android_kernel_xiaomi_sm8350/arch/arm/plat-omap/mcbsp.c

1034 lines
27 KiB
C
Raw Normal View History

/*
* linux/arch/arm/plat-omap/mcbsp.c
*
* Copyright (C) 2004 Nokia Corporation
* Author: Samuel Ortiz <samuel.ortiz@nokia.com>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Multichannel mode not supported.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/wait.h>
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <asm/delay.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/arch/dma.h>
#include <asm/arch/mux.h>
#include <asm/arch/irqs.h>
#include <asm/arch/dsp_common.h>
#include <asm/arch/mcbsp.h>
#ifdef CONFIG_MCBSP_DEBUG
#define DBG(x...) printk(x)
#else
#define DBG(x...) do { } while (0)
#endif
struct omap_mcbsp {
u32 io_base;
u8 id;
u8 free;
omap_mcbsp_word_length rx_word_length;
omap_mcbsp_word_length tx_word_length;
omap_mcbsp_io_type_t io_type; /* IRQ or poll */
/* IRQ based TX/RX */
int rx_irq;
int tx_irq;
/* DMA stuff */
u8 dma_rx_sync;
short dma_rx_lch;
u8 dma_tx_sync;
short dma_tx_lch;
/* Completion queues */
struct completion tx_irq_completion;
struct completion rx_irq_completion;
struct completion tx_dma_completion;
struct completion rx_dma_completion;
spinlock_t lock;
};
static struct omap_mcbsp mcbsp[OMAP_MAX_MCBSP_COUNT];
#ifdef CONFIG_ARCH_OMAP1
static struct clk *mcbsp_dsp_ck = 0;
static struct clk *mcbsp_api_ck = 0;
static struct clk *mcbsp_dspxor_ck = 0;
#endif
#ifdef CONFIG_ARCH_OMAP2
static struct clk *mcbsp1_ick = 0;
static struct clk *mcbsp1_fck = 0;
static struct clk *mcbsp2_ick = 0;
static struct clk *mcbsp2_fck = 0;
static struct clk *sys_ck = 0;
static struct clk *sys_clkout = 0;
#endif
static void omap_mcbsp_dump_reg(u8 id)
{
DBG("**** MCBSP%d regs ****\n", mcbsp[id].id);
DBG("DRR2: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, DRR2));
DBG("DRR1: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, DRR1));
DBG("DXR2: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, DXR2));
DBG("DXR1: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, DXR1));
DBG("SPCR2: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, SPCR2));
DBG("SPCR1: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, SPCR1));
DBG("RCR2: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, RCR2));
DBG("RCR1: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, RCR1));
DBG("XCR2: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, XCR2));
DBG("XCR1: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, XCR1));
DBG("SRGR2: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, SRGR2));
DBG("SRGR1: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, SRGR1));
DBG("PCR0: 0x%04x\n", OMAP_MCBSP_READ(mcbsp[id].io_base, PCR0));
DBG("***********************\n");
}
static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *dev_id, struct pt_regs *regs)
{
struct omap_mcbsp * mcbsp_tx = (struct omap_mcbsp *)(dev_id);
DBG("TX IRQ callback : 0x%x\n", OMAP_MCBSP_READ(mcbsp_tx->io_base, SPCR2));
complete(&mcbsp_tx->tx_irq_completion);
return IRQ_HANDLED;
}
static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *dev_id, struct pt_regs *regs)
{
struct omap_mcbsp * mcbsp_rx = (struct omap_mcbsp *)(dev_id);
DBG("RX IRQ callback : 0x%x\n", OMAP_MCBSP_READ(mcbsp_rx->io_base, SPCR2));
complete(&mcbsp_rx->rx_irq_completion);
return IRQ_HANDLED;
}
static void omap_mcbsp_tx_dma_callback(int lch, u16 ch_status, void *data)
{
struct omap_mcbsp * mcbsp_dma_tx = (struct omap_mcbsp *)(data);
DBG("TX DMA callback : 0x%x\n", OMAP_MCBSP_READ(mcbsp_dma_tx->io_base, SPCR2));
/* We can free the channels */
omap_free_dma(mcbsp_dma_tx->dma_tx_lch);
mcbsp_dma_tx->dma_tx_lch = -1;
complete(&mcbsp_dma_tx->tx_dma_completion);
}
static void omap_mcbsp_rx_dma_callback(int lch, u16 ch_status, void *data)
{
struct omap_mcbsp * mcbsp_dma_rx = (struct omap_mcbsp *)(data);
DBG("RX DMA callback : 0x%x\n", OMAP_MCBSP_READ(mcbsp_dma_rx->io_base, SPCR2));
/* We can free the channels */
omap_free_dma(mcbsp_dma_rx->dma_rx_lch);
mcbsp_dma_rx->dma_rx_lch = -1;
complete(&mcbsp_dma_rx->rx_dma_completion);
}
/*
* omap_mcbsp_config simply write a config to the
* appropriate McBSP.
* You either call this function or set the McBSP registers
* by yourself before calling omap_mcbsp_start().
