android_kernel_xiaomi_sm8350/drivers/infiniband/hw/ipath/ipath_driver.c

1993 lines
54 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/spinlock.h>
#include <linux/idr.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/vmalloc.h>
#include "ipath_kernel.h"
#include "ips_common.h"
#include "ipath_layer.h"
static void ipath_update_pio_bufs(struct ipath_devdata *);
const char *ipath_get_unit_name(int unit)
{
static char iname[16];
snprintf(iname, sizeof iname, "infinipath%u", unit);
return iname;
}
EXPORT_SYMBOL_GPL(ipath_get_unit_name);
#define DRIVER_LOAD_MSG "PathScale " IPATH_DRV_NAME " loaded: "
#define PFX IPATH_DRV_NAME ": "
/*
* The size has to be longer than this string, so we can append
* board/chip information to it in the init code.
*/
const char ipath_core_version[] = IPATH_IDSTR "\n";
static struct idr unit_table;
DEFINE_SPINLOCK(ipath_devs_lock);
LIST_HEAD(ipath_dev_list);
wait_queue_head_t ipath_sma_state_wait;
unsigned ipath_debug = __IPATH_INFO;
module_param_named(debug, ipath_debug, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(debug, "mask for debug prints");
EXPORT_SYMBOL_GPL(ipath_debug);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("PathScale <support@pathscale.com>");
MODULE_DESCRIPTION("Pathscale InfiniPath driver");
const char *ipath_ibcstatus_str[] = {
"Disabled",
"LinkUp",
"PollActive",
"PollQuiet",
"SleepDelay",
"SleepQuiet",
"LState6", /* unused */
"LState7", /* unused */
"CfgDebounce",
"CfgRcvfCfg",
"CfgWaitRmt",
"CfgIdle",
"RecovRetrain",
"LState0xD", /* unused */
"RecovWaitRmt",
"RecovIdle",
};
/*
* These variables are initialized in the chip-specific files
* but are defined here.
*/
u16 ipath_gpio_sda_num, ipath_gpio_scl_num;
u64 ipath_gpio_sda, ipath_gpio_scl;
u64 infinipath_i_bitsextant;
ipath_err_t infinipath_e_bitsextant, infinipath_hwe_bitsextant;
u32 infinipath_i_rcvavail_mask, infinipath_i_rcvurg_mask;
static void __devexit ipath_remove_one(struct pci_dev *);
static int __devinit ipath_init_one(struct pci_dev *,
const struct pci_device_id *);
/* Only needed for registration, nothing else needs this info */
#define PCI_VENDOR_ID_PATHSCALE 0x1fc1
#define PCI_DEVICE_ID_INFINIPATH_HT 0xd
#define PCI_DEVICE_ID_INFINIPATH_PE800 0x10
static const struct pci_device_id ipath_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_INFINIPATH_HT) },
{ PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_INFINIPATH_PE800) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, ipath_pci_tbl);
static struct pci_driver ipath_driver = {
.name = IPATH_DRV_NAME,
.probe = ipath_init_one,
.remove = __devexit_p(ipath_remove_one),
.id_table = ipath_pci_tbl,
};
/*
* This is where port 0's rcvhdrtail register is written back; we also
* want nothing else sharing the cache line, so make it a cache line
* in size. Used for all units.
*/
volatile __le64 *ipath_port0_rcvhdrtail;
dma_addr_t ipath_port0_rcvhdrtail_dma;
static int port0_rcvhdrtail_refs;
static inline void read_bars(struct ipath_devdata *dd, struct pci_dev *dev,
u32 *bar0, u32 *bar1)
{
int ret;
ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_0, bar0);
if (ret)
ipath_dev_err(dd, "failed to read bar0 before enable: "
"error %d\n", -ret);
ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, bar1);
if (ret)
ipath_dev_err(dd, "failed to read bar1 before enable: "
"error %d\n", -ret);
ipath_dbg("Read bar0 %x bar1 %x\n", *bar0, *bar1);
}
static void ipath_free_devdata(struct pci_dev *pdev,
struct ipath_devdata *dd)
{
unsigned long flags;
pci_set_drvdata(pdev, NULL);
if (dd->ipath_unit != -1) {
spin_lock_irqsave(&ipath_devs_lock, flags);
idr_remove(&unit_table, dd->ipath_unit);
list_del(&dd->ipath_list);
spin_unlock_irqrestore(&ipath_devs_lock, flags);
}
dma_free_coherent(&pdev->dev, sizeof(*dd), dd, dd->ipath_dma_addr);
}
static struct ipath_devdata *ipath_alloc_devdata(struct pci_dev *pdev)
{
unsigned long flags;
struct ipath_devdata *dd;
dma_addr_t dma_addr;
int ret;
if (!idr_pre_get(&unit_table, GFP_KERNEL)) {
dd = ERR_PTR(-ENOMEM);
goto bail;
}
dd = dma_alloc_coherent(&pdev->dev, sizeof(*dd), &dma_addr,
GFP_KERNEL);
if (!dd) {
dd = ERR_PTR(-ENOMEM);
goto bail;
}
dd->ipath_dma_addr = dma_addr;
dd->ipath_unit = -1;
spin_lock_irqsave(&ipath_devs_lock, flags);
ret = idr_get_new(&unit_table, dd, &dd->ipath_unit);
if (ret < 0) {
printk(KERN_ERR IPATH_DRV_NAME
": Could not allocate unit ID: error %d\n", -ret);
ipath_free_devdata(pdev, dd);
dd = ERR_PTR(ret);
goto bail_unlock;
}
dd->pcidev = pdev;
pci_set_drvdata(pdev, dd);
list_add(&dd->ipath_list, &ipath_dev_list);
bail_unlock:
spin_unlock_irqrestore(&ipath_devs_lock, flags);
bail:
return dd;
}
static inline struct ipath_devdata *__ipath_lookup(int unit)
{
return idr_find(&unit_table, unit);
}
struct ipath_devdata *ipath_lookup(int unit)
{
struct ipath_devdata *dd;
unsigned long flags;
spin_lock_irqsave(&ipath_devs_lock, flags);
dd = __ipath_lookup(unit);
spin_unlock_irqrestore(&ipath_devs_lock, flags);
return dd;
}
int ipath_count_units(int *npresentp, int *nupp, u32 *maxportsp)
{
int nunits, npresent, nup;
struct ipath_devdata *dd;
unsigned long flags;
u32 maxports;
nunits = npresent = nup = maxports = 0;
spin_lock_irqsave(&ipath_devs_lock, flags);
list_for_each_entry(dd, &ipath_dev_list, ipath_list) {
nunits++;
if ((dd->ipath_flags & IPATH_PRESENT) && dd->ipath_kregbase)
npresent++;
if (dd->ipath_lid &&
!(dd->ipath_flags & (IPATH_DISABLED | IPATH_LINKDOWN
| IPATH_LINKUNK)))
nup++;
if (dd->ipath_cfgports > maxports)
maxports = dd->ipath_cfgports;
}
spin_unlock_irqrestore(&ipath_devs_lock, flags);
if (npresentp)
*npresentp = npresent;
if (nupp)
*nupp = nup;
if (maxportsp)
*maxportsp = maxports;
return nunits;
}
static int init_port0_rcvhdrtail(struct pci_dev *pdev)
{
int ret;
mutex_lock(&ipath_mutex);
if (!ipath_port0_rcvhdrtail) {
ipath_port0_rcvhdrtail =
dma_alloc_coherent(&pdev->dev,
IPATH_PORT0_RCVHDRTAIL_SIZE,
&ipath_port0_rcvhdrtail_dma,
GFP_KERNEL);
if (!ipath_port0_rcvhdrtail) {
ret = -ENOMEM;
goto bail;
}
}
port0_rcvhdrtail_refs++;
ret = 0;
bail:
mutex_unlock(&ipath_mutex);
return ret;
}
static void cleanup_port0_rcvhdrtail(struct pci_dev *pdev)
{
mutex_lock(&ipath_mutex);
if (!--port0_rcvhdrtail_refs) {
dma_free_coherent(&pdev->dev, IPATH_PORT0_RCVHDRTAIL_SIZE,
(void *) ipath_port0_rcvhdrtail,
ipath_port0_rcvhdrtail_dma);
ipath_port0_rcvhdrtail = NULL;
}
mutex_unlock(&ipath_mutex);
}
/*
* These next two routines are placeholders in case we don't have per-arch
* code for controlling write combining. If explicit control of write
* combining is not available, performance will probably be awful.
