android_kernel_xiaomi_sm8350/include/asm-sh64/pgtable.h

506 lines
18 KiB
C
Raw Normal View History

#ifndef __ASM_SH64_PGTABLE_H
#define __ASM_SH64_PGTABLE_H
#include <asm-generic/4level-fixup.h>
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* include/asm-sh64/pgtable.h
*
* Copyright (C) 2000, 2001 Paolo Alberelli
* Copyright (C) 2003, 2004 Paul Mundt
* Copyright (C) 2003, 2004 Richard Curnow
*
* This file contains the functions and defines necessary to modify and use
* the SuperH page table tree.
*/
#ifndef __ASSEMBLY__
#include <asm/processor.h>
#include <asm/page.h>
#include <linux/threads.h>
struct vm_area_struct;
extern void paging_init(void);
/* We provide our own get_unmapped_area to avoid cache synonym issue */
#define HAVE_ARCH_UNMAPPED_AREA
/*
* Basically we have the same two-level (which is the logical three level
* Linux page table layout folded) page tables as the i386.
*/
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern unsigned char empty_zero_page[PAGE_SIZE];
#define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page))
#endif /* !__ASSEMBLY__ */
/*
* NEFF and NPHYS related defines.
* FIXME : These need to be model-dependent. For now this is OK, SH5-101 and SH5-103
* implement 32 bits effective and 32 bits physical. But future implementations may
* extend beyond this.
*/
#define NEFF 32
#define NEFF_SIGN (1LL << (NEFF - 1))
#define NEFF_MASK (-1LL << NEFF)
#define NPHYS 32
#define NPHYS_SIGN (1LL << (NPHYS - 1))
#define NPHYS_MASK (-1LL << NPHYS)
/* Typically 2-level is sufficient up to 32 bits of virtual address space, beyond
that 3-level would be appropriate. */
#if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
/* For 4k pages, this contains 512 entries, i.e. 9 bits worth of address. */
#define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long))
#define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */
#define PTE_SHIFT PAGE_SHIFT
#define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE)
/* top level: PMD. */
#define PGDIR_SHIFT (PTE_SHIFT + PTE_BITS)
#define PGD_BITS (NEFF - PGDIR_SHIFT)
#define PTRS_PER_PGD (1<<PGD_BITS)
/* middle level: PMD. This doesn't do anything for the 2-level case. */
#define PTRS_PER_PMD (1)
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#define PMD_SHIFT PGDIR_SHIFT
#define PMD_SIZE PGDIR_SIZE
#define PMD_MASK PGDIR_MASK
#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
/*
* three-level asymmetric paging structure: PGD is top level.
* The asymmetry comes from 32-bit pointers and 64-bit PTEs.
*/
/* bottom level: PTE. It's 9 bits = 512 pointers */
#define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long))
#define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */
#define PTE_SHIFT PAGE_SHIFT
#define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE)
/* middle level: PMD. It's 10 bits = 1024 pointers */
#define PTRS_PER_PMD ((1<<PAGE_SHIFT)/sizeof(unsigned long long *))
#define PMD_MAGNITUDE 2 /* sizeof(unsigned long long *) magnit. */
#define PMD_SHIFT (PTE_SHIFT + PTE_BITS)
#define PMD_BITS (PAGE_SHIFT - PMD_MAGNITUDE)
/* top level: PMD. It's 1 bit = 2 pointers */
#define PGDIR_SHIFT (PMD_SHIFT + PMD_BITS)
#define PGD_BITS (NEFF - PGDIR_SHIFT)
#define PTRS_PER_PGD (1<<PGD_BITS)
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#else
#error "No defined number of page table levels"
#endif
/*
* Error outputs.
*/
#define pte_ERROR(e) \
printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e))
#define pmd_ERROR(e) \
printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
/*
* Table setting routines. Used within arch/mm only.
*/
#define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval)
#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
static __inline__ void set_pte(pte_t *pteptr, pte_t pteval)
{
unsigned long long x = ((unsigned long long) pteval.pte);
unsigned long long *xp = (unsigned long long *) pteptr;
/*
* Sign-extend based on NPHYS.