*/
void omap_mcbsp_config(unsigned int id, const struct omap_mcbsp_reg_cfg * config)
{
u32 io_base = mcbsp[id].io_base;
DBG("OMAP-McBSP: McBSP%d io_base: 0x%8x\n", id+1, io_base);
/* We write the given config */
OMAP_MCBSP_WRITE(io_base, SPCR2, config->spcr2);
OMAP_MCBSP_WRITE(io_base, SPCR1, config->spcr1);
OMAP_MCBSP_WRITE(io_base, RCR2, config->rcr2);
OMAP_MCBSP_WRITE(io_base, RCR1, config->rcr1);
OMAP_MCBSP_WRITE(io_base, XCR2, config->xcr2);
OMAP_MCBSP_WRITE(io_base, XCR1, config->xcr1);
OMAP_MCBSP_WRITE(io_base, SRGR2, config->srgr2);
OMAP_MCBSP_WRITE(io_base, SRGR1, config->srgr1);
OMAP_MCBSP_WRITE(io_base, MCR2, config->mcr2);
OMAP_MCBSP_WRITE(io_base, MCR1, config->mcr1);
OMAP_MCBSP_WRITE(io_base, PCR0, config->pcr0);
}
static int omap_mcbsp_check(unsigned int id)
{
if (cpu_is_omap730()) {
if (id > OMAP_MAX_MCBSP_COUNT - 1) {
printk(KERN_ERR "OMAP-McBSP: McBSP%d doesn't exist\n", id + 1);
return -1;
}
return 0;
}
if (cpu_is_omap15xx() || cpu_is_omap16xx() || cpu_is_omap24xx()) {
if (id > OMAP_MAX_MCBSP_COUNT) {
printk(KERN_ERR "OMAP-McBSP: McBSP%d doesn't exist\n", id + 1);
return -1;
}
return 0;
}
return -1;
}
#ifdef CONFIG_ARCH_OMAP1
static void omap_mcbsp_dsp_request(void)
{
if (cpu_is_omap15xx() || cpu_is_omap16xx()) {
clk_enable(mcbsp_dsp_ck);
clk_enable(mcbsp_api_ck);
/* enable 12MHz clock to mcbsp 1 & 3 */
clk_enable(mcbsp_dspxor_ck);
/*
* DSP external peripheral reset
* FIXME: This should be moved to dsp code
*/
__raw_writew(__raw_readw(DSP_RSTCT2) | 1 | 1 << 1,
DSP_RSTCT2);
}
}
static void omap_mcbsp_dsp_free(void)
{
if (cpu_is_omap15xx() || cpu_is_omap16xx()) {
clk_disable(mcbsp_dspxor_ck);
clk_disable(mcbsp_dsp_ck);
clk_disable(mcbsp_api_ck);
}
}
#endif
#ifdef CONFIG_ARCH_OMAP2
static void omap2_mcbsp2_mux_setup(void)
{
omap_cfg_reg(Y15_24XX_MCBSP2_CLKX);
omap_cfg_reg(R14_24XX_MCBSP2_FSX);
omap_cfg_reg(W15_24XX_MCBSP2_DR);
omap_cfg_reg(V15_24XX_MCBSP2_DX);
omap_cfg_reg(V14_24XX_GPIO117);
omap_cfg_reg(W14_24XX_SYS_CLKOUT);
}
#endif
/*
* We can choose between IRQ based or polled IO.
* This needs to be called before omap_mcbsp_request().
*/
int omap_mcbsp_set_io_type(unsigned int id, omap_mcbsp_io_type_t io_type)
{
if (omap_mcbsp_check(id) < 0)
return -EINVAL;
spin_lock(&mcbsp[id].lock);
if (!mcbsp[id].free) {
printk (KERN_ERR "OMAP-McBSP: McBSP%d is currently in use\n", id + 1);
spin_unlock(&mcbsp[id].lock);
return -EINVAL;
}
mcbsp[id].io_type = io_type;
spin_unlock(&mcbsp[id].lock);
return 0;
}
int omap_mcbsp_request(unsigned int id)
{
int err;
if (omap_mcbsp_check(id) < 0)
return -EINVAL;
#ifdef CONFIG_ARCH_OMAP1
/*
* On 1510, 1610 and 1710, McBSP1 and McBSP3
* are DSP public peripherals.
