2005-04-16 18:20:36 -04:00
|
|
|
#ifndef _LINUX_BYTEORDER_SWAB_H
|
|
|
|
#define _LINUX_BYTEORDER_SWAB_H
|
|
|
|
|
|
|
|
/*
|
|
|
|
* linux/byteorder/swab.h
|
|
|
|
* Byte-swapping, independently from CPU endianness
|
|
|
|
* swabXX[ps]?(foo)
|
|
|
|
*
|
|
|
|
* Francois-Rene Rideau <fare@tunes.org> 19971205
|
|
|
|
* separated swab functions from cpu_to_XX,
|
|
|
|
* to clean up support for bizarre-endian architectures.
|
|
|
|
*
|
Fix constant folding and poor optimization in byte swapping code
Constant folding does not work for the swabXX() byte swapping functions,
and the C versions optimize poorly.
Attempting to initialize a global variable to swab16(0x1234) or put
something like "case swab32(42):" in a switch statement will not compile.
It can work, swab.h just isn't doing it correctly. This patch fixes that.
Contrary to the comment in asm-i386/byteorder.h, gcc does not recognize the
"C" version of swab16 and turn it into efficient code. gcc can do this,
just not with the current code. The simple function:
u16 foo(u16 x) { return swab16(x); }
Would compile to:
movzwl %ax, %eax
movl %eax, %edx
shrl $8, %eax
sall $8, %edx
orl %eax, %edx
With this patch, it will compile to:
rolw $8, %ax
I also attempted to document the maze different macros/inline functions
that are used to create the final product.
Signed-off-by: Trent Piepho <xyzzy@speakeasy.org>
Cc: Francois-Rene Rideau <fare@tunes.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 03:24:05 -04:00
|
|
|
* Trent Piepho <xyzzy@speakeasy.org> 2007114
|
|
|
|
* make constant-folding work, provide C versions that
|
|
|
|
* gcc can optimize better, explain different versions
|
|
|
|
*
|
2005-04-16 18:20:36 -04:00
|
|
|
* See asm-i386/byteorder.h and suches for examples of how to provide
|
|
|
|
* architecture-dependent optimized versions
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/compiler.h>
|
|
|
|
|
Fix constant folding and poor optimization in byte swapping code
Constant folding does not work for the swabXX() byte swapping functions,
and the C versions optimize poorly.
Attempting to initialize a global variable to swab16(0x1234) or put
something like "case swab32(42):" in a switch statement will not compile.
It can work, swab.h just isn't doing it correctly. This patch fixes that.
Contrary to the comment in asm-i386/byteorder.h, gcc does not recognize the
"C" version of swab16 and turn it into efficient code. gcc can do this,
just not with the current code. The simple function:
u16 foo(u16 x) { return swab16(x); }
Would compile to:
movzwl %ax, %eax
movl %eax, %edx
shrl $8, %eax
sall $8, %edx
orl %eax, %edx
With this patch, it will compile to:
rolw $8, %ax
I also attempted to document the maze different macros/inline functions
that are used to create the final product.
Signed-off-by: Trent Piepho <xyzzy@speakeasy.org>
Cc: Francois-Rene Rideau <fare@tunes.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 03:24:05 -04:00
|
|
|
/* Functions/macros defined, there are a lot:
|
|
|
|
*
|
|
|
|
* ___swabXX
|
|
|
|
* Generic C versions of the swab functions.
|
|
|
|
*
|
|
|
|
* ___constant_swabXX
|
|
|
|
* C versions that gcc can fold into a compile-time constant when
|
|
|
|
* the argument is a compile-time constant.
|
|
|
|
*
|
|
|
|
* __arch__swabXX[sp]?
|
|
|
|
* Architecture optimized versions of all the swab functions
|
|
|
|
* (including the s and p versions). These can be defined in
|
|
|
|
* asm-arch/byteorder.h. Any which are not, are defined here.
|
|
|
|
* __arch__swabXXs() is defined in terms of __arch__swabXXp(), which
|
|
|
|
* is defined in terms of __arch__swabXX(), which is in turn defined
|
|
|
|
* in terms of ___swabXX(x).