*/
int __attribute__((weak)) ipath_enable_wc(struct ipath_devdata *dd)
{
return -EOPNOTSUPP;
}
void __attribute__((weak)) ipath_disable_wc(struct ipath_devdata *dd)
{
}
static int __devinit ipath_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int ret, len, j;
struct ipath_devdata *dd;
unsigned long long addr;
u32 bar0 = 0, bar1 = 0;
u8 rev;
ret = init_port0_rcvhdrtail(pdev);
if (ret < 0) {
printk(KERN_ERR IPATH_DRV_NAME
": Could not allocate port0_rcvhdrtail: error %d\n",
-ret);
goto bail;
}
dd = ipath_alloc_devdata(pdev);
if (IS_ERR(dd)) {
ret = PTR_ERR(dd);
printk(KERN_ERR IPATH_DRV_NAME
": Could not allocate devdata: error %d\n", -ret);
goto bail_rcvhdrtail;
}
ipath_cdbg(VERBOSE, "initializing unit #%u\n", dd->ipath_unit);
read_bars(dd, pdev, &bar0, &bar1);
ret = pci_enable_device(pdev);
if (ret) {
/* This can happen iff:
*
* We did a chip reset, and then failed to reprogram the
* BAR, or the chip reset due to an internal error. We then
* unloaded the driver and reloaded it.
*
* Both reset cases set the BAR back to initial state. For
* the latter case, the AER sticky error bit at offset 0x718
* should be set, but the Linux kernel doesn't yet know
* about that, it appears. If the original BAR was retained
* in the kernel data structures, this may be OK.
*/
ipath_dev_err(dd, "enable unit %d failed: error %d\n",
dd->ipath_unit, -ret);
goto bail_devdata;
}
addr = pci_resource_start(pdev, 0);
len = pci_resource_len(pdev, 0);
ipath_cdbg(VERBOSE, "regbase (0) %llx len %d irq %x, vend %x/%x "
"driver_data %lx\n", addr, len, pdev->irq, ent->vendor,
ent->device, ent->driver_data);
read_bars(dd, pdev, &bar0, &bar1);
if (!bar1 && !(bar0 & ~0xf)) {
if (addr) {
dev_info(&pdev->dev, "BAR is 0 (probable RESET), "
"rewriting as %llx\n", addr);
ret = pci_write_config_dword(
pdev, PCI_BASE_ADDRESS_0, addr);
if (ret) {
ipath_dev_err(dd, "rewrite of BAR0 "
"failed: err %d\n", -ret);
goto bail_disable;
}
ret = pci_write_config_dword(
pdev, PCI_BASE_ADDRESS_1, addr >> 32);
if (ret) {
ipath_dev_err(dd, "rewrite of BAR1 "
"failed: err %d\n", -ret);
goto bail_disable;
}
} else {
ipath_dev_err(dd, "BAR is 0 (probable RESET), "
"not usable until reboot\n");
ret = -ENODEV;
goto bail_disable;
}
}
ret = pci_request_regions(pdev, IPATH_DRV_NAME);
if (ret) {
dev_info(&pdev->dev, "pci_request_regions unit %u fails: "
"err %d\n", dd->ipath_unit, -ret);
goto bail_disable;
}
ret = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
if (ret) {
/*
* if the 64 bit setup fails, try 32 bit. Some systems
* do not setup 64 bit maps on systems with 2GB or less
* memory installed.
*/
ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (ret) {
dev_info(&pdev->dev, "pci_set_dma_mask unit %u "
"fails: %d\n", dd->ipath_unit, ret);
goto bail_regions;
}
else
ipath_dbg("No 64bit DMA mask, used 32 bit mask\n");
}
pci_set_master(pdev);
/*
* Save BARs to rewrite after device reset. Save all 64 bits of
* BAR, just in case.
*/
dd->ipath_pcibar0 = addr;
dd->ipath_pcibar1 = addr >> 32;
dd->ipath_deviceid = ent->device; /* save for later use */
dd->ipath_vendorid = ent->vendor;
/* setup the chip-specific functions, as early as possible. */
switch (ent->device) {
case PCI_DEVICE_ID_INFINIPATH_HT:
ipath_init_ht400_funcs(dd);
break;
case PCI_DEVICE_ID_INFINIPATH_PE800:
ipath_init_pe800_funcs(dd);
break;
default:
ipath_dev_err(dd, "Found unknown PathScale deviceid 0x%x, "
"failing\n", ent->device);
return -ENODEV;
}
for (j = 0; j < 6; j++) {
if (!pdev->resource[j].start)
continue;
ipath_cdbg(VERBOSE, "BAR %d start %llx, end %llx, len %llx\n",
j, (unsigned long long)pdev->resource[j].start,
(unsigned long long)pdev->resource[j].end,
(unsigned long long)pci_resource_len(pdev, j));
}
if (!addr) {
ipath_dev_err(dd, "No valid address in BAR 0!\n");
ret = -ENODEV;
goto bail_regions;
}
dd->ipath_deviceid = ent->device; /* save for later use */
dd->ipath_vendorid = ent->vendor;
ret = pci_read_config_byte(pdev, PCI_REVISION_ID, &rev);
if (ret) {
ipath_dev_err(dd, "Failed to read PCI revision ID unit "
"%u: err %d\n", dd->ipath_unit, -ret);
goto bail_regions; /* shouldn't ever happen */
}
dd->ipath_pcirev = rev;
dd->ipath_kregbase = ioremap_nocache(addr, len);
if (!dd->ipath_kregbase) {
ipath_dbg("Unable to map io addr %llx to kvirt, failing\n",
addr);
ret = -ENOMEM;
goto bail_iounmap;
}
dd->ipath_kregend = (u64 __iomem *)
((void __iomem *)dd->ipath_kregbase + len);
dd->ipath_physaddr = addr; /* used for io_remap, etc. */
/* for user mmap */
dd->ipath_kregvirt = (u64 __iomem *) phys_to_virt(addr);
ipath_cdbg(VERBOSE, "mapped io addr %llx to kregbase %p "
"kregvirt %p\n", addr, dd->ipath_kregbase,
dd->ipath_kregvirt);
/*
* clear ipath_flags here instead of in ipath_init_chip as it is set
* by ipath_setup_htconfig.
*/
dd->ipath_flags = 0;
if (dd->ipath_f_bus(dd, pdev))
ipath_dev_err(dd, "Failed to setup config space; "
"continuing anyway\n");
/*
* set up our interrupt handler; SA_SHIRQ probably not needed,
* since MSI interrupts shouldn't be shared but won't hurt for now.
