android_kernel_xiaomi_sm8350/drivers/char/rio/rioboot.c

1361 lines
40 KiB
C
Raw Normal View History

/*
** -----------------------------------------------------------------------------
**
** Perle Specialix driver for Linux
** Ported from existing RIO Driver for SCO sources.
*
* (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
**
** Module : rioboot.c
** SID : 1.3
** Last Modified : 11/6/98 10:33:36
** Retrieved : 11/6/98 10:33:48
**
** ident @(#)rioboot.c 1.3
**
** -----------------------------------------------------------------------------
*/
#ifdef SCCS_LABELS
static char *_rioboot_c_sccs_ = "@(#)rioboot.c 1.3";
#endif
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/string.h>
#include <asm/semaphore.h>
#include <linux/termios.h>
#include <linux/serial.h>
#include <linux/generic_serial.h>
#include "linux_compat.h"
#include "rio_linux.h"
#include "typdef.h"
#include "pkt.h"
#include "daemon.h"
#include "rio.h"
#include "riospace.h"
#include "top.h"
#include "cmdpkt.h"
#include "map.h"
#include "riotypes.h"
#include "rup.h"
#include "port.h"
#include "riodrvr.h"
#include "rioinfo.h"
#include "func.h"
#include "errors.h"
#include "pci.h"
#include "parmmap.h"
#include "unixrup.h"
#include "board.h"
#include "host.h"
#include "error.h"
#include "phb.h"
#include "link.h"
#include "cmdblk.h"
#include "route.h"
static int RIOBootComplete( struct rio_info *p, struct Host *HostP, uint Rup, struct PktCmd *PktCmdP );
static uchar
RIOAtVec2Ctrl[] =
{
/* 0 */ INTERRUPT_DISABLE,
/* 1 */ INTERRUPT_DISABLE,
/* 2 */ INTERRUPT_DISABLE,
/* 3 */ INTERRUPT_DISABLE,
/* 4 */ INTERRUPT_DISABLE,
/* 5 */ INTERRUPT_DISABLE,
/* 6 */ INTERRUPT_DISABLE,
/* 7 */ INTERRUPT_DISABLE,
/* 8 */ INTERRUPT_DISABLE,
/* 9 */ IRQ_9|INTERRUPT_ENABLE,
/* 10 */ INTERRUPT_DISABLE,
/* 11 */ IRQ_11|INTERRUPT_ENABLE,
/* 12 */ IRQ_12|INTERRUPT_ENABLE,
/* 13 */ INTERRUPT_DISABLE,
/* 14 */ INTERRUPT_DISABLE,
/* 15 */ IRQ_15|INTERRUPT_ENABLE
};
/*
** Load in the RTA boot code.
*/
int
RIOBootCodeRTA(p, rbp)
struct rio_info * p;
struct DownLoad * rbp;
{
int offset;
func_enter ();
/* Linux doesn't allow you to disable interrupts during a
"copyin". (Crash when a pagefault occurs). */
/* disable(oldspl); */
rio_dprintk (RIO_DEBUG_BOOT, "Data at user address 0x%x\n",(int)rbp->DataP);
/*
** Check that we have set asside enough memory for this
*/
if ( rbp->Count > SIXTY_FOUR_K ) {
rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n");
p->RIOError.Error = HOST_FILE_TOO_LARGE;
/* restore(oldspl); */
func_exit ();
return -ENOMEM;
}
if ( p->RIOBooting ) {
rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n");
p->RIOError.Error = BOOT_IN_PROGRESS;
/* restore(oldspl); */
func_exit ();
return -EBUSY;
}
/*
** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary,
** so calculate how far we have to move the data up the buffer
** to achieve this.
*/
offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) %
RTA_BOOT_DATA_SIZE;
/*
** Be clean, and clear the 'unused' portion of the boot buffer,
** because it will (eventually) be part of the Rta run time environment
** and so should be zeroed.
*/
bzero( (caddr_t)p->RIOBootPackets, offset );