|
|
|
|
* These must be macros. They may be unsafe for arguments with
|
|
|
|
* side-effects.
|
|
|
|
*
|
|
|
|
* __fswabXX
|
|
|
|
* Inline function versions of the __arch__ macros. These _are_ safe
|
|
|
|
* if the arguments have side-effects. Note there are no s and p
|
|
|
|
* versions of these.
|
|
|
|
*
|
|
|
|
* __swabXX[sb]
|
|
|
|
* There are the ones you should actually use. The __swabXX versions
|
|
|
|
* will be a constant given a constant argument and use the arch
|
|
|
|
* specific code (if any) for non-constant arguments. The s and p
|
|
|
|
* versions always use the arch specific code (constant folding
|
|
|
|
* doesn't apply). They are safe to use with arguments with
|
|
|
|
* side-effects.
|
|
|
|
*
|
|
|
|
* swabXX[sb]
|
|
|
|
* Nicknames for __swabXX[sb] to use in the kernel.
|
|
|
|
*/
|
|
|
|
|
2005-04-16 18:20:36 -04:00
|
|
|
/* casts are necessary for constants, because we never know how for sure
|
|
|
|
* how U/UL/ULL map to __u16, __u32, __u64. At least not in a portable way.
|
|
|
|
*/
|
|
|
|
|
Fix constant folding and poor optimization in byte swapping code
Constant folding does not work for the swabXX() byte swapping functions,
and the C versions optimize poorly.
Attempting to initialize a global variable to swab16(0x1234) or put
something like "case swab32(42):" in a switch statement will not compile.
It can work, swab.h just isn't doing it correctly. This patch fixes that.
Contrary to the comment in asm-i386/byteorder.h, gcc does not recognize the
"C" version of swab16 and turn it into efficient code. gcc can do this,
just not with the current code. The simple function:
u16 foo(u16 x) { return swab16(x); }
Would compile to:
movzwl %ax, %eax
movl %eax, %edx
shrl $8, %eax
sall $8, %edx
orl %eax, %edx
With this patch, it will compile to:
rolw $8, %ax
I also attempted to document the maze different macros/inline functions
that are used to create the final product.
Signed-off-by: Trent Piepho <xyzzy@speakeasy.org>
Cc: Francois-Rene Rideau <fare@tunes.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 03:24:05 -04:00
|
|
|
static __inline__ __attribute_const__ __u16 ___swab16(__u16 x)
|
|
|
|
{
|
|
|
|
return x<<8 | x>>8;
|
|
|
|
}
|
|
|
|
static __inline__ __attribute_const__ __u32 ___swab32(__u32 x)
|
|
|
|
{
|
|
|
|
return x<<24 | x>>24 |
|
|
|
|
(x & (__u32)0x0000ff00UL)<<8 |
|
|
|
|
(x & (__u32)0x00ff0000UL)>>8;
|
|
|
|
}
|
|
|
|
static __inline__ __attribute_const__ __u64 ___swab64(__u64 x)
|
|
|
|
{
|
|
|
|
return x<<56 | x>>56 |
|
|
|
|
(x & (__u64)0x000000000000ff00ULL)<<40 |
|
|
|
|
(x & (__u64)0x0000000000ff0000ULL)<<24 |
|
|
|
|
(x & (__u64)0x00000000ff000000ULL)<< 8 |
|
|
|
|
(x & (__u64)0x000000ff00000000ULL)>> 8 |
|
|
|
|
(x & (__u64)0x0000ff0000000000ULL)>>24 |
|
|
|
|
(x & (__u64)0x00ff000000000000ULL)>>40;
|
|
|
|
}
|
2005-04-16 18:20:36 -04:00
|
|
|
|
|
|
|
#define ___constant_swab16(x) \
|
|
|
|
((__u16)( \
|
|
|
|
(((__u16)(x) & (__u16)0x00ffU) << 8) | \
|
|
|
|
(((__u16)(x) & (__u16)0xff00U) >> 8) ))
|
|
|
|
#define ___constant_swab32(x) \
|
|
|
|
((__u32)( \
|
|
|
|
(((__u32)(x) & (__u32)0x000000ffUL) << 24) | \
|
|
|
|
(((__u32)(x) & (__u32)0x0000ff00UL) << 8) | \
|
|
|
|
(((__u32)(x) & (__u32)0x00ff0000UL) >> 8) | \
|
|
|
|
(((__u32)(x) & (__u32)0xff000000UL) >> 24) ))
|
|
|
|