* check 0 irq after we return from chip-specific bus setup, since
* that can affect this due to setup
*/
if (!pdev->irq)
ipath_dev_err(dd, "irq is 0, BIOS error? Interrupts won't "
"work\n");
else {
ret = request_irq(pdev->irq, ipath_intr, SA_SHIRQ,
IPATH_DRV_NAME, dd);
if (ret) {
ipath_dev_err(dd, "Couldn't setup irq handler, "
"irq=%u: %d\n", pdev->irq, ret);
goto bail_iounmap;
}
}
ret = ipath_init_chip(dd, 0); /* do the chip-specific init */
if (ret)
goto bail_iounmap;
ret = ipath_enable_wc(dd);
if (ret) {
ipath_dev_err(dd, "Write combining not enabled "
"(err %d): performance may be poor\n",
-ret);
ret = 0;
}
ipath_device_create_group(&pdev->dev, dd);
ipathfs_add_device(dd);
ipath_user_add(dd);
ipath_layer_add(dd);
goto bail;
bail_iounmap:
iounmap((volatile void __iomem *) dd->ipath_kregbase);
bail_regions:
pci_release_regions(pdev);
bail_disable:
pci_disable_device(pdev);
bail_devdata:
ipath_free_devdata(pdev, dd);
bail_rcvhdrtail:
cleanup_port0_rcvhdrtail(pdev);
bail:
return ret;
}
static void __devexit ipath_remove_one(struct pci_dev *pdev)
{
struct ipath_devdata *dd;
ipath_cdbg(VERBOSE, "removing, pdev=%p\n", pdev);
if (!pdev)
return;
dd = pci_get_drvdata(pdev);
ipath_layer_del(dd);
ipath_user_del(dd);
ipathfs_remove_device(dd);
ipath_device_remove_group(&pdev->dev, dd);
ipath_cdbg(VERBOSE, "Releasing pci memory regions, dd %p, "
"unit %u\n", dd, (u32) dd->ipath_unit);
if (dd->ipath_kregbase) {
ipath_cdbg(VERBOSE, "Unmapping kregbase %p\n",
dd->ipath_kregbase);
iounmap((volatile void __iomem *) dd->ipath_kregbase);
dd->ipath_kregbase = NULL;
}
pci_release_regions(pdev);
ipath_cdbg(VERBOSE, "calling pci_disable_device\n");
pci_disable_device(pdev);
ipath_free_devdata(pdev, dd);
cleanup_port0_rcvhdrtail(pdev);
}
/* general driver use */
DEFINE_MUTEX(ipath_mutex);
static DEFINE_SPINLOCK(ipath_pioavail_lock);
/**
* ipath_disarm_piobufs - cancel a range of PIO buffers
* @dd: the infinipath device
* @first: the first PIO buffer to cancel
* @cnt: the number of PIO buffers to cancel
*
* cancel a range of PIO buffers, used when they might be armed, but
* not triggered. Used at init to ensure buffer state, and also user
* process close, in case it died while writing to a PIO buffer
* Also after errors.
*/
void ipath_disarm_piobufs(struct ipath_devdata *dd, unsigned first,
unsigned cnt)
{
unsigned i, last = first + cnt;
u64 sendctrl, sendorig;
ipath_cdbg(PKT, "disarm %u PIObufs first=%u\n", cnt, first);
sendorig = dd->ipath_sendctrl | INFINIPATH_S_DISARM;
for (i = first; i < last; i++) {
sendctrl = sendorig |
(i << INFINIPATH_S_DISARMPIOBUF_SHIFT);
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
sendctrl);
}
/*
* Write it again with current value, in case ipath_sendctrl changed
* while we were looping; no critical bits that would require
* locking.
*
* Write a 0, and then the original value, reading scratch in
* between. This seems to avoid a chip timing race that causes
* pioavail updates to memory to stop.
*/
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
0);
sendorig = ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
dd->ipath_sendctrl);
}
/**
* ipath_wait_linkstate - wait for an IB link state change to occur
* @dd: the infinipath device
* @state: the state to wait for
* @msecs: the number of milliseconds to wait
*
* wait up to msecs milliseconds for IB link state change to occur for
* now, take the easy polling route. Currently used only by
* ipath_layer_set_linkstate. Returns 0 if state reached, otherwise
* -ETIMEDOUT state can have multiple states set, for any of several
* transitions.
*/
int ipath_wait_linkstate(struct ipath_devdata *dd, u32 state, int msecs)
{
dd->ipath_sma_state_wanted = state;
wait_event_interruptible_timeout(ipath_sma_state_wait,
(dd->ipath_flags & state),
msecs_to_jiffies(msecs));
dd->ipath_sma_state_wanted = 0;
if (!(dd->ipath_flags & state)) {
u64 val;
ipath_cdbg(SMA, "Didn't reach linkstate %s within %u ms\n",
/* test INIT ahead of DOWN, both can be set */
(state & IPATH_LINKINIT) ? "INIT" :
((state & IPATH_LINKDOWN) ? "DOWN" :
((state & IPATH_LINKARMED) ? "ARM" : "ACTIVE")),
msecs);
val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
ipath_cdbg(VERBOSE, "ibcc=%llx ibcstatus=%llx (%s)\n",
(unsigned long long) ipath_read_kreg64(
dd, dd->ipath_kregs->kr_ibcctrl),
(unsigned long long) val,
ipath_ibcstatus_str[val & 0xf]);
}
return (dd->ipath_flags & state) ? 0 : -ETIMEDOUT;
}
void ipath_decode_err(char *buf, size_t blen, ipath_err_t err)
{
*buf = '\0';
if (err & INFINIPATH_E_RHDRLEN)
strlcat(buf, "rhdrlen ", blen);
if (err & INFINIPATH_E_RBADTID)
strlcat(buf, "rbadtid ", blen);
if (err & INFINIPATH_E_RBADVERSION)
strlcat(buf, "rbadversion ", blen);
if (err & INFINIPATH_E_RHDR)
strlcat(buf, "rhdr ", blen);
if (err & INFINIPATH_E_RLONGPKTLEN)
strlcat(buf, "rlongpktlen ", blen);
if (err & INFINIPATH_E_RSHORTPKTLEN)
strlcat(buf, "rshortpktlen ", blen);
if (err & INFINIPATH_E_RMAXPKTLEN)
strlcat(buf, "rmaxpktlen ", blen);
if (err & INFINIPATH_E_RMINPKTLEN)
strlcat(buf, "rminpktlen ", blen);
if (err & INFINIPATH_E_RFORMATERR)
strlcat(buf, "rformaterr ", blen);
if (err & INFINIPATH_E_RUNSUPVL)
strlcat(buf, "runsupvl ", blen);
if (err & INFINIPATH_E_RUNEXPCHAR)
strlcat(buf, "runexpchar ", blen);
if (err & INFINIPATH_E_RIBFLOW)
strlcat(buf, "ribflow ", blen);
if (err & INFINIPATH_E_REBP)
strlcat(buf, "EBP ", blen);
if (err & INFINIPATH_E_SUNDERRUN)
strlcat(buf, "sunderrun ", blen);
if (err & INFINIPATH_E_SPIOARMLAUNCH)
strlcat(buf, "spioarmlaunch ", blen);
if (err & INFINIPATH_E_SUNEXPERRPKTNUM)
strlcat(buf, "sunexperrpktnum ", blen);
if (err & INFINIPATH_E_SDROPPEDDATAPKT)
strlcat(buf, "sdroppeddatapkt ", blen);
if (err & INFINIPATH_E_SDROPPEDSMPPKT)
strlcat(buf, "sdroppedsmppkt ", blen);
if (err & INFINIPATH_E_SMAXPKTLEN)
strlcat(buf, "smaxpktlen ", blen);
if (err & INFINIPATH_E_SMINPKTLEN)
strlcat(buf, "sminpktlen ", blen);
if (err & INFINIPATH_E_SUNSUPVL)
strlcat(buf, "sunsupVL ", blen);
if (err & INFINIPATH_E_SPKTLEN)
strlcat(buf, "spktlen ", blen);
if (err & INFINIPATH_E_INVALIDADDR)
strlcat(buf, "invalidaddr ", blen);
if (err & INFINIPATH_E_RICRC)
strlcat(buf, "CRC ", blen);
if (err & INFINIPATH_E_RVCRC)
strlcat(buf, "VCRC ", blen);
if (err & INFINIPATH_E_RRCVEGRFULL)
strlcat(buf, "rcvegrfull ", blen);
if (err & INFINIPATH_E_RRCVHDRFULL)
strlcat(buf, "rcvhdrfull ", blen);
if (err & INFINIPATH_E_IBSTATUSCHANGED)
strlcat(buf, "ibcstatuschg ", blen);
if (err & INFINIPATH_E_RIBLOSTLINK)
strlcat(buf, "riblostlink ", blen);
if (err & INFINIPATH_E_HARDWARE)
strlcat(buf, "hardware ", blen);
if (err & INFINIPATH_E_RESET)
strlcat(buf, "reset ", blen);
}
/**
* get_rhf_errstring - decode RHF errors
* @err: the err number
* @msg: the output buffer
* @len: the length of the output buffer
*
* only used one place now, may want more later
*/
static void get_rhf_errstring(u32 err, char *msg, size_t len)
{
/* if no errors, and so don't need to check what's first */
*msg = '\0';
if (err & INFINIPATH_RHF_H_ICRCERR)
strlcat(msg, "icrcerr ", len);
if (err & INFINIPATH_RHF_H_VCRCERR)
strlcat(msg, "vcrcerr ", len);
if (err & INFINIPATH_RHF_H_PARITYERR)
strlcat(msg, "parityerr ", len);
if (err & INFINIPATH_RHF_H_LENERR)
strlcat(msg, "lenerr ", len);
if (err & INFINIPATH_RHF_H_MTUERR)
strlcat(msg, "mtuerr ", len);
if (err & INFINIPATH_RHF_H_IHDRERR)
/* infinipath hdr checksum error */
strlcat(msg, "ipathhdrerr ", len);
if (err & INFINIPATH_RHF_H_TIDERR)
strlcat(msg, "tiderr ", len);
if (err & INFINIPATH_RHF_H_MKERR)
/* bad port, offset, etc. */
strlcat(msg, "invalid ipathhdr ", len);
if (err & INFINIPATH_RHF_H_IBERR)
strlcat(msg, "iberr ", len);
if (err & INFINIPATH_RHF_L_SWA)
strlcat(msg, "swA ", len);
if (err & INFINIPATH_RHF_L_SWB)
strlcat(msg, "swB ", len);
}
/**
* ipath_get_egrbuf - get an eager buffer
* @dd: the infinipath device
* @bufnum: the eager buffer to get
* @err: unused
*
* must only be called if ipath_pd[port] is known to be allocated
*/
static inline void *ipath_get_egrbuf(struct ipath_devdata *dd, u32 bufnum,
int err)
{
return dd->ipath_port0_skbs ?