*/
if (id == OMAP_MCBSP1 || id == OMAP_MCBSP3)
omap_mcbsp_dsp_request();
#endif
#ifdef CONFIG_ARCH_OMAP2
if (cpu_is_omap24xx()) {
if (id == OMAP_MCBSP1) {
clk_enable(mcbsp1_ick);
clk_enable(mcbsp1_fck);
} else {
clk_enable(mcbsp2_ick);
clk_enable(mcbsp2_fck);
}
}
#endif
spin_lock(&mcbsp[id].lock);
if (!mcbsp[id].free) {
printk (KERN_ERR "OMAP-McBSP: McBSP%d is currently in use\n", id + 1);
spin_unlock(&mcbsp[id].lock);
return -1;
}
mcbsp[id].free = 0;
spin_unlock(&mcbsp[id].lock);
if (mcbsp[id].io_type == OMAP_MCBSP_IRQ_IO) {
/* We need to get IRQs here */
err = request_irq(mcbsp[id].tx_irq, omap_mcbsp_tx_irq_handler, 0,
"McBSP",
(void *) (&mcbsp[id]));
if (err != 0) {
printk(KERN_ERR "OMAP-McBSP: Unable to request TX IRQ %d for McBSP%d\n",
mcbsp[id].tx_irq, mcbsp[id].id);
return err;
}
init_completion(&(mcbsp[id].tx_irq_completion));
err = request_irq(mcbsp[id].rx_irq, omap_mcbsp_rx_irq_handler, 0,
"McBSP",
(void *) (&mcbsp[id]));
if (err != 0) {
printk(KERN_ERR "OMAP-McBSP: Unable to request RX IRQ %d for McBSP%d\n",
mcbsp[id].rx_irq, mcbsp[id].id);
free_irq(mcbsp[id].tx_irq, (void *) (&mcbsp[id]));
return err;
}
init_completion(&(mcbsp[id].rx_irq_completion));
}
return 0;
}
void omap_mcbsp_free(unsigned int id)
{
if (omap_mcbsp_check(id) < 0)
return;
#ifdef CONFIG_ARCH_OMAP1
if (cpu_class_is_omap1()) {
if (id == OMAP_MCBSP1 || id == OMAP_MCBSP3)
omap_mcbsp_dsp_free();
}
#endif
#ifdef CONFIG_ARCH_OMAP2
if (cpu_is_omap24xx()) {
if (id == OMAP_MCBSP1) {
clk_disable(mcbsp1_ick);
clk_disable(mcbsp1_fck);
} else {
clk_disable(mcbsp2_ick);
clk_disable(mcbsp2_fck);
}
}
#endif
spin_lock(&mcbsp[id].lock);
if (mcbsp[id].free) {
printk (KERN_ERR "OMAP-McBSP: McBSP%d was not reserved\n", id + 1);
spin_unlock(&mcbsp[id].lock);
return;
}
mcbsp[id].free = 1;
spin_unlock(&mcbsp[id].lock);
if (mcbsp[id].io_type == OMAP_MCBSP_IRQ_IO) {
/* Free IRQs */
free_irq(mcbsp[id].rx_irq, (void *) (&mcbsp[id]));
free_irq(mcbsp[id].tx_irq, (void *) (&mcbsp[id]));
}
}
/*
* Here we start the McBSP, by enabling the sample
* generator, both transmitter and receivers,
* and the frame sync.
*/
void omap_mcbsp_start(unsigned int id)
{
u32 io_base;
u16 w;
if (omap_mcbsp_check(id) < 0)
return;
io_base = mcbsp[id].io_base;
mcbsp[id].rx_word_length = ((OMAP_MCBSP_READ(io_base, RCR1) >> 5) & 0x7);
mcbsp[id].tx_word_length = ((OMAP_MCBSP_READ(io_base, XCR1) >> 5) & 0x7);
/* Start the sample generator */
w = OMAP_MCBSP_READ(io_base, SPCR2);
OMAP_MCBSP_WRITE(io_base, SPCR2, w | (1 << 6));
/* Enable transmitter and receiver */
w = OMAP_MCBSP_READ(io_base, SPCR2);
OMAP_MCBSP_WRITE(io_base, SPCR2, w | 1);
w = OMAP_MCBSP_READ(io_base, SPCR1);
OMAP_MCBSP_WRITE(io_base, SPCR1, w | 1);
udelay(100);
/* Start frame sync */
w = OMAP_MCBSP_READ(io_base, SPCR2);
OMAP_MCBSP_WRITE(io_base, SPCR2, w | (1 << 7));
/* Dump McBSP Regs */
omap_mcbsp_dump_reg(id);
}
void omap_mcbsp_stop(unsigned int id)
{
u32 io_base;
u16 w;
if (omap_mcbsp_check(id) < 0)
return;
io_base = mcbsp[id].io_base;
/* Reset transmitter */
w = OMAP_MCBSP_READ(io_base, SPCR2);
OMAP_MCBSP_WRITE(io_base, SPCR2, w & ~(1));
/* Reset receiver */
w = OMAP_MCBSP_READ(io_base, SPCR1);
OMAP_MCBSP_WRITE(io_base, SPCR1, w & ~(1));
/* Reset the sample rate generator */
w = OMAP_MCBSP_READ(io_base, SPCR2);
OMAP_MCBSP_WRITE(io_base, SPCR2, w & ~(1 << 6));