#define ___constant_swab64(x) \
|
|
|
|
((__u64)( \
|
|
|
|
(__u64)(((__u64)(x) & (__u64)0x00000000000000ffULL) << 56) | \
|
|
|
|
(__u64)(((__u64)(x) & (__u64)0x000000000000ff00ULL) << 40) | \
|
|
|
|
(__u64)(((__u64)(x) & (__u64)0x0000000000ff0000ULL) << 24) | \
|
|
|
|
(__u64)(((__u64)(x) & (__u64)0x00000000ff000000ULL) << 8) | \
|
|
|
|
(__u64)(((__u64)(x) & (__u64)0x000000ff00000000ULL) >> 8) | \
|
|
|
|
(__u64)(((__u64)(x) & (__u64)0x0000ff0000000000ULL) >> 24) | \
|
|
|
|
(__u64)(((__u64)(x) & (__u64)0x00ff000000000000ULL) >> 40) | \
|
|
|
|
(__u64)(((__u64)(x) & (__u64)0xff00000000000000ULL) >> 56) ))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* provide defaults when no architecture-specific optimization is detected
|
|
|
|
*/
|
|
|
|
#ifndef __arch__swab16
|
Fix constant folding and poor optimization in byte swapping code
Constant folding does not work for the swabXX() byte swapping functions,
and the C versions optimize poorly.
Attempting to initialize a global variable to swab16(0x1234) or put
something like "case swab32(42):" in a switch statement will not compile.
It can work, swab.h just isn't doing it correctly. This patch fixes that.
Contrary to the comment in asm-i386/byteorder.h, gcc does not recognize the
"C" version of swab16 and turn it into efficient code. gcc can do this,
just not with the current code. The simple function:
u16 foo(u16 x) { return swab16(x); }
Would compile to:
movzwl %ax, %eax
movl %eax, %edx
shrl $8, %eax
sall $8, %edx
orl %eax, %edx
With this patch, it will compile to:
rolw $8, %ax
I also attempted to document the maze different macros/inline functions
that are used to create the final product.
Signed-off-by: Trent Piepho <xyzzy@speakeasy.org>
Cc: Francois-Rene Rideau <fare@tunes.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 03:24:05 -04:00
|
|
|
# define __arch__swab16(x) ___swab16(x)
|
2005-04-16 18:20:36 -04:00
|
|
|
#endif
|
|
|
|
#ifndef __arch__swab32
|
Fix constant folding and poor optimization in byte swapping code
Constant folding does not work for the swabXX() byte swapping functions,
and the C versions optimize poorly.
Attempting to initialize a global variable to swab16(0x1234) or put
something like "case swab32(42):" in a switch statement will not compile.
It can work, swab.h just isn't doing it correctly. This patch fixes that.
Contrary to the comment in asm-i386/byteorder.h, gcc does not recognize the
"C" version of swab16 and turn it into efficient code. gcc can do this,
just not with the current code. The simple function:
u16 foo(u16 x) { return swab16(x); }
Would compile to:
movzwl %ax, %eax
movl %eax, %edx
shrl $8, %eax
sall $8, %edx
orl %eax, %edx
With this patch, it will compile to:
rolw $8, %ax
I also attempted to document the maze different macros/inline functions
that are used to create the final product.
Signed-off-by: Trent Piepho <xyzzy@speakeasy.org>
Cc: Francois-Rene Rideau <fare@tunes.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 03:24:05 -04:00
|
|
|
# define __arch__swab32(x) ___swab32(x)
|
2005-04-16 18:20:36 -04:00
|
|
|
#endif
|
|
|
|
#ifndef __arch__swab64
|
Fix constant folding and poor optimization in byte swapping code
Constant folding does not work for the swabXX() byte swapping functions,
and the C versions optimize poorly.