*/
*(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x;
}
#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
static __inline__ void pmd_set(pmd_t *pmdp,pte_t *ptep)
{
pmd_val(*pmdp) = (unsigned long) ptep;
}
/*
* PGD defines. Top level.
*/
/* To find an entry in a generic PGD. */
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
#define __pgd_offset(address) pgd_index(address)
#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
/* To find an entry in a kernel PGD. */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/*
* PGD level access routines.
*
* Note1:
* There's no need to use physical addresses since the tree walk is all
* in performed in software, until the PTE translation.
*
* Note 2:
* A PGD entry can be uninitialized (_PGD_UNUSED), generically bad,
* clear (_PGD_EMPTY), present. When present, lower 3 nibbles contain
* _KERNPG_TABLE. Being a kernel virtual pointer also bit 31 must
* be 1. Assuming an arbitrary clear value of bit 31 set to 0 and
* lower 3 nibbles set to 0xFFF (_PGD_EMPTY) any other value is a
* bad pgd that must be notified via printk().
*
*/
#define _PGD_EMPTY 0x0
#if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
static inline int pgd_none(pgd_t pgd) { return 0; }
static inline int pgd_bad(pgd_t pgd) { return 0; }
#define pgd_present(pgd) ((pgd_val(pgd) & _PAGE_PRESENT) ? 1 : 0)
#define pgd_clear(xx) do { } while(0)
#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
#define pgd_present(pgd_entry) (1)
#define pgd_none(pgd_entry) (pgd_val((pgd_entry)) == _PGD_EMPTY)
/* TODO: Think later about what a useful definition of 'bad' would be now. */
#define pgd_bad(pgd_entry) (0)
#define pgd_clear(pgd_entry_p) (set_pgd((pgd_entry_p), __pgd(_PGD_EMPTY)))
#endif
#define pgd_page(pgd_entry) ((unsigned long) (pgd_val(pgd_entry) & PAGE_MASK))
/*
* PMD defines. Middle level.
*/
/* PGD to PMD dereferencing */
#if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
{
return (pmd_t *) dir;
}
#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
#define __pmd_offset(address) \
(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
#define pmd_offset(dir, addr) \
((pmd_t *) ((pgd_val(*(dir))) & PAGE_MASK) + __pmd_offset((addr)))
#endif
/*
* PMD level access routines. Same notes as above.
*/
#define _PMD_EMPTY 0x0
/* Either the PMD is empty or present, it's not paged out */
#define pmd_present(pmd_entry) (pmd_val(pmd_entry) & _PAGE_PRESENT)
#define pmd_clear(pmd_entry_p) (set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY)))
#define pmd_none(pmd_entry) (pmd_val((pmd_entry)) == _PMD_EMPTY)
#define pmd_bad(pmd_entry) ((pmd_val(pmd_entry) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
#define pmd_page_kernel(pmd_entry) \
((unsigned long) __va(pmd_val(pmd_entry) & PAGE_MASK))
#define pmd_page(pmd) \
(virt_to_page(pmd_val(pmd)))
/* PMD to PTE dereferencing */
#define pte_index(address) \
((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir, addr) \
((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + pte_index((addr)))
#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr)
#define pte_offset_map_nested(dir,addr) pte_offset_kernel(dir, addr)
#define pte_unmap(pte) do { } while (0)
#define pte_unmap_nested(pte) do { } while (0)
/* Round it up ! */
#define USER_PTRS_PER_PGD ((TASK_SIZE+PGDIR_SIZE-1)/PGDIR_SIZE)
#define FIRST_USER_ADDRESS 0
#ifndef __ASSEMBLY__
#define VMALLOC_END 0xff000000
#define VMALLOC_START 0xf0000000
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define IOBASE_VADDR 0xff000000
#define IOBASE_END 0xffffffff
/*
* PTEL coherent flags.
* See Chapter 17 ST50 CPU Core Volume 1, Architecture.
*/
/* The bits that are required in the SH-5 TLB are placed in the h/w-defined
positions, to avoid expensive bit shuffling on every refill. The remaining
bits are used for s/w purposes and masked out on each refill.
