);
#ifdef CONFIG_HIGHMEM
/*
* __dma_sync_page() implementation for systems using highmem.
* In this case, each page of a buffer must be kmapped/kunmapped
* in order to have a virtual address for __dma_sync(). This must
* not sleep so kmap_atomic()/kunmap_atomic() are used.
*
* Note: yes, it is possible and correct to have a buffer extend
* beyond the first page.
*/
static inline void __dma_sync_page_highmem(struct page *page,
unsigned long offset, size_t size, int direction)
{
size_t seg_size = min((size_t)(PAGE_SIZE - offset), size);
size_t cur_size = seg_size;
unsigned long flags, start, seg_offset = offset;
int nr_segs = 1 + ((size - seg_size) + PAGE_SIZE - 1)/PAGE_SIZE;
int seg_nr = 0;
local_irq_save(flags);
do {
start = (unsigned long)kmap_atomic(page + seg_nr,
KM_PPC_SYNC_PAGE) + seg_offset;
/* Sync this buffer segment */
__dma_sync((void *)start, seg_size, direction);
kunmap_atomic((void *)start, KM_PPC_SYNC_PAGE);
seg_nr++;
/* Calculate next buffer segment size */
seg_size = min((size_t)PAGE_SIZE, size - cur_size);
/* Add the segment size to our running total */
cur_size += seg_size;
seg_offset = 0;
} while (seg_nr < nr_segs);
local_irq_restore(flags);
}
#endif /* CONFIG_HIGHMEM */
/*
* __dma_sync_page makes memory consistent. identical to __dma_sync, but
* takes a struct page instead of a virtual address
*/
void __dma_sync_page(struct page *page, unsigned long offset,
size_t size, int direction)
{
#ifdef CONFIG_HIGHMEM
__dma_sync_page_highmem(page, offset, size, direction);
#else
unsigned long start = (unsigned long)page_address(page) + offset;
__dma_sync((void *)start, size, direction);
#endif
}
EXPORT_SYMBOL(__dma_sync_page);