Attempting to initialize a global variable to swab16(0x1234) or put
something like "case swab32(42):" in a switch statement will not compile.
It can work, swab.h just isn't doing it correctly. This patch fixes that.
Contrary to the comment in asm-i386/byteorder.h, gcc does not recognize the
"C" version of swab16 and turn it into efficient code. gcc can do this,
just not with the current code. The simple function:
u16 foo(u16 x) { return swab16(x); }
Would compile to:
movzwl %ax, %eax
movl %eax, %edx
shrl $8, %eax
sall $8, %edx
orl %eax, %edx
With this patch, it will compile to:
rolw $8, %ax
I also attempted to document the maze different macros/inline functions
that are used to create the final product.
Signed-off-by: Trent Piepho <xyzzy@speakeasy.org>
Cc: Francois-Rene Rideau <fare@tunes.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 03:24:05 -04:00
|
|
|
# define __arch__swab64(x) ___swab64(x)
|
2005-04-16 18:20:36 -04:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef __arch__swab16p
|
|
|
|
# define __arch__swab16p(x) __arch__swab16(*(x))
|
|
|
|
#endif
|
|
|
|
#ifndef __arch__swab32p
|
|
|
|
# define __arch__swab32p(x) __arch__swab32(*(x))
|
|
|
|
#endif
|
|
|
|
#ifndef __arch__swab64p
|
|
|
|
# define __arch__swab64p(x) __arch__swab64(*(x))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef __arch__swab16s
|
Fix constant folding and poor optimization in byte swapping code
Constant folding does not work for the swabXX() byte swapping functions,
and the C versions optimize poorly.
Attempting to initialize a global variable to swab16(0x1234) or put
something like "case swab32(42):" in a switch statement will not compile.
It can work, swab.h just isn't doing it correctly. This patch fixes that.
Contrary to the comment in asm-i386/byteorder.h, gcc does not recognize the
"C" version of swab16 and turn it into efficient code. gcc can do this,
just not with the current code. The simple function:
u16 foo(u16 x) { return swab16(x); }
Would compile to:
movzwl %ax, %eax
movl %eax, %edx
shrl $8, %eax
sall $8, %edx
orl %eax, %edx
With this patch, it will compile to:
rolw $8, %ax
I also attempted to document the maze different macros/inline functions
that are used to create the final product.
Signed-off-by: Trent Piepho <xyzzy@speakeasy.org>
Cc: Francois-Rene Rideau <fare@tunes.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 03:24:05 -04:00
|
|
|
# define __arch__swab16s(x) ((void)(*(x) = __arch__swab16p(x)))
|
2005-04-16 18:20:36 -04:00
|
|
|
#endif
|
|
|
|
#ifndef __arch__swab32s
|
Fix constant folding and poor optimization in byte swapping code
Constant folding does not work for the swabXX() byte swapping functions,
and the C versions optimize poorly.
Attempting to initialize a global variable to swab16(0x1234) or put
something like "case swab32(42):" in a switch statement will not compile.
It can work, swab.h just isn't doing it correctly. This patch fixes that.
Contrary to the comment in asm-i386/byteorder.h, gcc does not recognize the
"C" version of swab16 and turn it into efficient code. gcc can do this,
just not with the current code. The simple function:
u16 foo(u16 x) { return swab16(x); }
Would compile to:
movzwl %ax, %eax
movl %eax, %edx
shrl $8, %eax
sall $8, %edx
orl %eax, %edx
With this patch, it will compile to:
rolw $8, %ax
I also attempted to document the maze different macros/inline functions
that are used to create the final product.
Signed-off-by: Trent Piepho <xyzzy@speakeasy.org>
Cc: Francois-Rene Rideau <fare@tunes.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 03:24:05 -04:00
|
|
|
# define __arch__swab32s(x) ((void)(*(x) = __arch__swab32p(x)))
|
2005-04-16 18:20:36 -04:00
|
|
|
#endif
|
|
|
|
#ifndef __arch__swab64s
|
Fix constant folding and poor optimization in byte swapping code
Constant folding does not work for the swabXX() byte swapping functions,
and the C versions optimize poorly.