}
/* polled mcbsp i/o operations */
int omap_mcbsp_pollwrite(unsigned int id, u16 buf)
{
u32 base = mcbsp[id].io_base;
writew(buf, base + OMAP_MCBSP_REG_DXR1);
/* if frame sync error - clear the error */
if (readw(base + OMAP_MCBSP_REG_SPCR2) & XSYNC_ERR) {
/* clear error */
writew(readw(base + OMAP_MCBSP_REG_SPCR2) & (~XSYNC_ERR),
base + OMAP_MCBSP_REG_SPCR2);
/* resend */
return -1;
} else {
/* wait for transmit confirmation */
int attemps = 0;
while (!(readw(base + OMAP_MCBSP_REG_SPCR2) & XRDY)) {
if (attemps++ > 1000) {
writew(readw(base + OMAP_MCBSP_REG_SPCR2) &
(~XRST),
base + OMAP_MCBSP_REG_SPCR2);
udelay(10);
writew(readw(base + OMAP_MCBSP_REG_SPCR2) |
(XRST),
base + OMAP_MCBSP_REG_SPCR2);
udelay(10);
printk(KERN_ERR
" Could not write to McBSP Register\n");
return -2;
}
}
}
return 0;
}
int omap_mcbsp_pollread(unsigned int id, u16 * buf)
{
u32 base = mcbsp[id].io_base;
/* if frame sync error - clear the error */
if (readw(base + OMAP_MCBSP_REG_SPCR1) & RSYNC_ERR) {
/* clear error */
writew(readw(base + OMAP_MCBSP_REG_SPCR1) & (~RSYNC_ERR),
base + OMAP_MCBSP_REG_SPCR1);
/* resend */
return -1;
} else {
/* wait for recieve confirmation */
int attemps = 0;
while (!(readw(base + OMAP_MCBSP_REG_SPCR1) & RRDY)) {
if (attemps++ > 1000) {
writew(readw(base + OMAP_MCBSP_REG_SPCR1) &
(~RRST),
base + OMAP_MCBSP_REG_SPCR1);
udelay(10);
writew(readw(base + OMAP_MCBSP_REG_SPCR1) |
(RRST),
base + OMAP_MCBSP_REG_SPCR1);
udelay(10);
printk(KERN_ERR
" Could not read from McBSP Register\n");
return -2;
}
}
}
*buf = readw(base + OMAP_MCBSP_REG_DRR1);
return 0;
}
/*
* IRQ based word transmission.
*/
void omap_mcbsp_xmit_word(unsigned int id, u32 word)
{
u32 io_base;
omap_mcbsp_word_length word_length = mcbsp[id].tx_word_length;
if (omap_mcbsp_check(id) < 0)
return;
io_base = mcbsp[id].io_base;
wait_for_completion(&(mcbsp[id].tx_irq_completion));
if (word_length > OMAP_MCBSP_WORD_16)
OMAP_MCBSP_WRITE(io_base, DXR2, word >> 16);
OMAP_MCBSP_WRITE(io_base, DXR1, word & 0xffff);
}
u32 omap_mcbsp_recv_word(unsigned int id)
{
u32 io_base;
u16 word_lsb, word_msb = 0;
omap_mcbsp_word_length word_length = mcbsp[id].rx_word_length;
if (omap_mcbsp_check(id) < 0)
return -EINVAL;
io_base = mcbsp[id].io_base;
wait_for_completion(&(mcbsp[id].rx_irq_completion));
if (word_length > OMAP_MCBSP_WORD_16)
word_msb = OMAP_MCBSP_READ(io_base, DRR2);
word_lsb = OMAP_MCBSP_READ(io_base, DRR1);
return (word_lsb | (word_msb << 16));
}
int omap_mcbsp_spi_master_xmit_word_poll(unsigned int id, u32 word)
{
u32 io_base = mcbsp[id].io_base;
omap_mcbsp_word_length tx_word_length = mcbsp[id].tx_word_length;
omap_mcbsp_word_length rx_word_length = mcbsp[id].rx_word_length;
u16 spcr2, spcr1, attempts = 0, word_lsb, word_msb = 0;
if (tx_word_length != rx_word_length)
return -EINVAL;
/* First we wait for the transmitter to be ready */
spcr2 = OMAP_MCBSP_READ(io_base, SPCR2);
while (!(spcr2 & XRDY)) {
spcr2 = OMAP_MCBSP_READ(io_base, SPCR2);
if (attempts++ > 1000) {
/* We must reset the transmitter */
OMAP_MCBSP_WRITE(io_base, SPCR2, spcr2 & (~XRST));
udelay(10);
OMAP_MCBSP_WRITE(io_base, SPCR2, spcr2 | XRST);
udelay(10);
printk("McBSP transmitter not ready\n");
return -EAGAIN;
}
}
/* Now we can push the data */
if (tx_word_length > OMAP_MCBSP_WORD_16)
OMAP_MCBSP_WRITE(io_base, DXR2, word >> 16);