/*
** Copy the data from user space.
*/
if ( copyin((int)rbp->DataP,((caddr_t)(p->RIOBootPackets))+offset,
rbp->Count) ==COPYFAIL ) {
rio_dprintk (RIO_DEBUG_BOOT, "Bad data copy from user space\n");
p->RIOError.Error = COPYIN_FAILED;
/* restore(oldspl); */
func_exit ();
return -EFAULT;
}
/*
** Make sure that our copy of the size includes that offset we discussed
** earlier.
*/
p->RIONumBootPkts = (rbp->Count+offset)/RTA_BOOT_DATA_SIZE;
p->RIOBootCount = rbp->Count;
/* restore(oldspl); */
func_exit();
return 0;
}
void rio_start_card_running (struct Host * HostP)
{
func_enter ();
switch ( HostP->Type ) {
case RIO_AT:
rio_dprintk (RIO_DEBUG_BOOT, "Start ISA card running\n");
WBYTE(HostP->Control,
BOOT_FROM_RAM | EXTERNAL_BUS_ON
| HostP->Mode
| RIOAtVec2Ctrl[HostP->Ivec & 0xF] );
break;
#ifdef FUTURE_RELEASE
case RIO_MCA:
/*
** MCA handles IRQ vectors differently, so we don't write
** them to this register.
*/
rio_dprintk (RIO_DEBUG_BOOT, "Start MCA card running\n");
WBYTE(HostP->Control, McaTpBootFromRam | McaTpBusEnable | HostP->Mode);
break;
case RIO_EISA:
/*
** EISA is totally different and expects OUTBZs to turn it on.
*/
rio_dprintk (RIO_DEBUG_BOOT, "Start EISA card running\n");
OUTBZ( HostP->Slot, EISA_CONTROL_PORT, HostP->Mode | RIOEisaVec2Ctrl[HostP->Ivec] | EISA_TP_RUN | EISA_TP_BUS_ENABLE | EISA_TP_BOOT_FROM_RAM );
break;
#endif
case RIO_PCI:
/*
** PCI is much the same as MCA. Everything is once again memory
** mapped, so we are writing to memory registers instead of io
** ports.
*/
rio_dprintk (RIO_DEBUG_BOOT, "Start PCI card running\n");
WBYTE(HostP->Control, PCITpBootFromRam | PCITpBusEnable | HostP->Mode);
break;
default:
rio_dprintk (RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type);
break;
}
/*
printk (KERN_INFO "Done with starting the card\n");
func_exit ();
*/
return;
}
/*
** Load in the host boot code - load it directly onto all halted hosts
** of the correct type.
**
** Put your rubber pants on before messing with this code - even the magic
** numbers have trouble understanding what they are doing here.
*/
int
RIOBootCodeHOST(p, rbp)
struct rio_info * p;
register struct DownLoad *rbp;
{
register struct Host *HostP;
register caddr_t Cad;
register PARM_MAP *ParmMapP;
register int RupN;
int PortN;
uint host;
caddr_t StartP;
BYTE *DestP;
int wait_count;
ushort OldParmMap;
ushort offset; /* It is very important that this is a ushort */
/* uint byte; */
caddr_t DownCode = NULL;
unsigned long flags;
HostP = NULL; /* Assure the compiler we've initialized it */
for ( host=0; host<p->RIONumHosts; host++ ) {
rio_dprintk (RIO_DEBUG_BOOT, "Attempt to boot host %d\n",host);
HostP = &p->RIOHosts[host];
rio_dprintk (RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n",
HostP->Type, HostP->Mode, HostP->Ivec);
if ( (HostP->Flags & RUN_STATE) != RC_WAITING ) {
rio_dprintk (RIO_DEBUG_BOOT, "%s %d already running\n","Host",host);
continue;
}
/*
** Grab a 32 bit pointer to the card.
*/
Cad = HostP->Caddr;