Attempting to initialize a global variable to swab16(0x1234) or put
something like "case swab32(42):" in a switch statement will not compile.
It can work, swab.h just isn't doing it correctly. This patch fixes that.
Contrary to the comment in asm-i386/byteorder.h, gcc does not recognize the
"C" version of swab16 and turn it into efficient code. gcc can do this,
just not with the current code. The simple function:
u16 foo(u16 x) { return swab16(x); }
Would compile to:
movzwl %ax, %eax
movl %eax, %edx
shrl $8, %eax
sall $8, %edx
orl %eax, %edx
With this patch, it will compile to:
rolw $8, %ax
I also attempted to document the maze different macros/inline functions
that are used to create the final product.
Signed-off-by: Trent Piepho <xyzzy@speakeasy.org>
Cc: Francois-Rene Rideau <fare@tunes.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 03:24:05 -04:00
|
|
|
# define __arch__swab64s(x) ((void)(*(x) = __arch__swab64p(x)))
|
2005-04-16 18:20:36 -04:00
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow constant folding
|
|
|
|
*/
|
2006-01-08 04:04:09 -05:00
|
|
|
#if defined(__GNUC__) && defined(__OPTIMIZE__)
|
2005-04-16 18:20:36 -04:00
|
|
|
# define __swab16(x) \
|
|
|
|
(__builtin_constant_p((__u16)(x)) ? \
|
Fix constant folding and poor optimization in byte swapping code
Constant folding does not work for the swabXX() byte swapping functions,
and the C versions optimize poorly.
Attempting to initialize a global variable to swab16(0x1234) or put
something like "case swab32(42):" in a switch statement will not compile.
It can work, swab.h just isn't doing it correctly. This patch fixes that.
Contrary to the comment in asm-i386/byteorder.h, gcc does not recognize the
"C" version of swab16 and turn it into efficient code. gcc can do this,
just not with the current code. The simple function:
u16 foo(u16 x) { return swab16(x); }
Would compile to:
movzwl %ax, %eax
movl %eax, %edx
shrl $8, %eax
sall $8, %edx
orl %eax, %edx
With this patch, it will compile to:
rolw $8, %ax
I also attempted to document the maze different macros/inline functions
that are used to create the final product.
Signed-off-by: Trent Piepho <xyzzy@speakeasy.org>
Cc: Francois-Rene Rideau <fare@tunes.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 03:24:05 -04:00
|
|
|
___constant_swab16((x)) : \
|
2005-04-16 18:20:36 -04:00
|
|
|
__fswab16((x)))
|
|
|
|
# define __swab32(x) \
|
|
|
|
(__builtin_constant_p((__u32)(x)) ? \
|
Fix constant folding and poor optimization in byte swapping code
Constant folding does not work for the swabXX() byte swapping functions,
and the C versions optimize poorly.
Attempting to initialize a global variable to swab16(0x1234) or put
something like "case swab32(42):" in a switch statement will not compile.
It can work, swab.h just isn't doing it correctly. This patch fixes that.
Contrary to the comment in asm-i386/byteorder.h, gcc does not recognize the
"C" version of swab16 and turn it into efficient code. gcc can do this,
just not with the current code. The simple function:
u16 foo(u16 x) { return swab16(x); }
Would compile to:
movzwl %ax, %eax
movl %eax, %edx
shrl $8, %eax
sall $8, %edx
orl %eax, %edx
With this patch, it will compile to:
rolw $8, %ax
I also attempted to document the maze different macros/inline functions
that are used to create the final product.
Signed-off-by: Trent Piepho <xyzzy@speakeasy.org>
Cc: Francois-Rene Rideau <fare@tunes.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 03:24:05 -04:00
|
|
|
___constant_swab32((x)) : \
|
2005-04-16 18:20:36 -04:00
|
|
|
__fswab32((x)))
|
|
|
|
# define __swab64(x) \
|
|
|
|
(__builtin_constant_p((__u64)(x)) ? \
|
Fix constant folding and poor optimization in byte swapping code
Constant folding does not work for the swabXX() byte swapping functions,
and the C versions optimize poorly.