OMAP_MCBSP_WRITE(io_base, DXR1, word & 0xffff);
/* We wait for the receiver to be ready */
spcr1 = OMAP_MCBSP_READ(io_base, SPCR1);
while (!(spcr1 & RRDY)) {
spcr1 = OMAP_MCBSP_READ(io_base, SPCR1);
if (attempts++ > 1000) {
/* We must reset the receiver */
OMAP_MCBSP_WRITE(io_base, SPCR1, spcr1 & (~RRST));
udelay(10);
OMAP_MCBSP_WRITE(io_base, SPCR1, spcr1 | RRST);
udelay(10);
printk("McBSP receiver not ready\n");
return -EAGAIN;
}
}
/* Receiver is ready, let's read the dummy data */
if (rx_word_length > OMAP_MCBSP_WORD_16)
word_msb = OMAP_MCBSP_READ(io_base, DRR2);
word_lsb = OMAP_MCBSP_READ(io_base, DRR1);
return 0;
}
int omap_mcbsp_spi_master_recv_word_poll(unsigned int id, u32 * word)
{
u32 io_base = mcbsp[id].io_base, clock_word = 0;
omap_mcbsp_word_length tx_word_length = mcbsp[id].tx_word_length;
omap_mcbsp_word_length rx_word_length = mcbsp[id].rx_word_length;
u16 spcr2, spcr1, attempts = 0, word_lsb, word_msb = 0;
if (tx_word_length != rx_word_length)
return -EINVAL;
/* First we wait for the transmitter to be ready */
spcr2 = OMAP_MCBSP_READ(io_base, SPCR2);
while (!(spcr2 & XRDY)) {
spcr2 = OMAP_MCBSP_READ(io_base, SPCR2);
if (attempts++ > 1000) {
/* We must reset the transmitter */
OMAP_MCBSP_WRITE(io_base, SPCR2, spcr2 & (~XRST));
udelay(10);
OMAP_MCBSP_WRITE(io_base, SPCR2, spcr2 | XRST);
udelay(10);
printk("McBSP transmitter not ready\n");
return -EAGAIN;
}
}
/* We first need to enable the bus clock */
if (tx_word_length > OMAP_MCBSP_WORD_16)
OMAP_MCBSP_WRITE(io_base, DXR2, clock_word >> 16);
OMAP_MCBSP_WRITE(io_base, DXR1, clock_word & 0xffff);
/* We wait for the receiver to be ready */
spcr1 = OMAP_MCBSP_READ(io_base, SPCR1);
while (!(spcr1 & RRDY)) {
spcr1 = OMAP_MCBSP_READ(io_base, SPCR1);
if (attempts++ > 1000) {
/* We must reset the receiver */
OMAP_MCBSP_WRITE(io_base, SPCR1, spcr1 & (~RRST));
udelay(10);
OMAP_MCBSP_WRITE(io_base, SPCR1, spcr1 | RRST);
udelay(10);
printk("McBSP receiver not ready\n");
return -EAGAIN;
}
}
/* Receiver is ready, there is something for us */
if (rx_word_length > OMAP_MCBSP_WORD_16)
word_msb = OMAP_MCBSP_READ(io_base, DRR2);
word_lsb = OMAP_MCBSP_READ(io_base, DRR1);
word[0] = (word_lsb | (word_msb << 16));
return 0;
}
/*
* Simple DMA based buffer rx/tx routines.
* Nothing fancy, just a single buffer tx/rx through DMA.
* The DMA resources are released once the transfer is done.
* For anything fancier, you should use your own customized DMA
* routines and callbacks.
*/
int omap_mcbsp_xmit_buffer(unsigned int id, dma_addr_t buffer, unsigned int length)
{
int dma_tx_ch;
int src_port = 0;
int dest_port = 0;
int sync_dev = 0;
if (omap_mcbsp_check(id) < 0)
return -EINVAL;
if (omap_request_dma(mcbsp[id].dma_tx_sync, "McBSP TX", omap_mcbsp_tx_dma_callback,
&mcbsp[id],
&dma_tx_ch)) {
printk("OMAP-McBSP: Unable to request DMA channel for McBSP%d TX. Trying IRQ based TX\n", id+1);
return -EAGAIN;
}
mcbsp[id].dma_tx_lch = dma_tx_ch;
DBG("TX DMA on channel %d\n", dma_tx_ch);
init_completion(&(mcbsp[id].tx_dma_completion));
if (cpu_class_is_omap1()) {
src_port = OMAP_DMA_PORT_TIPB;
dest_port = OMAP_DMA_PORT_EMIFF;
}
if (cpu_is_omap24xx())
sync_dev = mcbsp[id].dma_tx_sync;
omap_set_dma_transfer_params(mcbsp[id].dma_tx_lch,
OMAP_DMA_DATA_TYPE_S16,
length >> 1, 1,
OMAP_DMA_SYNC_ELEMENT,