Note, the PTE slots are used to hold data of type swp_entry_t when a page is
swapped out. Only the _PAGE_PRESENT flag is significant when the page is
swapped out, and it must be placed so that it doesn't overlap either the
type or offset fields of swp_entry_t. For x86, offset is at [31:8] and type
at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t. This
scheme doesn't map to SH-5 because bit [0] controls cacheability. So bit
[2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split
into 2 pieces. That is handled by SWP_ENTRY and SWP_TYPE below. */
#define _PAGE_WT 0x001 /* CB0: if cacheable, 1->write-thru, 0->write-back */
#define _PAGE_DEVICE 0x001 /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */
#define _PAGE_CACHABLE 0x002 /* CB1: uncachable/cachable */
#define _PAGE_PRESENT 0x004 /* software: page referenced */
#define _PAGE_FILE 0x004 /* software: only when !present */
#define _PAGE_SIZE0 0x008 /* SZ0-bit : size of page */
#define _PAGE_SIZE1 0x010 /* SZ1-bit : size of page */
#define _PAGE_SHARED 0x020 /* software: reflects PTEH's SH */
#define _PAGE_READ 0x040 /* PR0-bit : read access allowed */
#define _PAGE_EXECUTE 0x080 /* PR1-bit : execute access allowed */
#define _PAGE_WRITE 0x100 /* PR2-bit : write access allowed */
#define _PAGE_USER 0x200 /* PR3-bit : user space access allowed */
#define _PAGE_DIRTY 0x400 /* software: page accessed in write */
#define _PAGE_ACCESSED 0x800 /* software: page referenced */
/* Mask which drops software flags */
#define _PAGE_FLAGS_HARDWARE_MASK 0xfffffffffffff3dbLL
/*
* HugeTLB support
*/
#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
#define _PAGE_SZHUGE (_PAGE_SIZE0)
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_1MB)
#define _PAGE_SZHUGE (_PAGE_SIZE1)
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512MB)
#define _PAGE_SZHUGE (_PAGE_SIZE0 | _PAGE_SIZE1)
#endif
/*
* Default flags for a Kernel page.
* This is fundametally also SHARED because the main use of this define
* (other than for PGD/PMD entries) is for the VMALLOC pool which is
* contextless.
*
* _PAGE_EXECUTE is required for modules
*
*/
#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
_PAGE_EXECUTE | \
_PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \
_PAGE_SHARED)
/* Default flags for a User page */
#define _PAGE_TABLE (_KERNPG_TABLE | _PAGE_USER)
#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
#define PAGE_NONE __pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED)
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
_PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_USER | \
_PAGE_SHARED)
/* We need to include PAGE_EXECUTE in PAGE_COPY because it is the default
* protection mode for the stack. */
#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
_PAGE_ACCESSED | _PAGE_USER | _PAGE_EXECUTE)
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
_PAGE_ACCESSED | _PAGE_USER)
#define PAGE_KERNEL __pgprot(_KERNPG_TABLE)
/*
* In ST50 we have full permissions (Read/Write/Execute/Shared).
* Just match'em all. These are for mmap(), therefore all at least
* User/Cachable/Present/Accessed. No point in making Fault on Write.
*/
#define __MMAP_COMMON (_PAGE_PRESENT | _PAGE_USER | _PAGE_CACHABLE | _PAGE_ACCESSED)
/* sxwr */
#define __P000 __pgprot(__MMAP_COMMON)
#define __P001 __pgprot(__MMAP_COMMON | _PAGE_READ)
#define __P010 __pgprot(__MMAP_COMMON)
#define __P011 __pgprot(__MMAP_COMMON | _PAGE_READ)
#define __P100 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
#define __P101 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
#define __P110 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
#define __P111 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
#define __S000 __pgprot(__MMAP_COMMON | _PAGE_SHARED)
#define __S001 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ)
#define __S010 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_WRITE)
#define __S011 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ | _PAGE_WRITE)
#define __S100 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE)
#define __S101 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ)
#define __S110 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_WRITE)
#define __S111 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ | _PAGE_WRITE)
/* Make it a device mapping for maximum safety (e.g. for mapping device
registers into user-space via /dev/map). */
#define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE)
#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHABLE)
/*
* Handling allocation failures during page table setup.
