android_kernel_xiaomi_sm8350/drivers/net/wan/hdlc_cisco.c

336 lines
8.5 KiB
C
Raw Normal View History

/*
* Generic HDLC support routines for Linux
* Cisco HDLC support
*
* Copyright (C) 2000 - 2003 Krzysztof Halasa <khc@pm.waw.pl>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/errno.h>
#include <linux/if_arp.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/pkt_sched.h>
#include <linux/inetdevice.h>
#include <linux/lapb.h>
#include <linux/rtnetlink.h>
#include <linux/hdlc.h>
#undef DEBUG_HARD_HEADER
#define CISCO_MULTICAST 0x8F /* Cisco multicast address */
#define CISCO_UNICAST 0x0F /* Cisco unicast address */
#define CISCO_KEEPALIVE 0x8035 /* Cisco keepalive protocol */
#define CISCO_SYS_INFO 0x2000 /* Cisco interface/system info */
#define CISCO_ADDR_REQ 0 /* Cisco address request */
#define CISCO_ADDR_REPLY 1 /* Cisco address reply */
#define CISCO_KEEPALIVE_REQ 2 /* Cisco keepalive request */
static int cisco_hard_header(struct sk_buff *skb, struct net_device *dev,
u16 type, void *daddr, void *saddr,
unsigned int len)
{
hdlc_header *data;
#ifdef DEBUG_HARD_HEADER
printk(KERN_DEBUG "%s: cisco_hard_header called\n", dev->name);
#endif
skb_push(skb, sizeof(hdlc_header));
data = (hdlc_header*)skb->data;
if (type == CISCO_KEEPALIVE)
data->address = CISCO_MULTICAST;
else
data->address = CISCO_UNICAST;
data->control = 0;
data->protocol = htons(type);
return sizeof(hdlc_header);
}
static void cisco_keepalive_send(struct net_device *dev, u32 type,
u32 par1, u32 par2)
{
struct sk_buff *skb;
cisco_packet *data;
skb = dev_alloc_skb(sizeof(hdlc_header) + sizeof(cisco_packet));
if (!skb) {
printk(KERN_WARNING
"%s: Memory squeeze on cisco_keepalive_send()\n",
dev->name);
return;
}
skb_reserve(skb, 4);
cisco_hard_header(skb, dev, CISCO_KEEPALIVE, NULL, NULL, 0);
data = (cisco_packet*)(skb->data + 4);
data->type = htonl(type);
data->par1 = htonl(par1);
data->par2 = htonl(par2);
data->rel = 0xFFFF;
/* we will need do_div here if 1000 % HZ != 0 */
data->time = htonl((jiffies - INITIAL_JIFFIES) * (1000 / HZ));
skb_put(skb, sizeof(cisco_packet));
skb->priority = TC_PRIO_CONTROL;
skb->dev = dev;
skb->nh.raw = skb->data;
dev_queue_xmit(skb);
}
static __be16 cisco_type_trans(struct sk_buff *skb, struct net_device *dev)
{
hdlc_header *data = (hdlc_header*)skb->data;
if (skb->len < sizeof(hdlc_header))
return __constant_htons(ETH_P_HDLC);
if (data->address != CISCO_MULTICAST &&
data->address != CISCO_UNICAST)
return __constant_htons(ETH_P_HDLC);
switch(data->protocol) {
case __constant_htons(ETH_P_IP):
case __constant_htons(ETH_P_IPX):
case __constant_htons(ETH_P_IPV6):
skb_pull(skb, sizeof(hdlc_header));
return data->protocol;
default:
return __constant_htons(ETH_P_HDLC);
}
}
static int cisco_rx(struct sk_buff *skb)
{
struct net_device *dev = skb->dev;
hdlc_device *hdlc = dev_to_hdlc(dev);
hdlc_header *data = (hdlc_header*)skb->data;
cisco_packet *cisco_data;
struct in_device *in_dev;
u32 addr, mask;
if (skb->len < sizeof(hdlc_header))
goto rx_error;
if (data->address != CISCO_MULTICAST &&
data->address != CISCO_UNICAST)
goto rx_error;
switch(ntohs(data->protocol)) {
case CISCO_SYS_INFO:
/* Packet is not needed, drop it. */
dev_kfree_skb_any(skb);
return NET_RX_SUCCESS;
case CISCO_KEEPALIVE:
if (skb->len != sizeof(hdlc_header) + CISCO_PACKET_LEN &&
skb->len != sizeof(hdlc_header) + CISCO_BIG_PACKET_LEN) {
printk(KERN_INFO "%s: Invalid length of Cisco "
"control packet (%d bytes)\n",
dev->name, skb->len);
goto rx_error;
}
cisco_data = (cisco_packet*)(skb->data + sizeof(hdlc_header));
switch(ntohl (cisco_data->type)) {
case CISCO_ADDR_REQ: /* Stolen from syncppp.c :-) */
in_dev = dev->ip_ptr;
addr = 0;
mask = ~0; /* is the mask correct? */
if (in_dev != NULL) {
struct in_ifaddr **ifap = &in_dev->ifa_list;
while (*ifap != NULL) {
if (strcmp(dev->name,
(*ifap)->ifa_label) == 0) {
addr = (*ifap)->ifa_local;
mask = (*ifap)->ifa_mask;
break;
}
ifap = &(*ifap)->ifa_next;