sync_dev, 0);
omap_set_dma_dest_params(mcbsp[id].dma_tx_lch,
src_port,
OMAP_DMA_AMODE_CONSTANT,
mcbsp[id].io_base + OMAP_MCBSP_REG_DXR1,
0, 0);
omap_set_dma_src_params(mcbsp[id].dma_tx_lch,
dest_port,
OMAP_DMA_AMODE_POST_INC,
buffer,
0, 0);
omap_start_dma(mcbsp[id].dma_tx_lch);
wait_for_completion(&(mcbsp[id].tx_dma_completion));
return 0;
}
int omap_mcbsp_recv_buffer(unsigned int id, dma_addr_t buffer, unsigned int length)
{
int dma_rx_ch;
int src_port = 0;
int dest_port = 0;
int sync_dev = 0;
if (omap_mcbsp_check(id) < 0)
return -EINVAL;
if (omap_request_dma(mcbsp[id].dma_rx_sync, "McBSP RX", omap_mcbsp_rx_dma_callback,
&mcbsp[id],
&dma_rx_ch)) {
printk("Unable to request DMA channel for McBSP%d RX. Trying IRQ based RX\n", id+1);
return -EAGAIN;
}
mcbsp[id].dma_rx_lch = dma_rx_ch;
DBG("RX DMA on channel %d\n", dma_rx_ch);
init_completion(&(mcbsp[id].rx_dma_completion));
if (cpu_class_is_omap1()) {
src_port = OMAP_DMA_PORT_TIPB;
dest_port = OMAP_DMA_PORT_EMIFF;
}
if (cpu_is_omap24xx())
sync_dev = mcbsp[id].dma_rx_sync;
omap_set_dma_transfer_params(mcbsp[id].dma_rx_lch,
OMAP_DMA_DATA_TYPE_S16,
length >> 1, 1,
OMAP_DMA_SYNC_ELEMENT,
sync_dev, 0);
omap_set_dma_src_params(mcbsp[id].dma_rx_lch,
src_port,
OMAP_DMA_AMODE_CONSTANT,
mcbsp[id].io_base + OMAP_MCBSP_REG_DRR1,
0, 0);
omap_set_dma_dest_params(mcbsp[id].dma_rx_lch,
dest_port,
OMAP_DMA_AMODE_POST_INC,
buffer,
0, 0);
omap_start_dma(mcbsp[id].dma_rx_lch);
wait_for_completion(&(mcbsp[id].rx_dma_completion));
return 0;
}
/*
* SPI wrapper.
* Since SPI setup is much simpler than the generic McBSP one,
* this wrapper just need an omap_mcbsp_spi_cfg structure as an input.
* Once this is done, you can call omap_mcbsp_start().
*/
void omap_mcbsp_set_spi_mode(unsigned int id, const struct omap_mcbsp_spi_cfg * spi_cfg)
{
struct omap_mcbsp_reg_cfg mcbsp_cfg;
if (omap_mcbsp_check(id) < 0)
return;
memset(&mcbsp_cfg, 0, sizeof(struct omap_mcbsp_reg_cfg));
/* SPI has only one frame */
mcbsp_cfg.rcr1 |= (RWDLEN1(spi_cfg->word_length) | RFRLEN1(0));
mcbsp_cfg.xcr1 |= (XWDLEN1(spi_cfg->word_length) | XFRLEN1(0));
/* Clock stop mode */
if (spi_cfg->clk_stp_mode == OMAP_MCBSP_CLK_STP_MODE_NO_DELAY)
mcbsp_cfg.spcr1 |= (1 << 12);
else
mcbsp_cfg.spcr1 |= (3 << 11);
/* Set clock parities */
if (spi_cfg->rx_clock_polarity == OMAP_MCBSP_CLK_RISING)
mcbsp_cfg.pcr0 |= CLKRP;
else
mcbsp_cfg.pcr0 &= ~CLKRP;
if (spi_cfg->tx_clock_polarity == OMAP_MCBSP_CLK_RISING)
mcbsp_cfg.pcr0 &= ~CLKXP;
else
mcbsp_cfg.pcr0 |= CLKXP;
/* Set SCLKME to 0 and CLKSM to 1 */
mcbsp_cfg.pcr0 &= ~SCLKME;
mcbsp_cfg.srgr2 |= CLKSM;
/* Set FSXP */
if (spi_cfg->fsx_polarity == OMAP_MCBSP_FS_ACTIVE_HIGH)
mcbsp_cfg.pcr0 &= ~FSXP;
else
mcbsp_cfg.pcr0 |= FSXP;
if (spi_cfg->spi_mode == OMAP_MCBSP_SPI_MASTER) {
mcbsp_cfg.pcr0 |= CLKXM;
mcbsp_cfg.srgr1 |= CLKGDV(spi_cfg->clk_div -1);
mcbsp_cfg.pcr0 |= FSXM;
mcbsp_cfg.srgr2 &= ~FSGM;
mcbsp_cfg.xcr2 |= XDATDLY(1);
mcbsp_cfg.rcr2 |= RDATDLY(1);
}
else {
mcbsp_cfg.pcr0 &= ~CLKXM;
mcbsp_cfg.srgr1 |= CLKGDV(1);
mcbsp_cfg.pcr0 &= ~FSXM;
mcbsp_cfg.xcr2 &= ~XDATDLY(3);
mcbsp_cfg.rcr2 &= ~RDATDLY(3);
}
mcbsp_cfg.xcr2 &= ~XPHASE;
mcbsp_cfg.rcr2 &= ~RPHASE;
omap_mcbsp_config(id, &mcbsp_cfg);
}
/*
* McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
* 730 has only 2 McBSP, and both of them are MPU peripherals.