/*
** We are going to (try) and load in rbp->Count bytes.
** The last byte will reside at p->RIOConf.HostLoadBase-1;
** Therefore, we need to start copying at address
** (caddr+p->RIOConf.HostLoadBase-rbp->Count)
*/
StartP = (caddr_t)&Cad[p->RIOConf.HostLoadBase-rbp->Count];
rio_dprintk (RIO_DEBUG_BOOT, "kernel virtual address for host is 0x%x\n", (int)Cad );
rio_dprintk (RIO_DEBUG_BOOT, "kernel virtual address for download is 0x%x\n", (int)StartP);
rio_dprintk (RIO_DEBUG_BOOT, "host loadbase is 0x%x\n",p->RIOConf.HostLoadBase);
rio_dprintk (RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count);
if ( p->RIOConf.HostLoadBase < rbp->Count ) {
rio_dprintk (RIO_DEBUG_BOOT, "Bin too large\n");
p->RIOError.Error = HOST_FILE_TOO_LARGE;
func_exit ();
return -EFBIG;
}
/*
** Ensure that the host really is stopped.
** Disable it's external bus & twang its reset line.
*/
RIOHostReset( HostP->Type, (struct DpRam *)HostP->CardP, HostP->Slot );
/*
** Copy the data directly from user space to the SRAM.
** This ain't going to be none too clever if the download
** code is bigger than this segment.
*/
rio_dprintk (RIO_DEBUG_BOOT, "Copy in code\n");
/*
** PCI hostcard can't cope with 32 bit accesses and so need to copy
** data to a local buffer, and then dripfeed the card.
*/
if ( HostP->Type == RIO_PCI ) {
/* int offset; */
DownCode = sysbrk(rbp->Count);
if ( !DownCode ) {
rio_dprintk (RIO_DEBUG_BOOT, "No system memory available\n");
p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY;
func_exit ();
return -ENOMEM;
}
bzero(DownCode, rbp->Count);
if ( copyin((int)rbp->DataP,DownCode,rbp->Count)==COPYFAIL ) {
rio_dprintk (RIO_DEBUG_BOOT, "Bad copyin of host data\n");
sysfree( DownCode, rbp->Count );
p->RIOError.Error = COPYIN_FAILED;
func_exit ();
return -EFAULT;
}
HostP->Copy( DownCode, StartP, rbp->Count );
sysfree( DownCode, rbp->Count );
}
else if ( copyin((int)rbp->DataP,StartP,rbp->Count)==COPYFAIL ) {
rio_dprintk (RIO_DEBUG_BOOT, "Bad copyin of host data\n");
p->RIOError.Error = COPYIN_FAILED;
func_exit ();
return -EFAULT;
}
rio_dprintk (RIO_DEBUG_BOOT, "Copy completed\n");