}
cisco_keepalive_send(dev, CISCO_ADDR_REPLY,
addr, mask);
}
dev_kfree_skb_any(skb);
return NET_RX_SUCCESS;
case CISCO_ADDR_REPLY:
printk(KERN_INFO "%s: Unexpected Cisco IP address "
"reply\n", dev->name);
goto rx_error;
case CISCO_KEEPALIVE_REQ:
hdlc->state.cisco.rxseq = ntohl(cisco_data->par1);
if (hdlc->state.cisco.request_sent &&
ntohl(cisco_data->par2)==hdlc->state.cisco.txseq) {
hdlc->state.cisco.last_poll = jiffies;
if (!hdlc->state.cisco.up) {
u32 sec, min, hrs, days;
sec = ntohl(cisco_data->time) / 1000;
min = sec / 60; sec -= min * 60;
hrs = min / 60; min -= hrs * 60;
days = hrs / 24; hrs -= days * 24;
printk(KERN_INFO "%s: Link up (peer "
"uptime %ud%uh%um%us)\n",
dev->name, days, hrs,
min, sec);
#if 0
netif_carrier_on(dev);
#endif
hdlc->state.cisco.up = 1;
}
}
dev_kfree_skb_any(skb);
return NET_RX_SUCCESS;
} /* switch(keepalive type) */
} /* switch(protocol) */
printk(KERN_INFO "%s: Unsupported protocol %x\n", dev->name,
data->protocol);
dev_kfree_skb_any(skb);
return NET_RX_DROP;
rx_error:
hdlc->stats.rx_errors++; /* Mark error */
dev_kfree_skb_any(skb);
return NET_RX_DROP;
}
static void cisco_timer(unsigned long arg)
{
struct net_device *dev = (struct net_device *)arg;
hdlc_device *hdlc = dev_to_hdlc(dev);
if (hdlc->state.cisco.up &&
time_after(jiffies, hdlc->state.cisco.last_poll +
hdlc->state.cisco.settings.timeout * HZ)) {
hdlc->state.cisco.up = 0;
printk(KERN_INFO "%s: Link down\n", dev->name);
#if 0
netif_carrier_off(dev);
#endif
}
cisco_keepalive_send(dev, CISCO_KEEPALIVE_REQ,
++hdlc->state.cisco.txseq,
hdlc->state.cisco.rxseq);
hdlc->state.cisco.request_sent = 1;
hdlc->state.cisco.timer.expires = jiffies +
hdlc->state.cisco.settings.interval * HZ;
hdlc->state.cisco.timer.function = cisco_timer;
hdlc->state.cisco.timer.data = arg;
add_timer(&hdlc->state.cisco.timer);
}
static void cisco_start(struct net_device *dev)
{
hdlc_device *hdlc = dev_to_hdlc(dev);
hdlc->state.cisco.up = 0;
hdlc->state.cisco.request_sent = 0;
hdlc->state.cisco.txseq = hdlc->state.cisco.rxseq = 0;
init_timer(&hdlc->state.cisco.timer);
hdlc->state.cisco.timer.expires = jiffies + HZ; /*First poll after 1s*/
hdlc->state.cisco.timer.function = cisco_timer;
hdlc->state.cisco.timer.data = (unsigned long)dev;
add_timer(&hdlc->state.cisco.timer);
}
static void cisco_stop(struct net_device *dev)
{
hdlc_device *hdlc = dev_to_hdlc(dev);
del_timer_sync(&hdlc->state.cisco.timer);
#if 0
if (netif_carrier_ok(dev))
netif_carrier_off(dev);
#endif
hdlc->state.cisco.up = 0;
hdlc->state.cisco.request_sent = 0;
}
int hdlc_cisco_ioctl(struct net_device *dev, struct ifreq *ifr)
{
cisco_proto __user *cisco_s = ifr->ifr_settings.ifs_ifsu.cisco;
const size_t size = sizeof(cisco_proto);
cisco_proto new_settings;
hdlc_device *hdlc = dev_to_hdlc(dev);
int result;
switch (ifr->ifr_settings.type) {
case IF_GET_PROTO:
ifr->ifr_settings.type = IF_PROTO_CISCO;
if (ifr->ifr_settings.size < size) {
ifr->ifr_settings.size = size; /* data size wanted */
return -ENOBUFS;
}
if (copy_to_user(cisco_s, &hdlc->state.cisco.settings, size))
return -EFAULT;
return 0;
case IF_PROTO_CISCO:
if(!capable(CAP_NET_ADMIN))
return -EPERM;
if(dev->flags & IFF_UP)
return -EBUSY;
if (copy_from_user(&new_settings, cisco_s, size))
return -EFAULT;
if (new_settings.interval < 1 ||
new_settings.timeout < 2)
return -EINVAL;
result=hdlc->attach(dev, ENCODING_NRZ,PARITY_CRC16_PR1_CCITT);
if (result)
return result;
hdlc_proto_detach(hdlc);
memcpy(&hdlc->state.cisco.settings, &new_settings, size);
memset(&hdlc->proto, 0, sizeof(hdlc->proto));
hdlc->proto.start = cisco_start;
hdlc->proto.stop = cisco_stop;
hdlc->proto.netif_rx = cisco_rx;
hdlc->proto.type_trans = cisco_type_trans;
hdlc->proto.id = IF_PROTO_CISCO;
dev->hard_start_xmit = hdlc->xmit;
dev->hard_header = cisco_hard_header;
dev->hard_header_cache = NULL;
dev->type = ARPHRD_CISCO;
dev->flags = IFF_POINTOPOINT | IFF_NOARP;
dev->addr_len = 0;
return 0;
}
return -EINVAL;
}