(void *)dd->ipath_port0_skbs[bufnum]->data : NULL;
}
/**
* ipath_alloc_skb - allocate an skb and buffer with possible constraints
* @dd: the infinipath device
* @gfp_mask: the sk_buff SFP mask
*/
struct sk_buff *ipath_alloc_skb(struct ipath_devdata *dd,
gfp_t gfp_mask)
{
struct sk_buff *skb;
u32 len;
/*
* Only fully supported way to handle this is to allocate lots
* extra, align as needed, and then do skb_reserve(). That wastes
* a lot of memory... I'll have to hack this into infinipath_copy
* also.
*/
/*
* We need 4 extra bytes for unaligned transfer copying
*/
if (dd->ipath_flags & IPATH_4BYTE_TID) {
/* we need a 4KB multiple alignment, and there is no way
* to do it except to allocate extra and then skb_reserve
* enough to bring it up to the right alignment.
*/
len = dd->ipath_ibmaxlen + 4 + (1 << 11) - 1;
}
else
len = dd->ipath_ibmaxlen + 4;
skb = __dev_alloc_skb(len, gfp_mask);
if (!skb) {
ipath_dev_err(dd, "Failed to allocate skbuff, length %u\n",
len);
goto bail;
}
if (dd->ipath_flags & IPATH_4BYTE_TID) {
u32 una = ((1 << 11) - 1) & (unsigned long)(skb->data + 4);
if (una)
skb_reserve(skb, 4 + (1 << 11) - una);
else
skb_reserve(skb, 4);
} else
skb_reserve(skb, 4);
bail:
return skb;
}
/**
* ipath_rcv_layer - receive a packet for the layered (ethernet) driver
* @dd: the infinipath device
* @etail: the sk_buff number
* @tlen: the total packet length
* @hdr: the ethernet header
*
* Separate routine for better overall optimization
*/
static void ipath_rcv_layer(struct ipath_devdata *dd, u32 etail,
u32 tlen, struct ether_header *hdr)
{
u32 elen;
u8 pad, *bthbytes;
struct sk_buff *skb, *nskb;
if (dd->ipath_port0_skbs && hdr->sub_opcode == OPCODE_ENCAP) {
/*
* Allocate a new sk_buff to replace the one we give
* to the network stack.
*/
nskb = ipath_alloc_skb(dd, GFP_ATOMIC);
if (!nskb) {
/* count OK packets that we drop */
ipath_stats.sps_krdrops++;
return;
}
bthbytes = (u8 *) hdr->bth;
pad = (bthbytes[1] >> 4) & 3;
/* +CRC32 */
elen = tlen - (sizeof(*hdr) + pad + sizeof(u32));
skb = dd->ipath_port0_skbs[etail];
dd->ipath_port0_skbs[etail] = nskb;
skb_put(skb, elen);
dd->ipath_f_put_tid(dd, etail + (u64 __iomem *)
((char __iomem *) dd->ipath_kregbase
+ dd->ipath_rcvegrbase), 0,
virt_to_phys(nskb->data));
__ipath_layer_rcv(dd, hdr, skb);
/* another ether packet received */
ipath_stats.sps_ether_rpkts++;
}
else if (hdr->sub_opcode == OPCODE_LID_ARP)
__ipath_layer_rcv_lid(dd, hdr);
}
/*
* ipath_kreceive - receive a packet
* @dd: the infinipath device
*
* called from interrupt handler for errors or receive interrupt
*/
void ipath_kreceive(struct ipath_devdata *dd)
{
u64 *rc;
void *ebuf;
const u32 rsize = dd->ipath_rcvhdrentsize; /* words */
const u32 maxcnt = dd->ipath_rcvhdrcnt * rsize; /* words */
u32 etail = -1, l, hdrqtail;
struct ips_message_header *hdr;
u32 eflags, i, etype, tlen, pkttot = 0;
static u64 totcalls; /* stats, may eventually remove */
char emsg[128];
if (!dd->ipath_hdrqtailptr) {
ipath_dev_err(dd,
"hdrqtailptr not set, can't do receives\n");
goto bail;
}
/* There is already a thread processing this queue. */
if (test_and_set_bit(0, &dd->ipath_rcv_pending))
goto bail;
if (dd->ipath_port0head ==
(u32)le64_to_cpu(*dd->ipath_hdrqtailptr))
goto done;
gotmore:
/*
* read only once at start. If in flood situation, this helps
* performance slightly. If more arrive while we are processing,
* we'll come back here and do them
*/
hdrqtail = (u32)le64_to_cpu(*dd->ipath_hdrqtailptr);
for (i = 0, l = dd->ipath_port0head; l != hdrqtail; i++) {
u32 qp;
u8 *bthbytes;
rc = (u64 *) (dd->ipath_pd[0]->port_rcvhdrq + (l << 2));
hdr = (struct ips_message_header *)&rc[1];
/*
* could make a network order version of IPATH_KD_QP, and
* do the obvious shift before masking to speed this up.
*/
qp = ntohl(hdr->bth[1]) & 0xffffff;
bthbytes = (u8 *) hdr->bth;
eflags = ips_get_hdr_err_flags((__le32 *) rc);
etype = ips_get_rcv_type((__le32 *) rc);
/* total length */
tlen = ips_get_length_in_bytes((__le32 *) rc);
ebuf = NULL;
if (etype != RCVHQ_RCV_TYPE_EXPECTED) {
/*
* it turns out that the chips uses an eager buffer
* for all non-expected packets, whether it "needs"
* one or not. So always get the index, but don't
* set ebuf (so we try to copy data) unless the
* length requires it.
*/
etail = ips_get_index((__le32 *) rc);
if (tlen > sizeof(*hdr) ||
etype == RCVHQ_RCV_TYPE_NON_KD)
ebuf = ipath_get_egrbuf(dd, etail, 0);
}
/*
* both tiderr and ipathhdrerr are set for all plain IB
* packets; only ipathhdrerr should be set.
*/
if (etype != RCVHQ_RCV_TYPE_NON_KD && etype !=
RCVHQ_RCV_TYPE_ERROR && ips_get_ipath_ver(
hdr->iph.ver_port_tid_offset) !=
IPS_PROTO_VERSION) {
ipath_cdbg(PKT, "Bad InfiniPath protocol version "
"%x\n", etype);
}
if (eflags & ~(INFINIPATH_RHF_H_TIDERR |
INFINIPATH_RHF_H_IHDRERR)) {
get_rhf_errstring(eflags, emsg, sizeof emsg);
ipath_cdbg(PKT, "RHFerrs %x hdrqtail=%x typ=%u "
"tlen=%x opcode=%x egridx=%x: %s\n",
eflags, l, etype, tlen, bthbytes[0],
ips_get_index((__le32 *) rc), emsg);
} else if (etype == RCVHQ_RCV_TYPE_NON_KD) {
int ret = __ipath_verbs_rcv(dd, rc + 1,
ebuf, tlen);
if (ret == -ENODEV)
ipath_cdbg(VERBOSE,
"received IB packet, "
"not SMA (QP=%x)\n", qp);
} else if (etype == RCVHQ_RCV_TYPE_EAGER) {
if (qp == IPATH_KD_QP &&
bthbytes[0] == ipath_layer_rcv_opcode &&
ebuf)
ipath_rcv_layer(dd, etail, tlen,
(struct ether_header *)hdr);
else
ipath_cdbg(PKT, "typ %x, opcode %x (eager, "
"qp=%x), len %x; ignored\n",
etype, bthbytes[0], qp, tlen);
}
else if (etype == RCVHQ_RCV_TYPE_EXPECTED)
ipath_dbg("Bug: Expected TID, opcode %x; ignored\n",
be32_to_cpu(hdr->bth[0]) & 0xff);
else if (eflags & (INFINIPATH_RHF_H_TIDERR |
INFINIPATH_RHF_H_IHDRERR)) {
/*
* This is a type 3 packet, only the LRH is in the
* rcvhdrq, the rest of the header is in the eager
* buffer.