/*
** S T O P !
**
** Upto this point the code has been fairly rational, and possibly
** even straight forward. What follows is a pile of crud that will
** magically turn into six bytes of transputer assembler. Normally
** you would expect an array or something, but, being me, I have
** chosen [been told] to use a technique whereby the startup code
** will be correct if we change the loadbase for the code. Which
** brings us onto another issue - the loadbase is the *end* of the
** code, not the start.
**
** If I were you I wouldn't start from here.
*/
/*
** We now need to insert a short boot section into
** the memory at the end of Sram2. This is normally (de)composed
** of the last eight bytes of the download code. The
** download has been assembled/compiled to expect to be
** loaded from 0x7FFF downwards. We have loaded it
** at some other address. The startup code goes into the small
** ram window at Sram2, in the last 8 bytes, which are really
** at addresses 0x7FF8-0x7FFF.
**
** If the loadbase is, say, 0x7C00, then we need to branch to
** address 0x7BFE to run the host.bin startup code. We assemble
** this jump manually.
**
** The two byte sequence 60 08 is loaded into memory at address
** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0,
** which adds '0' to the .O register, complements .O, and then shifts
** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will
** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new
** location. Now, the branch starts from the value of .PC (or .IP or
** whatever the bloody register is called on this chip), and the .PC
** will be pointing to the location AFTER the branch, in this case
** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8.
**
** A long branch is coded at 0x7FF8. This consists of loading a four
** byte offset into .O using nfix (as above) and pfix operators. The
** pfix operates in exactly the same way as the nfix operator, but
** without the complement operation. The offset, of course, must be
** relative to the address of the byte AFTER the branch instruction,
** which will be (urm) 0x7FFC, so, our final destination of the branch
** (loadbase-2), has to be reached from here. Imagine that the loadbase
** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which
** is the first byte of the initial two byte short local branch of the
** download code).
**
** To code a jump from 0x7FFC (which is where the branch will start
** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)=
** 0x7BFE.
** This will be coded as four bytes:
** 60 2C 20 02
** being nfix .O+0
** pfix .O+C
** pfix .O+0
** jump .O+2
**
** The nfix operator is used, so that the startup code will be
** compatible with the whole Tp family. (lies, damn lies, it'll never
** work in a month of Sundays).
**
** The nfix nyble is the 1s complement of the nyble value you
** want to load - in this case we wanted 'F' so we nfix loaded '0'.
*/
/*
** Dest points to the top 8 bytes of Sram2. The Tp jumps
** to 0x7FFE at reset time, and starts executing. This is
** a short branch to 0x7FF8, where a long branch is coded.
*/
DestP = (BYTE *)&Cad[0x7FF8]; /* <<<---- READ THE ABOVE COMMENTS */
#define NFIX(N) (0x60 | (N)) /* .O = (~(.O + N))<<4 */
#define PFIX(N) (0x20 | (N)) /* .O = (.O + N)<<4 */
#define JUMP(N) (0x00 | (N)) /* .PC = .PC + .O */
/*
** 0x7FFC is the address of the location following the last byte of
** the four byte jump instruction.
** READ THE ABOVE COMMENTS
**
** offset is (TO-FROM) % MEMSIZE, but with compound buggering about.
** Memsize is 64K for this range of Tp, so offset is a short (unsigned,
** cos I don't understand 2's complement).
*/
offset = (p->RIOConf.HostLoadBase-2)-0x7FFC;
WBYTE( DestP[0] , NFIX(((ushort)(~offset) >> (ushort)12) & 0xF) );
WBYTE( DestP[1] , PFIX(( offset >> 8) & 0xF) );
WBYTE( DestP[2] , PFIX(( offset >> 4) & 0xF) );
WBYTE( DestP[3] , JUMP( offset & 0xF) );
WBYTE( DestP[6] , NFIX(0) );
WBYTE( DestP[7] , JUMP(8) );
rio_dprintk (RIO_DEBUG_BOOT, "host loadbase is 0x%x\n",p->RIOConf.HostLoadBase);
rio_dprintk (RIO_DEBUG_BOOT, "startup offset is 0x%x\n",offset);
/*
** Flag what is going on
*/
HostP->Flags &= ~RUN_STATE;
HostP->Flags |= RC_STARTUP;
/*
** Grab a copy of the current ParmMap pointer, so we
** can tell when it has changed.
*/
OldParmMap = RWORD(HostP->__ParmMapR);
rio_dprintk (RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n",OldParmMap);
/*
** And start it running (I hope).
** As there is nothing dodgy or obscure about the
** above code, this is guaranteed to work every time.
*/
rio_dprintk (RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n",
HostP->Type, HostP->Mode, HostP->Ivec);
rio_start_card_running(HostP);
rio_dprintk (RIO_DEBUG_BOOT, "Set control port\n");
/*
** Now, wait for upto five seconds for the Tp to setup the parmmap
** pointer:
*/
for ( wait_count=0; (wait_count<p->RIOConf.StartupTime)&&
(RWORD(HostP->__ParmMapR)==OldParmMap); wait_count++ ) {
rio_dprintk (RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n",wait_count,RWORD(HostP->__ParmMapR));
delay(HostP, HUNDRED_MS);
}
/*
** If the parmmap pointer is unchanged, then the host code
** has crashed & burned in a really spectacular way
*/
if ( RWORD(HostP->__ParmMapR) == OldParmMap ) {
rio_dprintk (RIO_DEBUG_BOOT, "parmmap 0x%x\n", RWORD(HostP->__ParmMapR));
rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n");
#define HOST_DISABLE \
HostP->Flags &= ~RUN_STATE; \
HostP->Flags |= RC_STUFFED; \
RIOHostReset( HostP->Type, (struct DpRam *)HostP->CardP, HostP->Slot );\
continue
HOST_DISABLE;
}
rio_dprintk (RIO_DEBUG_BOOT, "Running 0x%x\n", RWORD(HostP->__ParmMapR));