Attempting to initialize a global variable to swab16(0x1234) or put
something like "case swab32(42):" in a switch statement will not compile.
It can work, swab.h just isn't doing it correctly. This patch fixes that.
Contrary to the comment in asm-i386/byteorder.h, gcc does not recognize the
"C" version of swab16 and turn it into efficient code. gcc can do this,
just not with the current code. The simple function:
u16 foo(u16 x) { return swab16(x); }
Would compile to:
movzwl %ax, %eax
movl %eax, %edx
shrl $8, %eax
sall $8, %edx
orl %eax, %edx
With this patch, it will compile to:
rolw $8, %ax
I also attempted to document the maze different macros/inline functions
that are used to create the final product.
Signed-off-by: Trent Piepho <xyzzy@speakeasy.org>
Cc: Francois-Rene Rideau <fare@tunes.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 03:24:05 -04:00
|
|
|
___constant_swab64((x)) : \
|
2005-04-16 18:20:36 -04:00
|
|
|
__fswab64((x)))
|
|
|
|
#else
|
|
|
|
# define __swab16(x) __fswab16(x)
|
|
|
|
# define __swab32(x) __fswab32(x)
|
|
|
|
# define __swab64(x) __fswab64(x)
|
|
|
|
#endif /* OPTIMIZE */
|
|
|
|
|
|
|
|
|
|
|
|
static __inline__ __attribute_const__ __u16 __fswab16(__u16 x)
|
|
|
|
{
|
|
|
|
return __arch__swab16(x);
|
|
|
|
}
|
|
|
|
static __inline__ __u16 __swab16p(const __u16 *x)
|
|
|
|
{
|
|
|
|
return __arch__swab16p(x);
|
|
|
|
}
|
|
|
|
static __inline__ void __swab16s(__u16 *addr)
|
|
|
|
{
|
|
|
|
__arch__swab16s(addr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline__ __attribute_const__ __u32 __fswab32(__u32 x)
|
|
|
|
{
|
|
|
|
return __arch__swab32(x);
|
|
|
|
}
|
|
|
|
static __inline__ __u32 __swab32p(const __u32 *x)
|
|
|
|
{
|
|
|
|
return __arch__swab32p(x);
|
|
|
|
}
|
|
|
|
static __inline__ void __swab32s(__u32 *addr)
|
|
|
|
{
|
|
|
|
__arch__swab32s(addr);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef __BYTEORDER_HAS_U64__
|
|
|
|
static __inline__ __attribute_const__ __u64 __fswab64(__u64 x)
|
|
|
|
{
|
|
|
|
# ifdef __SWAB_64_THRU_32__
|
|
|
|
__u32 h = x >> 32;
|
|
|
|
__u32 l = x & ((1ULL<<32)-1);
|
|
|
|
return (((__u64)__swab32(l)) << 32) | ((__u64)(__swab32(h)));
|
|
|
|
# else
|
|
|
|
return __arch__swab64(x);
|
|
|
|
# endif
|
|
|
|
}
|
|
|
|
static __inline__ __u64 __swab64p(const __u64 *x)
|
|
|
|
{
|
|
|
|
return __arch__swab64p(x);
|
|
|
|
}
|
|
|
|
static __inline__ void __swab64s(__u64 *addr)
|
|
|
|
{
|
|
|
|
__arch__swab64s(addr);
|
|
|
|
}
|
|
|
|
#endif /* __BYTEORDER_HAS_U64__ */
|
|
|
|
|
|
|
|
#if defined(__KERNEL__)
|
|
|
|
#define swab16 __swab16
|
|
|
|
#define swab32 __swab32
|
|
|
|
#define swab64 __swab64
|
|
|
|
#define swab16p __swab16p
|
|
|
|
#define swab32p __swab32p
|
|
|
|
#define swab64p __swab64p
|
|
|
|
#define swab16s __swab16s
|
|
|
|
#define swab32s __swab32s
|
|
|
|
#define swab64s __swab64s
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif /* _LINUX_BYTEORDER_SWAB_H */
|