*/
u8 opcode;
if (ebuf) {
bthbytes = (u8 *) ebuf;
opcode = *bthbytes;
}
else
opcode = 0;
get_rhf_errstring(eflags, emsg, sizeof emsg);
ipath_dbg("Err %x (%s), opcode %x, egrbuf %x, "
"len %x\n", eflags, emsg, opcode, etail,
tlen);
} else {
/*
* error packet, type of error unknown.
* Probably type 3, but we don't know, so don't
* even try to print the opcode, etc.
*/
ipath_dbg("Error Pkt, but no eflags! egrbuf %x, "
"len %x\nhdrq@%lx;hdrq+%x rhf: %llx; "
"hdr %llx %llx %llx %llx %llx\n",
etail, tlen, (unsigned long) rc, l,
(unsigned long long) rc[0],
(unsigned long long) rc[1],
(unsigned long long) rc[2],
(unsigned long long) rc[3],
(unsigned long long) rc[4],
(unsigned long long) rc[5]);
}
l += rsize;
if (l >= maxcnt)
l = 0;
/*
* update for each packet, to help prevent overflows if we
* have lots of packets.
*/
(void)ipath_write_ureg(dd, ur_rcvhdrhead,
dd->ipath_rhdrhead_intr_off | l, 0);
if (etype != RCVHQ_RCV_TYPE_EXPECTED)
(void)ipath_write_ureg(dd, ur_rcvegrindexhead,
etail, 0);
}
pkttot += i;
dd->ipath_port0head = l;
if (hdrqtail != (u32)le64_to_cpu(*dd->ipath_hdrqtailptr))
/* more arrived while we handled first batch */
goto gotmore;
if (pkttot > ipath_stats.sps_maxpkts_call)
ipath_stats.sps_maxpkts_call = pkttot;
ipath_stats.sps_port0pkts += pkttot;
ipath_stats.sps_avgpkts_call =
ipath_stats.sps_port0pkts / ++totcalls;
done:
clear_bit(0, &dd->ipath_rcv_pending);
smp_mb__after_clear_bit();
bail:;
}
/**
* ipath_update_pio_bufs - update shadow copy of the PIO availability map
* @dd: the infinipath device
*
* called whenever our local copy indicates we have run out of send buffers
* NOTE: This can be called from interrupt context by some code
* and from non-interrupt context by ipath_getpiobuf().
*/
static void ipath_update_pio_bufs(struct ipath_devdata *dd)
{
unsigned long flags;
int i;
const unsigned piobregs = (unsigned)dd->ipath_pioavregs;
/* If the generation (check) bits have changed, then we update the
* busy bit for the corresponding PIO buffer. This algorithm will
* modify positions to the value they already have in some cases
* (i.e., no change), but it's faster than changing only the bits
* that have changed.
*
* We would like to do this atomicly, to avoid spinlocks in the
* critical send path, but that's not really possible, given the
* type of changes, and that this routine could be called on
* multiple cpu's simultaneously, so we lock in this routine only,
* to avoid conflicting updates; all we change is the shadow, and
* it's a single 64 bit memory location, so by definition the update
* is atomic in terms of what other cpu's can see in testing the
* bits. The spin_lock overhead isn't too bad, since it only
* happens when all buffers are in use, so only cpu overhead, not
* latency or bandwidth is affected.
*/
#define _IPATH_ALL_CHECKBITS 0x5555555555555555ULL
if (!dd->ipath_pioavailregs_dma) {
ipath_dbg("Update shadow pioavail, but regs_dma NULL!\n");
return;
}
if (ipath_debug & __IPATH_VERBDBG) {
/* only if packet debug and verbose */
volatile __le64 *dma = dd->ipath_pioavailregs_dma;
unsigned long *shadow = dd->ipath_pioavailshadow;
ipath_cdbg(PKT, "Refill avail, dma0=%llx shad0=%lx, "
"d1=%llx s1=%lx, d2=%llx s2=%lx, d3=%llx "
"s3=%lx\n",
(unsigned long long) le64_to_cpu(dma[0]),
shadow[0],
(unsigned long long) le64_to_cpu(dma[1]),
shadow[1],
(unsigned long long) le64_to_cpu(dma[2]),
shadow[2],
(unsigned long long) le64_to_cpu(dma[3]),
shadow[3]);
if (piobregs > 4)
ipath_cdbg(
PKT, "2nd group, dma4=%llx shad4=%lx, "
"d5=%llx s5=%lx, d6=%llx s6=%lx, "
"d7=%llx s7=%lx\n",
(unsigned long long) le64_to_cpu(dma[4]),
shadow[4],
(unsigned long long) le64_to_cpu(dma[5]),
shadow[5],
(unsigned long long) le64_to_cpu(dma[6]),
shadow[6],
(unsigned long long) le64_to_cpu(dma[7]),
shadow[7]);
}
spin_lock_irqsave(&ipath_pioavail_lock, flags);
for (i = 0; i < piobregs; i++) {
u64 pchbusy, pchg, piov, pnew;
/*
* Chip Errata: bug 6641; even and odd qwords>3 are swapped
*/
if (i > 3) {
if (i & 1)
piov = le64_to_cpu(
dd->ipath_pioavailregs_dma[i - 1]);
else
piov = le64_to_cpu(
dd->ipath_pioavailregs_dma[i + 1]);
} else
piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i]);
pchg = _IPATH_ALL_CHECKBITS &
~(dd->ipath_pioavailshadow[i] ^ piov);
pchbusy = pchg << INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT;
if (pchg && (pchbusy & dd->ipath_pioavailshadow[i])) {
pnew = dd->ipath_pioavailshadow[i] & ~pchbusy;
pnew |= piov & pchbusy;
dd->ipath_pioavailshadow[i] = pnew;
}
}
spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
}
/**
* ipath_setrcvhdrsize - set the receive header size
* @dd: the infinipath device
* @rhdrsize: the receive header size
*
* called from user init code, and also layered driver init
*/
int ipath_setrcvhdrsize(struct ipath_devdata *dd, unsigned rhdrsize)
{
int ret = 0;
if (dd->ipath_flags & IPATH_RCVHDRSZ_SET) {
if (dd->ipath_rcvhdrsize != rhdrsize) {
dev_info(&dd->pcidev->dev,
"Error: can't set protocol header "
"size %u, already %u\n",
rhdrsize, dd->ipath_rcvhdrsize);
ret = -EAGAIN;
} else
ipath_cdbg(VERBOSE, "Reuse same protocol header "
"size %u\n", dd->ipath_rcvhdrsize);
} else if (rhdrsize > (dd->ipath_rcvhdrentsize -
(sizeof(u64) / sizeof(u32)))) {
ipath_dbg("Error: can't set protocol header size %u "
"(> max %u)\n", rhdrsize,
dd->ipath_rcvhdrentsize -
(u32) (sizeof(u64) / sizeof(u32)));
ret = -EOVERFLOW;
} else {
dd->ipath_flags |= IPATH_RCVHDRSZ_SET;
dd->ipath_rcvhdrsize = rhdrsize;
ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvhdrsize,
dd->ipath_rcvhdrsize);
ipath_cdbg(VERBOSE, "Set protocol header size to %u\n",
dd->ipath_rcvhdrsize);
}
return ret;
}
/**
* ipath_getpiobuf - find an available pio buffer
* @dd: the infinipath device
* @pbufnum: the buffer number is placed here
*
* do appropriate marking as busy, etc.