/*
** Well, the board thought it was OK, and setup its parmmap
** pointer. For the time being, we will pretend that this
** board is running, and check out what the error flag says.
*/
/*
** Grab a 32 bit pointer to the parmmap structure
*/
ParmMapP = (PARM_MAP *)RIO_PTR(Cad,RWORD(HostP->__ParmMapR));
rio_dprintk (RIO_DEBUG_BOOT, "ParmMapP : %x\n", (int)ParmMapP);
ParmMapP = (PARM_MAP *)((unsigned long)Cad +
(unsigned long)((RWORD((HostP->__ParmMapR))) & 0xFFFF));
rio_dprintk (RIO_DEBUG_BOOT, "ParmMapP : %x\n", (int)ParmMapP);
/*
** The links entry should be 0xFFFF; we set it up
** with a mask to say how many PHBs to use, and
** which links to use.
*/
if ( (RWORD(ParmMapP->links) & 0xFFFF) != 0xFFFF ) {
rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
rio_dprintk (RIO_DEBUG_BOOT, "Links = 0x%x\n",RWORD(ParmMapP->links));
HOST_DISABLE;
}
WWORD(ParmMapP->links , RIO_LINK_ENABLE);
/*
** now wait for the card to set all the parmmap->XXX stuff
** this is a wait of upto two seconds....
*/
rio_dprintk (RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n",p->RIOConf.StartupTime);
HostP->timeout_id = 0;
for ( wait_count=0; (wait_count<p->RIOConf.StartupTime) &&
!RWORD(ParmMapP->init_done); wait_count++ ) {
rio_dprintk (RIO_DEBUG_BOOT, "Waiting for init_done\n");
delay(HostP, HUNDRED_MS);
}
rio_dprintk (RIO_DEBUG_BOOT, "OK! init_done!\n");
if (RWORD(ParmMapP->error) != E_NO_ERROR ||
!RWORD(ParmMapP->init_done) ) {
rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
rio_dprintk (RIO_DEBUG_BOOT, "Timedout waiting for init_done\n");
HOST_DISABLE;
}
rio_dprintk (RIO_DEBUG_BOOT, "Got init_done\n");
/*
** It runs! It runs!
*/
rio_dprintk (RIO_DEBUG_BOOT, "Host ID %x Running\n",HostP->UniqueNum);
/*
** set the time period between interrupts.
*/
WWORD(ParmMapP->timer, (short)p->RIOConf.Timer );
/*
** Translate all the 16 bit pointers in the __ParmMapR into
** 32 bit pointers for the driver.
*/
HostP->ParmMapP = ParmMapP;
HostP->PhbP = (PHB*)RIO_PTR(Cad,RWORD(ParmMapP->phb_ptr));
HostP->RupP = (RUP*)RIO_PTR(Cad,RWORD(ParmMapP->rups));
HostP->PhbNumP = (ushort*)RIO_PTR(Cad,RWORD(ParmMapP->phb_num_ptr));
HostP->LinkStrP = (LPB*)RIO_PTR(Cad,RWORD(ParmMapP->link_str_ptr));
/*
** point the UnixRups at the real Rups
*/
for ( RupN = 0; RupN<MAX_RUP; RupN++ ) {
HostP->UnixRups[RupN].RupP = &HostP->RupP[RupN];
HostP->UnixRups[RupN].Id = RupN+1;
HostP->UnixRups[RupN].BaseSysPort = NO_PORT;
spin_lock_init(&HostP->UnixRups[RupN].RupLock);
}
for ( RupN = 0; RupN<LINKS_PER_UNIT; RupN++ ) {
HostP->UnixRups[RupN+MAX_RUP].RupP = &HostP->LinkStrP[RupN].rup;
HostP->UnixRups[RupN+MAX_RUP].Id = 0;
HostP->UnixRups[RupN+MAX_RUP].BaseSysPort = NO_PORT;
spin_lock_init(&HostP->UnixRups[RupN+MAX_RUP].RupLock);
}
/*
** point the PortP->Phbs at the real Phbs
*/
for ( PortN=p->RIOFirstPortsMapped;
PortN<p->RIOLastPortsMapped+PORTS_PER_RTA; PortN++ ) {
if ( p->RIOPortp[PortN]->HostP == HostP ) {
struct Port *PortP = p->RIOPortp[PortN];