*/
extern void __handle_bad_pmd_kernel(pmd_t * pmd);
#define __handle_bad_pmd(x) __handle_bad_pmd_kernel(x)
/*
* PTE level access routines.
*
* Note1:
* It's the tree walk leaf. This is physical address to be stored.
*
* Note 2:
* Regarding the choice of _PTE_EMPTY:
We must choose a bit pattern that cannot be valid, whether or not the page
is present. bit[2]==1 => present, bit[2]==0 => swapped out. If swapped
out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is
left for us to select. If we force bit[7]==0 when swapped out, we could use
the combination bit[7,2]=2'b10 to indicate an empty PTE. Alternatively, if
we force bit[7]==1 when swapped out, we can use all zeroes to indicate
empty. This is convenient, because the page tables get cleared to zero
when they are allocated.
*/
#define _PTE_EMPTY 0x0
#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
#define pte_clear(mm,addr,xp) (set_pte_at(mm, addr, xp, __pte(_PTE_EMPTY)))
#define pte_none(x) (pte_val(x) == _PTE_EMPTY)
/*
* Some definitions to translate between mem_map, PTEs, and page
* addresses:
*/
/*
* Given a PTE, return the index of the mem_map[] entry corresponding
* to the page frame the PTE. Get the absolute physical address, make
* a relative physical address and translate it to an index.
*/
#define pte_pagenr(x) (((unsigned long) (pte_val(x)) - \
__MEMORY_START) >> PAGE_SHIFT)
/*
* Given a PTE, return the "struct page *".
*/
#define pte_page(x) (mem_map + pte_pagenr(x))
/*
* Return number of (down rounded) MB corresponding to x pages.
*/
#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
/*
* The following have defined behavior only work if pte_present() is true.
*/
static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXECUTE; }
static inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; }
static inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; }
static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
static inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_WRITE; }
static inline pte_t pte_rdprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_READ)); return pte; }
static inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; }
static inline pte_t pte_exprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_EXECUTE)); return pte; }
static inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; }
static inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; }
static inline pte_t pte_mkread(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_READ)); return pte; }
static inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; }
static inline pte_t pte_mkexec(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_EXECUTE)); return pte; }
static inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; }
static inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; }
static inline pte_t pte_mkhuge(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_SZHUGE)); return pte; }
/*
* Conversion functions: convert a page and protection to a page entry.
*
* extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
*/
#define mk_pte(page,pgprot) \
({ \
pte_t __pte; \
\
set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | \
__MEMORY_START | pgprot_val((pgprot)))); \
__pte; \
})
/*
* This takes a (absolute) physical page address that is used
* by the remapping functions
*/
#define mk_pte_phys(physpage, pgprot) \
({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; })
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{ set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; }
typedef pte_t *pte_addr_t;
#define pgtable_cache_init() do { } while (0)
extern void update_mmu_cache(struct vm_area_struct * vma,
unsigned long address, pte_t pte);
/* Encode and decode a swap entry */
#define __swp_type(x) (((x).val & 3) + (((x).val >> 1) & 0x3c))
#define __swp_offset(x) ((x).val >> 8)
#define __swp_entry(type, offset) ((swp_entry_t) { ((offset << 8) + ((type & 0x3c) << 1) + (type & 3)) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
/* Encode and decode a nonlinear file mapping entry */
#define PTE_FILE_MAX_BITS 29
#define pte_to_pgoff(pte) (pte_val(pte))
#define pgoff_to_pte(off) ((pte_t) { (off) | _PAGE_FILE })
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
#define PageSkip(page) (0)
#define kern_addr_valid(addr) (1)
#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
remap_pfn_range(vma, vaddr, pfn, size, prot)
#define MK_IOSPACE_PFN(space, pfn) (pfn)
#define GET_IOSPACE(pfn) 0
#define GET_PFN(pfn) (pfn)
#endif /* !__ASSEMBLY__ */
/*
* No page table caches to initialise
*/
#define pgtable_cache_init() do { } while (0)
#define pte_pfn(x) (((unsigned long)((x).pte)) >> PAGE_SHIFT)
#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
#define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
#include <asm-generic/pgtable.h>
#endif /* __ASM_SH64_PGTABLE_H */