* returns buffer number if one found (>=0), negative number is error.
* Used by ipath_sma_send_pkt and ipath_layer_send
*/
u32 __iomem *ipath_getpiobuf(struct ipath_devdata *dd, u32 * pbufnum)
{
int i, j, starti, updated = 0;
unsigned piobcnt, iter;
unsigned long flags;
unsigned long *shadow = dd->ipath_pioavailshadow;
u32 __iomem *buf;
piobcnt = (unsigned)(dd->ipath_piobcnt2k
+ dd->ipath_piobcnt4k);
starti = dd->ipath_lastport_piobuf;
iter = piobcnt - starti;
if (dd->ipath_upd_pio_shadow) {
/*
* Minor optimization. If we had no buffers on last call,
* start out by doing the update; continue and do scan even
* if no buffers were updated, to be paranoid
*/
ipath_update_pio_bufs(dd);
/* we scanned here, don't do it at end of scan */
updated = 1;
i = starti;
} else
i = dd->ipath_lastpioindex;
rescan:
/*
* while test_and_set_bit() is atomic, we do that and then the
* change_bit(), and the pair is not. See if this is the cause
* of the remaining armlaunch errors.
*/
spin_lock_irqsave(&ipath_pioavail_lock, flags);
for (j = 0; j < iter; j++, i++) {
if (i >= piobcnt)
i = starti;
/*
* To avoid bus lock overhead, we first find a candidate
* buffer, then do the test and set, and continue if that
* fails.
*/
if (test_bit((2 * i) + 1, shadow) ||
test_and_set_bit((2 * i) + 1, shadow))
continue;
/* flip generation bit */
change_bit(2 * i, shadow);
break;
}
spin_unlock_irqrestore(&ipath_pioavail_lock, flags);
if (j == iter) {
volatile __le64 *dma = dd->ipath_pioavailregs_dma;
/*
* first time through; shadow exhausted, but may be real
* buffers available, so go see; if any updated, rescan
* (once)
*/
if (!updated) {
ipath_update_pio_bufs(dd);
updated = 1;
i = starti;
goto rescan;
}
dd->ipath_upd_pio_shadow = 1;
/*
* not atomic, but if we lose one once in a while, that's OK
*/
ipath_stats.sps_nopiobufs++;
if (!(++dd->ipath_consec_nopiobuf % 100000)) {
ipath_dbg(
"%u pio sends with no bufavail; dmacopy: "
"%llx %llx %llx %llx; shadow: "
"%lx %lx %lx %lx\n",
dd->ipath_consec_nopiobuf,
(unsigned long long) le64_to_cpu(dma[0]),
(unsigned long long) le64_to_cpu(dma[1]),
(unsigned long long) le64_to_cpu(dma[2]),
(unsigned long long) le64_to_cpu(dma[3]),
shadow[0], shadow[1], shadow[2],
shadow[3]);
/*
* 4 buffers per byte, 4 registers above, cover rest
* below
*/
if ((dd->ipath_piobcnt2k + dd->ipath_piobcnt4k) >
(sizeof(shadow[0]) * 4 * 4))
ipath_dbg("2nd group: dmacopy: %llx %llx "
"%llx %llx; shadow: %lx %lx "
"%lx %lx\n",
(unsigned long long)
le64_to_cpu(dma[4]),
(unsigned long long)
le64_to_cpu(dma[5]),
(unsigned long long)
le64_to_cpu(dma[6]),
(unsigned long long)
le64_to_cpu(dma[7]),
shadow[4], shadow[5],
shadow[6], shadow[7]);
}
buf = NULL;
goto bail;
}
if (updated)
/*
* ran out of bufs, now some (at least this one we just
* got) are now available, so tell the layered driver.
*/
__ipath_layer_intr(dd, IPATH_LAYER_INT_SEND_CONTINUE);
/*
* set next starting place. Since it's just an optimization,
* it doesn't matter who wins on this, so no locking
*/
dd->ipath_lastpioindex = i + 1;
if (dd->ipath_upd_pio_shadow)
dd->ipath_upd_pio_shadow = 0;
if (dd->ipath_consec_nopiobuf)
dd->ipath_consec_nopiobuf = 0;
if (i < dd->ipath_piobcnt2k)
buf = (u32 __iomem *) (dd->ipath_pio2kbase +
i * dd->ipath_palign);
else
buf = (u32 __iomem *)
(dd->ipath_pio4kbase +
(i - dd->ipath_piobcnt2k) * dd->ipath_4kalign);
ipath_cdbg(VERBOSE, "Return piobuf%u %uk @ %p\n",
i, (i < dd->ipath_piobcnt2k) ? 2 : 4, buf);
if (pbufnum)
*pbufnum = i;
bail:
return buf;
}
/**
* ipath_create_rcvhdrq - create a receive header queue
* @dd: the infinipath device
* @pd: the port data
*
* this *must* be physically contiguous memory, and for now,
* that limits it to what kmalloc can do.
*/
int ipath_create_rcvhdrq(struct ipath_devdata *dd,
struct ipath_portdata *pd)
{
int ret = 0, amt;
amt = ALIGN(dd->ipath_rcvhdrcnt * dd->ipath_rcvhdrentsize *
sizeof(u32), PAGE_SIZE);
if (!pd->port_rcvhdrq) {
/*
* not using REPEAT isn't viable; at 128KB, we can easily
* fail this. The problem with REPEAT is we can block here
* "forever". There isn't an inbetween, unfortunately. We
* could reduce the risk by never freeing the rcvhdrq except
* at unload, but even then, the first time a port is used,
* we could delay for some time...
*/
gfp_t gfp_flags = GFP_USER | __GFP_COMP;
pd->port_rcvhdrq = dma_alloc_coherent(
&dd->pcidev->dev, amt, &pd->port_rcvhdrq_phys,
gfp_flags);
if (!pd->port_rcvhdrq) {
ipath_dev_err(dd, "attempt to allocate %d bytes "
"for port %u rcvhdrq failed\n",
amt, pd->port_port);
ret = -ENOMEM;
goto bail;
}
pd->port_rcvhdrq_size = amt;
ipath_cdbg(VERBOSE, "%d pages at %p (phys %lx) size=%lu "
"for port %u rcvhdr Q\n",
amt >> PAGE_SHIFT, pd->port_rcvhdrq,
(unsigned long) pd->port_rcvhdrq_phys,
(unsigned long) pd->port_rcvhdrq_size,
pd->port_port);
} else {
/*
* clear for security, sanity, and/or debugging, each
* time we reuse
*/
memset(pd->port_rcvhdrq, 0, amt);
}
/*
* tell chip each time we init it, even if we are re-using previous
* memory (we zero it at process close)
*/
ipath_cdbg(VERBOSE, "writing port %d rcvhdraddr as %lx\n",
pd->port_port, (unsigned long) pd->port_rcvhdrq_phys);
ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdraddr,
pd->port_port, pd->port_rcvhdrq_phys);
ret = 0;
bail:
return ret;
}
int ipath_waitfor_complete(struct ipath_devdata *dd, ipath_kreg reg_id,
u64 bits_to_wait_for, u64 * valp)
{
unsigned long timeout;
u64 lastval, val;
int ret;
lastval = ipath_read_kreg64(dd, reg_id);
/* wait a ridiculously long time */
timeout = jiffies + msecs_to_jiffies(5);
do {
val = ipath_read_kreg64(dd, reg_id);
/* set so they have something, even on failures. */
*valp = val;
if ((val & bits_to_wait_for) == bits_to_wait_for) {
ret = 0;
break;
}
if (val != lastval)
ipath_cdbg(VERBOSE, "Changed from %llx to %llx, "
"waiting for %llx bits\n",
(unsigned long long) lastval,
(unsigned long long) val,
(unsigned long long) bits_to_wait_for);
cond_resched();
if (time_after(jiffies, timeout)) {
ipath_dbg("Didn't get bits %llx in register 0x%x, "
"got %llx\n",
(unsigned long long) bits_to_wait_for,
reg_id, (unsigned long long) *valp);
ret = -ENODEV;
break;
}
} while (1);
return ret;
}
/**
* ipath_waitfor_mdio_cmdready - wait for last command to complete
* @dd: the infinipath device
*
* Like ipath_waitfor_complete(), but we wait for the CMDVALID bit to go
* away indicating the last command has completed. It doesn't return data
*/
int ipath_waitfor_mdio_cmdready(struct ipath_devdata *dd)
{
unsigned long timeout;
u64 val;
int ret;
/* wait a ridiculously long time */
timeout = jiffies + msecs_to_jiffies(5);
do {
val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_mdio);
if (!(val & IPATH_MDIO_CMDVALID)) {
ret = 0;
break;
}
cond_resched();
if (time_after(jiffies, timeout)) {
ipath_dbg("CMDVALID stuck in mdio reg? (%llx)\n",
(unsigned long long) val);
ret = -ENODEV;
break;
}
} while (1);
return ret;
}
void ipath_set_ib_lstate(struct ipath_devdata *dd, int which)
{
static const char *what[4] = {
[0] = "DOWN",
[INFINIPATH_IBCC_LINKCMD_INIT] = "INIT",
[INFINIPATH_IBCC_LINKCMD_ARMED] = "ARMED",
[INFINIPATH_IBCC_LINKCMD_ACTIVE] = "ACTIVE"
};
ipath_cdbg(SMA, "Trying to move unit %u to %s, current ltstate "
"is %s\n", dd->ipath_unit,
what[(which >> INFINIPATH_IBCC_LINKCMD_SHIFT) &
INFINIPATH_IBCC_LINKCMD_MASK],
ipath_ibcstatus_str[
(ipath_read_kreg64
(dd, dd->ipath_kregs->kr_ibcstatus) >>
INFINIPATH_IBCS_LINKTRAININGSTATE_SHIFT) &
INFINIPATH_IBCS_LINKTRAININGSTATE_MASK]);
ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl,
dd->ipath_ibcctrl | which);
}
/**
* ipath_read_kreg64_port - read a device's per-port 64-bit kernel register
* @dd: the infinipath device
* @regno: the register number to read
* @port: the port containing the register
*
* Registers that vary with the chip implementation constants (port)
* use this routine.