struct PHB *PhbP;
/* int oldspl; */
if ( !PortP->Mapped )
continue;
PhbP = &HostP->PhbP[PortP->HostPort];
rio_spin_lock_irqsave(&PortP->portSem, flags);
PortP->PhbP = PhbP;
PortP->TxAdd = (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_add));
PortP->TxStart = (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_start));
PortP->TxEnd = (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_end));
PortP->RxRemove = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_remove));
PortP->RxStart = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_start));
PortP->RxEnd = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_end));
rio_spin_unlock_irqrestore(&PortP->portSem, flags);
/*
** point the UnixRup at the base SysPort
*/
if ( !(PortN % PORTS_PER_RTA) )
HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN;
}
}
rio_dprintk (RIO_DEBUG_BOOT, "Set the card running... \n");
/*
** last thing - show the world that everything is in place
*/
HostP->Flags &= ~RUN_STATE;
HostP->Flags |= RC_RUNNING;
}
/*
** MPX always uses a poller. This is actually patched into the system
** configuration and called directly from each clock tick.
**
*/
p->RIOPolling = 1;
p->RIOSystemUp++;
rio_dprintk (RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec);
func_exit ();
return 0;
}
/*
** Boot an RTA. If we have successfully processed this boot, then
** return 1. If we havent, then return 0.
*/
int
RIOBootRup( p, Rup, HostP, PacketP)
struct rio_info * p;
uint Rup;
struct Host *HostP;
struct PKT *PacketP;
{
struct PktCmd *PktCmdP = (struct PktCmd *)PacketP->data;
struct PktCmd_M *PktReplyP;
struct CmdBlk *CmdBlkP;
uint sequence;
#ifdef CHECK
CheckHost(Host);
CheckRup(Rup);
CheckHostP(HostP);
CheckPacketP(PacketP);
#endif
/*
** If we haven't been told what to boot, we can't boot it.
*/
if ( p->RIONumBootPkts == 0 ) {
rio_dprintk (RIO_DEBUG_BOOT, "No RTA code to download yet\n");
return 0;
}
/* rio_dprint(RIO_DEBUG_BOOT, NULL,DBG_BOOT,"Incoming command packet\n"); */
/* ShowPacket( DBG_BOOT, PacketP ); */
/*
** Special case of boot completed - if we get one of these then we
** don't need a command block. For all other cases we do, so handle
** this first and then get a command block, then handle every other
** case, relinquishing the command block if disaster strikes!
*/
if ( (RBYTE(PacketP->len) & PKT_CMD_BIT) &&
(RBYTE(PktCmdP->Command)==BOOT_COMPLETED) )
return RIOBootComplete(p, HostP, Rup, PktCmdP );
/*
** try to unhook a command block from the command free list.
*/
if ( !(CmdBlkP = RIOGetCmdBlk()) ) {
rio_dprintk (RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n");
return 0;
}
/*
** Fill in the default info on the command block
*/
CmdBlkP->Packet.dest_unit = Rup < (ushort)MAX_RUP ? Rup : 0;
CmdBlkP->Packet.dest_port = BOOT_RUP;
CmdBlkP->Packet.src_unit = 0;
CmdBlkP->Packet.src_port = BOOT_RUP;
CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL;
PktReplyP = (struct PktCmd_M *)CmdBlkP->Packet.data;