*/
struct omap_mcbsp_info {
u32 virt_base;
u8 dma_rx_sync, dma_tx_sync;
u16 rx_irq, tx_irq;
};
#ifdef CONFIG_ARCH_OMAP730
static const struct omap_mcbsp_info mcbsp_730[] = {
[0] = { .virt_base = io_p2v(OMAP730_MCBSP1_BASE),
.dma_rx_sync = OMAP_DMA_MCBSP1_RX,
.dma_tx_sync = OMAP_DMA_MCBSP1_TX,
.rx_irq = INT_730_McBSP1RX,
.tx_irq = INT_730_McBSP1TX },
[1] = { .virt_base = io_p2v(OMAP730_MCBSP2_BASE),
.dma_rx_sync = OMAP_DMA_MCBSP3_RX,
.dma_tx_sync = OMAP_DMA_MCBSP3_TX,
.rx_irq = INT_730_McBSP2RX,
.tx_irq = INT_730_McBSP2TX },
};
#endif
#ifdef CONFIG_ARCH_OMAP15XX
static const struct omap_mcbsp_info mcbsp_1510[] = {
[0] = { .virt_base = OMAP1510_MCBSP1_BASE,
.dma_rx_sync = OMAP_DMA_MCBSP1_RX,
.dma_tx_sync = OMAP_DMA_MCBSP1_TX,
.rx_irq = INT_McBSP1RX,
.tx_irq = INT_McBSP1TX },
[1] = { .virt_base = io_p2v(OMAP1510_MCBSP2_BASE),
.dma_rx_sync = OMAP_DMA_MCBSP2_RX,
.dma_tx_sync = OMAP_DMA_MCBSP2_TX,
.rx_irq = INT_1510_SPI_RX,
.tx_irq = INT_1510_SPI_TX },
[2] = { .virt_base = OMAP1510_MCBSP3_BASE,
.dma_rx_sync = OMAP_DMA_MCBSP3_RX,
.dma_tx_sync = OMAP_DMA_MCBSP3_TX,
.rx_irq = INT_McBSP3RX,
.tx_irq = INT_McBSP3TX },
};
#endif
#if defined(CONFIG_ARCH_OMAP16XX)
static const struct omap_mcbsp_info mcbsp_1610[] = {
[0] = { .virt_base = OMAP1610_MCBSP1_BASE,
.dma_rx_sync = OMAP_DMA_MCBSP1_RX,
.dma_tx_sync = OMAP_DMA_MCBSP1_TX,
.rx_irq = INT_McBSP1RX,
.tx_irq = INT_McBSP1TX },
[1] = { .virt_base = io_p2v(OMAP1610_MCBSP2_BASE),
.dma_rx_sync = OMAP_DMA_MCBSP2_RX,
.dma_tx_sync = OMAP_DMA_MCBSP2_TX,
.rx_irq = INT_1610_McBSP2_RX,
.tx_irq = INT_1610_McBSP2_TX },
[2] = { .virt_base = OMAP1610_MCBSP3_BASE,
.dma_rx_sync = OMAP_DMA_MCBSP3_RX,
.dma_tx_sync = OMAP_DMA_MCBSP3_TX,
.rx_irq = INT_McBSP3RX,
.tx_irq = INT_McBSP3TX },
};
#endif
#if defined(CONFIG_ARCH_OMAP24XX)
static const struct omap_mcbsp_info mcbsp_24xx[] = {
[0] = { .virt_base = IO_ADDRESS(OMAP24XX_MCBSP1_BASE),
.dma_rx_sync = OMAP24XX_DMA_MCBSP1_RX,
.dma_tx_sync = OMAP24XX_DMA_MCBSP1_TX,
.rx_irq = INT_24XX_MCBSP1_IRQ_RX,
.tx_irq = INT_24XX_MCBSP1_IRQ_TX,
},
[1] = { .virt_base = IO_ADDRESS(OMAP24XX_MCBSP2_BASE),
.dma_rx_sync = OMAP24XX_DMA_MCBSP2_RX,
.dma_tx_sync = OMAP24XX_DMA_MCBSP2_TX,
.rx_irq = INT_24XX_MCBSP2_IRQ_RX,
.tx_irq = INT_24XX_MCBSP2_IRQ_TX,
},
};
#endif
static int __init omap_mcbsp_init(void)
{
int mcbsp_count = 0, i;
static const struct omap_mcbsp_info *mcbsp_info;
printk("Initializing OMAP McBSP system\n");
#ifdef CONFIG_ARCH_OMAP1
mcbsp_dsp_ck = clk_get(0, "dsp_ck");
if (IS_ERR(mcbsp_dsp_ck)) {
printk(KERN_ERR "mcbsp: could not acquire dsp_ck handle.\n");
return PTR_ERR(mcbsp_dsp_ck);
}
mcbsp_api_ck = clk_get(0, "api_ck");
if (IS_ERR(mcbsp_api_ck)) {
printk(KERN_ERR "mcbsp: could not acquire api_ck handle.\n");