*/
u64 ipath_read_kreg64_port(const struct ipath_devdata *dd, ipath_kreg regno,
unsigned port)
{
u16 where;
if (port < dd->ipath_portcnt &&
(regno == dd->ipath_kregs->kr_rcvhdraddr ||
regno == dd->ipath_kregs->kr_rcvhdrtailaddr))
where = regno + port;
else
where = -1;
return ipath_read_kreg64(dd, where);
}
/**
* ipath_write_kreg_port - write a device's per-port 64-bit kernel register
* @dd: the infinipath device
* @regno: the register number to write
* @port: the port containing the register
* @value: the value to write
*
* Registers that vary with the chip implementation constants (port)
* use this routine.
*/
void ipath_write_kreg_port(const struct ipath_devdata *dd, ipath_kreg regno,
unsigned port, u64 value)
{
u16 where;
if (port < dd->ipath_portcnt &&
(regno == dd->ipath_kregs->kr_rcvhdraddr ||
regno == dd->ipath_kregs->kr_rcvhdrtailaddr))
where = regno + port;
else
where = -1;
ipath_write_kreg(dd, where, value);
}
/**
* ipath_shutdown_device - shut down a device
* @dd: the infinipath device
*
* This is called to make the device quiet when we are about to
* unload the driver, and also when the device is administratively
* disabled. It does not free any data structures.
* Everything it does has to be setup again by ipath_init_chip(dd,1)
*/
void ipath_shutdown_device(struct ipath_devdata *dd)
{
u64 val;
ipath_dbg("Shutting down the device\n");
dd->ipath_flags |= IPATH_LINKUNK;
dd->ipath_flags &= ~(IPATH_INITTED | IPATH_LINKDOWN |
IPATH_LINKINIT | IPATH_LINKARMED |
IPATH_LINKACTIVE);
*dd->ipath_statusp &= ~(IPATH_STATUS_IB_CONF |
IPATH_STATUS_IB_READY);
/* mask interrupts, but not errors */
ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL);
dd->ipath_rcvctrl = 0;
ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl,
dd->ipath_rcvctrl);
/*
* gracefully stop all sends allowing any in progress to trickle out
* first.
*/
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, 0ULL);
/* flush it */
val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch);
/*
* enough for anything that's going to trickle out to have actually
* done so.
*/
udelay(5);
/*
* abort any armed or launched PIO buffers that didn't go. (self
* clearing). Will cause any packet currently being transmitted to
* go out with an EBP, and may also cause a short packet error on
* the receiver.
*/
ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
INFINIPATH_S_ABORT);
ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKINITCMD_DISABLE <<
INFINIPATH_IBCC_LINKINITCMD_SHIFT);
/*
* we are shutting down, so tell the layered driver. We don't do
* this on just a link state change, much like ethernet, a cable
* unplug, etc. doesn't change driver state
*/
ipath_layer_intr(dd, IPATH_LAYER_INT_IF_DOWN);
/* disable IBC */
dd->ipath_control &= ~INFINIPATH_C_LINKENABLE;
ipath_write_kreg(dd, dd->ipath_kregs->kr_control,
dd->ipath_control);
/*
* clear SerdesEnable and turn the leds off; do this here because
* we are unloading, so don't count on interrupts to move along
* Turn the LEDs off explictly for the same reason.
*/
dd->ipath_f_quiet_serdes(dd);
dd->ipath_f_setextled(dd, 0, 0);
if (dd->ipath_stats_timer_active) {
del_timer_sync(&dd->ipath_stats_timer);
dd->ipath_stats_timer_active = 0;
}
/*
* clear all interrupts and errors, so that the next time the driver
* is loaded or device is enabled, we know that whatever is set
* happened while we were unloaded
*/
ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear,
~0ULL & ~INFINIPATH_HWE_MEMBISTFAILED);
ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear, -1LL);
ipath_write_kreg(dd, dd->ipath_kregs->kr_intclear, -1LL);
}
/**
* ipath_free_pddata - free a port's allocated data
* @dd: the infinipath device
* @port: the port
* @freehdrq: free the port data structure if true
*
* when closing, free up any allocated data for a port, if the
* reference count goes to zero
* Note: this also optionally frees the portdata itself!
* Any changes here have to be matched up with the reinit case
* of ipath_init_chip(), which calls this routine on reinit after reset.
*/
void ipath_free_pddata(struct ipath_devdata *dd, u32 port, int freehdrq)
{
struct ipath_portdata *pd = dd->ipath_pd[port];
if (!pd)
return;
if (freehdrq)
/*
* only clear and free portdata if we are going to also
* release the hdrq, otherwise we leak the hdrq on each
* open/close cycle
*/
dd->ipath_pd[port] = NULL;
if (freehdrq && pd->port_rcvhdrq) {
ipath_cdbg(VERBOSE, "free closed port %d rcvhdrq @ %p "
"(size=%lu)\n", pd->port_port, pd->port_rcvhdrq,
(unsigned long) pd->port_rcvhdrq_size);
dma_free_coherent(&dd->pcidev->dev, pd->port_rcvhdrq_size,
pd->port_rcvhdrq, pd->port_rcvhdrq_phys);
pd->port_rcvhdrq = NULL;
}
if (port && pd->port_rcvegrbuf) {
/* always free this */
if (pd->port_rcvegrbuf) {
unsigned e;
for (e = 0; e < pd->port_rcvegrbuf_chunks; e++) {
void *base = pd->port_rcvegrbuf[e];
size_t size = pd->port_rcvegrbuf_size;
ipath_cdbg(VERBOSE, "egrbuf free(%p, %lu), "
"chunk %u/%u\n", base,
(unsigned long) size,
e, pd->port_rcvegrbuf_chunks);
dma_free_coherent(
&dd->pcidev->dev, size, base,
pd->port_rcvegrbuf_phys[e]);
}
vfree(pd->port_rcvegrbuf);
pd->port_rcvegrbuf = NULL;
vfree(pd->port_rcvegrbuf_phys);
pd->port_rcvegrbuf_phys = NULL;
}
pd->port_rcvegrbuf_chunks = 0;
} else if (port == 0 && dd->ipath_port0_skbs) {
unsigned e;
struct sk_buff **skbs = dd->ipath_port0_skbs;
dd->ipath_port0_skbs = NULL;
ipath_cdbg(VERBOSE, "free closed port %d ipath_port0_skbs "
"@ %p\n", pd->port_port, skbs);
for (e = 0; e < dd->ipath_rcvegrcnt; e++)
if (skbs[e])
dev_kfree_skb(skbs[e]);
vfree(skbs);
}
if (freehdrq) {
kfree(pd->port_tid_pg_list);
kfree(pd);
}
}
static int __init infinipath_init(void)
{
int ret;
ipath_dbg(KERN_INFO DRIVER_LOAD_MSG "%s", ipath_core_version);
/*
* These must be called before the driver is registered with
* the PCI subsystem.