/*
** process COMMANDS on the boot rup!
*/
if ( RBYTE(PacketP->len) & PKT_CMD_BIT ) {
/*
** We only expect one type of command - a BOOT_REQUEST!
*/
if ( RBYTE(PktCmdP->Command) != BOOT_REQUEST ) {
rio_dprintk (RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %d\n",
PktCmdP->Command,Rup,HostP-p->RIOHosts);
ShowPacket( DBG_BOOT, PacketP );
RIOFreeCmdBlk( CmdBlkP );
return 1;
}
/*
** Build a Boot Sequence command block
**
** 02.03.1999 ARG - ESIL 0820 fix
** We no longer need to use "Boot Mode", we'll always allow
** boot requests - the boot will not complete if the device
** appears in the bindings table.
** So, this conditional is not required ...
**
if (p->RIOBootMode == RC_BOOT_NONE)
**
** If the system is in slave mode, and a boot request is
** received, set command to BOOT_ABORT so that the boot
** will not complete.
**
PktReplyP->Command = BOOT_ABORT;
else
**
** We'll just (always) set the command field in packet reply
** to allow an attempted boot sequence :
*/
PktReplyP->Command = BOOT_SEQUENCE;
PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts;
PktReplyP->BootSequence.LoadBase = p->RIOConf.RtaLoadBase;
PktReplyP->BootSequence.CodeSize = p->RIOBootCount;
CmdBlkP->Packet.len = BOOT_SEQUENCE_LEN | PKT_CMD_BIT;
bcopy("BOOT",(void *)&CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN],4);
rio_dprintk (RIO_DEBUG_BOOT, "Boot RTA on Host %d Rup %d - %d (0x%x) packets to 0x%x\n",
HostP-p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts,
p->RIOConf.RtaLoadBase);
/*
** If this host is in slave mode, send the RTA an invalid boot
** sequence command block to force it to kill the boot. We wait
** for half a second before sending this packet to prevent the RTA
** attempting to boot too often. The master host should then grab
** the RTA and make it its own.
*/
p->RIOBooting++;
RIOQueueCmdBlk( HostP, Rup, CmdBlkP );
return 1;
}
/*
** It is a request for boot data.
*/
sequence = RWORD(PktCmdP->Sequence);
rio_dprintk (RIO_DEBUG_BOOT, "Boot block %d on Host %d Rup%d\n",sequence,HostP-p->RIOHosts,Rup);
if ( sequence >= p->RIONumBootPkts ) {
rio_dprintk (RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence,
p->RIONumBootPkts);
ShowPacket( DBG_BOOT, PacketP );
}
PktReplyP->Sequence = sequence;
bcopy( p->RIOBootPackets[ p->RIONumBootPkts - sequence - 1 ],
PktReplyP->BootData, RTA_BOOT_DATA_SIZE );
CmdBlkP->Packet.len = PKT_MAX_DATA_LEN;
ShowPacket( DBG_BOOT, &CmdBlkP->Packet );
RIOQueueCmdBlk( HostP, Rup, CmdBlkP );
return 1;
}
/*
** This function is called when an RTA been booted.
** If booted by a host, HostP->HostUniqueNum is the booting host.
** If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA.
** RtaUniq is the booted RTA.
*/
static int RIOBootComplete( struct rio_info *p, struct Host *HostP, uint Rup, struct PktCmd *PktCmdP )
{
struct Map *MapP = NULL;
struct Map *MapP2 = NULL;
int Flag;
int found;
int host, rta;
int EmptySlot = -1;
int entry, entry2;
char *MyType, *MyName;
uint MyLink;
ushort RtaType;
uint RtaUniq = (RBYTE(PktCmdP->UniqNum[0])) +
(RBYTE(PktCmdP->UniqNum[1]) << 8) +
(RBYTE(PktCmdP->UniqNum[2]) << 16) +
(RBYTE(PktCmdP->UniqNum[3]) << 24);
/* Was RIOBooting-- . That's bad. If an RTA sends two of them, the
driver will never think that the RTA has booted... -- REW */
p->RIOBooting = 0;
rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting);