return PTR_ERR(mcbsp_api_ck);
}
mcbsp_dspxor_ck = clk_get(0, "dspxor_ck");
if (IS_ERR(mcbsp_dspxor_ck)) {
printk(KERN_ERR "mcbsp: could not acquire dspxor_ck handle.\n");
return PTR_ERR(mcbsp_dspxor_ck);
}
#endif
#ifdef CONFIG_ARCH_OMAP2
mcbsp1_ick = clk_get(0, "mcbsp1_ick");
if (IS_ERR(mcbsp1_ick)) {
printk(KERN_ERR "mcbsp: could not acquire mcbsp1_ick handle.\n");
return PTR_ERR(mcbsp1_ick);
}
mcbsp1_fck = clk_get(0, "mcbsp1_fck");
if (IS_ERR(mcbsp1_fck)) {
printk(KERN_ERR "mcbsp: could not acquire mcbsp1_fck handle.\n");
return PTR_ERR(mcbsp1_fck);
}
mcbsp2_ick = clk_get(0, "mcbsp2_ick");
if (IS_ERR(mcbsp2_ick)) {
printk(KERN_ERR "mcbsp: could not acquire mcbsp2_ick handle.\n");
return PTR_ERR(mcbsp2_ick);
}
mcbsp2_fck = clk_get(0, "mcbsp2_fck");
if (IS_ERR(mcbsp2_fck)) {
printk(KERN_ERR "mcbsp: could not acquire mcbsp2_fck handle.\n");
return PTR_ERR(mcbsp2_fck);
}
#endif
#ifdef CONFIG_ARCH_OMAP730
if (cpu_is_omap730()) {
mcbsp_info = mcbsp_730;
mcbsp_count = ARRAY_SIZE(mcbsp_730);
}
#endif
#ifdef CONFIG_ARCH_OMAP15XX
if (cpu_is_omap15xx()) {
mcbsp_info = mcbsp_1510;
mcbsp_count = ARRAY_SIZE(mcbsp_1510);
}
#endif
#if defined(CONFIG_ARCH_OMAP16XX)
if (cpu_is_omap16xx()) {
mcbsp_info = mcbsp_1610;
mcbsp_count = ARRAY_SIZE(mcbsp_1610);
}
#endif
#if defined(CONFIG_ARCH_OMAP24XX)
if (cpu_is_omap24xx()) {
mcbsp_info = mcbsp_24xx;
mcbsp_count = ARRAY_SIZE(mcbsp_24xx);
/* REVISIT: where's the right place? */
omap2_mcbsp2_mux_setup();
sys_ck = clk_get(0, "sys_ck");
sys_clkout = clk_get(0, "sys_clkout");
clk_set_parent(sys_clkout, sys_ck);
clk_enable(sys_clkout);
}
#endif
for (i = 0; i < OMAP_MAX_MCBSP_COUNT ; i++) {
if (i >= mcbsp_count) {
mcbsp[i].io_base = 0;
mcbsp[i].free = 0;
continue;
}
mcbsp[i].id = i + 1;
mcbsp[i].free = 1;
mcbsp[i].dma_tx_lch = -1;
mcbsp[i].dma_rx_lch = -1;
mcbsp[i].io_base = mcbsp_info[i].virt_base;
mcbsp[i].io_type = OMAP_MCBSP_IRQ_IO; /* Default I/O is IRQ based */
mcbsp[i].tx_irq = mcbsp_info[i].tx_irq;
mcbsp[i].rx_irq = mcbsp_info[i].rx_irq;
mcbsp[i].dma_rx_sync = mcbsp_info[i].dma_rx_sync;
mcbsp[i].dma_tx_sync = mcbsp_info[i].dma_tx_sync;
spin_lock_init(&mcbsp[i].lock);
}
return 0;
}
arch_initcall(omap_mcbsp_init);
EXPORT_SYMBOL(omap_mcbsp_config);
EXPORT_SYMBOL(omap_mcbsp_request);
EXPORT_SYMBOL(omap_mcbsp_set_io_type);
EXPORT_SYMBOL(omap_mcbsp_free);
EXPORT_SYMBOL(omap_mcbsp_start);
EXPORT_SYMBOL(omap_mcbsp_stop);
EXPORT_SYMBOL(omap_mcbsp_xmit_word);
EXPORT_SYMBOL(omap_mcbsp_recv_word);
EXPORT_SYMBOL(omap_mcbsp_xmit_buffer);
EXPORT_SYMBOL(omap_mcbsp_recv_buffer);
EXPORT_SYMBOL(omap_mcbsp_spi_master_xmit_word_poll);
EXPORT_SYMBOL(omap_mcbsp_spi_master_recv_word_poll);
EXPORT_SYMBOL(omap_mcbsp_set_spi_mode);