*/
idr_init(&unit_table);
if (!idr_pre_get(&unit_table, GFP_KERNEL)) {
ret = -ENOMEM;
goto bail;
}
ret = pci_register_driver(&ipath_driver);
if (ret < 0) {
printk(KERN_ERR IPATH_DRV_NAME
": Unable to register driver: error %d\n", -ret);
goto bail_unit;
}
ret = ipath_driver_create_group(&ipath_driver.driver);
if (ret < 0) {
printk(KERN_ERR IPATH_DRV_NAME ": Unable to create driver "
"sysfs entries: error %d\n", -ret);
goto bail_pci;
}
ret = ipath_init_ipathfs();
if (ret < 0) {
printk(KERN_ERR IPATH_DRV_NAME ": Unable to create "
"ipathfs: error %d\n", -ret);
goto bail_group;
}
goto bail;
bail_group:
ipath_driver_remove_group(&ipath_driver.driver);
bail_pci:
pci_unregister_driver(&ipath_driver);
bail_unit:
idr_destroy(&unit_table);
bail:
return ret;
}
static void cleanup_device(struct ipath_devdata *dd)
{
int port;
ipath_shutdown_device(dd);
if (*dd->ipath_statusp & IPATH_STATUS_CHIP_PRESENT) {
/* can't do anything more with chip; needs re-init */
*dd->ipath_statusp &= ~IPATH_STATUS_CHIP_PRESENT;
if (dd->ipath_kregbase) {
/*
* if we haven't already cleaned up before these are
* to ensure any register reads/writes "fail" until
* re-init
*/
dd->ipath_kregbase = NULL;
dd->ipath_kregvirt = NULL;
dd->ipath_uregbase = 0;
dd->ipath_sregbase = 0;
dd->ipath_cregbase = 0;
dd->ipath_kregsize = 0;
}
ipath_disable_wc(dd);
}
if (dd->ipath_pioavailregs_dma) {
dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
(void *) dd->ipath_pioavailregs_dma,
dd->ipath_pioavailregs_phys);
dd->ipath_pioavailregs_dma = NULL;
}
if (dd->ipath_pageshadow) {
struct page **tmpp = dd->ipath_pageshadow;
int i, cnt = 0;
ipath_cdbg(VERBOSE, "Unlocking any expTID pages still "
"locked\n");
for (port = 0; port < dd->ipath_cfgports; port++) {
int port_tidbase = port * dd->ipath_rcvtidcnt;
int maxtid = port_tidbase + dd->ipath_rcvtidcnt;
for (i = port_tidbase; i < maxtid; i++) {
if (!tmpp[i])
continue;
ipath_release_user_pages(&tmpp[i], 1);
tmpp[i] = NULL;
cnt++;
}
}
if (cnt) {
ipath_stats.sps_pageunlocks += cnt;
ipath_cdbg(VERBOSE, "There were still %u expTID "
"entries locked\n", cnt);
}
if (ipath_stats.sps_pagelocks ||
ipath_stats.sps_pageunlocks)
ipath_cdbg(VERBOSE, "%llu pages locked, %llu "
"unlocked via ipath_m{un}lock\n",
(unsigned long long)
ipath_stats.sps_pagelocks,
(unsigned long long)
ipath_stats.sps_pageunlocks);
ipath_cdbg(VERBOSE, "Free shadow page tid array at %p\n",
dd->ipath_pageshadow);
vfree(dd->ipath_pageshadow);
dd->ipath_pageshadow = NULL;
}
/*
* free any resources still in use (usually just kernel ports)
* at unload
*/
for (port = 0; port < dd->ipath_cfgports; port++)
ipath_free_pddata(dd, port, 1);
kfree(dd->ipath_pd);
/*
* debuggability, in case some cleanup path tries to use it
* after this
*/
dd->ipath_pd = NULL;
}
static void __exit infinipath_cleanup(void)
{
struct ipath_devdata *dd, *tmp;
unsigned long flags;
ipath_exit_ipathfs();
ipath_driver_remove_group(&ipath_driver.driver);
spin_lock_irqsave(&ipath_devs_lock, flags);
/*
* turn off rcv, send, and interrupts for all ports, all drivers
* should also hard reset the chip here?
* free up port 0 (kernel) rcvhdr, egr bufs, and eventually tid bufs
* for all versions of the driver, if they were allocated
*/
list_for_each_entry_safe(dd, tmp, &ipath_dev_list, ipath_list) {
spin_unlock_irqrestore(&ipath_devs_lock, flags);
if (dd->ipath_kregbase)
cleanup_device(dd);
if (dd->pcidev) {
if (dd->pcidev->irq) {
ipath_cdbg(VERBOSE,
"unit %u free_irq of irq %x\n",
dd->ipath_unit, dd->pcidev->irq);
free_irq(dd->pcidev->irq, dd);
} else
ipath_dbg("irq is 0, not doing free_irq "
"for unit %u\n", dd->ipath_unit);
/*
* we check for NULL here, because it's outside
* the kregbase check, and we need to call it
* after the free_irq. Thus it's possible that
* the function pointers were never initialized.
*/
if (dd->ipath_f_cleanup)
/* clean up chip-specific stuff */
dd->ipath_f_cleanup(dd);
dd->pcidev = NULL;
}
spin_lock_irqsave(&ipath_devs_lock, flags);
}
spin_unlock_irqrestore(&ipath_devs_lock, flags);
ipath_cdbg(VERBOSE, "Unregistering pci driver\n");
pci_unregister_driver(&ipath_driver);
idr_destroy(&unit_table);
}
/**
* ipath_reset_device - reset the chip if possible
* @unit: the device to reset
*
* Whether or not reset is successful, we attempt to re-initialize the chip
* (that is, much like a driver unload/reload). We clear the INITTED flag
* so that the various entry points will fail until we reinitialize. For
* now, we only allow this if no user ports are open that use chip resources
*/
int ipath_reset_device(int unit)
{
int ret, i;
struct ipath_devdata *dd = ipath_lookup(unit);
if (!dd) {
ret = -ENODEV;
goto bail;
}
dev_info(&dd->pcidev->dev, "Reset on unit %u requested\n", unit);
if (!dd->ipath_kregbase || !(dd->ipath_flags & IPATH_PRESENT)) {
dev_info(&dd->pcidev->dev, "Invalid unit number %u or "
"not initialized or not present\n", unit);
ret = -ENXIO;
goto bail;
}
if (dd->ipath_pd)
for (i = 1; i < dd->ipath_cfgports; i++) {
if (dd->ipath_pd[i] && dd->ipath_pd[i]->port_cnt) {
ipath_dbg("unit %u port %d is in use "
"(PID %u cmd %s), can't reset\n",
unit, i,
dd->ipath_pd[i]->port_pid,
dd->ipath_pd[i]->port_comm);
ret = -EBUSY;
goto bail;
}
}
dd->ipath_flags &= ~IPATH_INITTED;
ret = dd->ipath_f_reset(dd);
if (ret != 1)
ipath_dbg("reset was not successful\n");
ipath_dbg("Trying to reinitialize unit %u after reset attempt\n",
unit);
ret = ipath_init_chip(dd, 1);
if (ret)
ipath_dev_err(dd, "Reinitialize unit %u after "
"reset failed with %d\n", unit, ret);
else
dev_info(&dd->pcidev->dev, "Reinitialized unit %u after "
"resetting\n", unit);
bail:
return ret;
}
module_init(infinipath_init);
module_exit(infinipath_cleanup);