/*
** Determine type of unit (16/8 port RTA).
*/
RtaType = GetUnitType(RtaUniq);
if ( Rup >= (ushort)MAX_RUP ) {
rio_dprintk (RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n",
HostP->Name, 8 * RtaType, RBYTE(PktCmdP->LinkNum)+'A');
} else {
rio_dprintk (RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n",
HostP->Mapping[Rup].Name, 8 * RtaType,
RBYTE(PktCmdP->LinkNum)+'A');
}
rio_dprintk (RIO_DEBUG_BOOT, "UniqNum is 0x%x\n",RtaUniq);
if ( ( RtaUniq == 0x00000000 ) || ( RtaUniq == 0xffffffff ) )
{
rio_dprintk (RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n");
return TRUE;
}
/*
** If this RTA has just booted an RTA which doesn't belong to this
** system, or the system is in slave mode, do not attempt to create
** a new table entry for it.
*/
if (!RIOBootOk(p, HostP, RtaUniq))
{
MyLink = RBYTE(PktCmdP->LinkNum);
if (Rup < (ushort) MAX_RUP)
{
/*
** RtaUniq was clone booted (by this RTA). Instruct this RTA
** to hold off further attempts to boot on this link for 30
** seconds.
*/
if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink))
{
rio_dprintk (RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n",
'A' + MyLink);
}
}
else
{
/*
** RtaUniq was booted by this host. Set the booting link
** to hold off for 30 seconds to give another unit a
** chance to boot it.
*/
WWORD(HostP->LinkStrP[MyLink].WaitNoBoot, 30);
}
rio_dprintk (RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n",
RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum);
return TRUE;
}
/*
** Check for a SLOT_IN_USE entry for this RTA attached to the
** current host card in the driver table.
**
** If it exists, make a note that we have booted it. Other parts of
** the driver are interested in this information at a later date,
** in particular when the booting RTA asks for an ID for this unit,
** we must have set the BOOTED flag, and the NEWBOOT flag is used
** to force an open on any ports that where previously open on this
** unit.
*/
for ( entry=0; entry<MAX_RUP; entry++ )
{
uint sysport;
if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) &&
(HostP->Mapping[entry].RtaUniqueNum==RtaUniq))
{
HostP->Mapping[entry].Flags |= RTA_BOOTED|RTA_NEWBOOT;
#ifdef NEED_TO_FIX
RIO_SV_BROADCAST(HostP->svFlags[entry]);
#endif
if ( (sysport=HostP->Mapping[entry].SysPort) != NO_PORT )
{
if ( sysport < p->RIOFirstPortsBooted )
p->RIOFirstPortsBooted = sysport;
if ( sysport > p->RIOLastPortsBooted )
p->RIOLastPortsBooted = sysport;
/*
** For a 16 port RTA, check the second bank of 8 ports
*/
if (RtaType == TYPE_RTA16)
{
entry2 = HostP->Mapping[entry].ID2 - 1;
HostP->Mapping[entry2].Flags |= RTA_BOOTED|RTA_NEWBOOT;
#ifdef NEED_TO_FIX
RIO_SV_BROADCAST(HostP->svFlags[entry2]);
#endif
sysport = HostP->Mapping[entry2].SysPort;
if ( sysport < p->RIOFirstPortsBooted )
p->RIOFirstPortsBooted = sysport;
if ( sysport > p->RIOLastPortsBooted )
p->RIOLastPortsBooted = sysport;
}
}
if (RtaType == TYPE_RTA16) {
rio_dprintk (RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n",
entry+1, entry2+1);
} else {
rio_dprintk (RIO_DEBUG_BOOT, "RTA will be given ID %d\n",entry+1);
}
return TRUE;
}
}
rio_dprintk (RIO_DEBUG_BOOT, "RTA not configured for this host\n");
if ( Rup >= (ushort)MAX_RUP )
{
/*
** It was a host that did the booting
*/
MyType = "Host";
MyName = HostP->Name;
}
else
{
/*
** It was an RTA that did the booting
*/
MyType = "RTA";
MyName = HostP->Mapping[Rup].Name;
}
#ifdef CHECK
CheckString(MyType);
CheckString(MyName);
#endif
MyLink = RBYTE(PktCmdP->LinkNum);
/*
** There is no SLOT_IN_USE entry for this RTA attached to the current
** host card in the driver table.
**
** Check for a SLOT_TENTATIVE entry for this RTA attached to the
** current host card in the driver table.
**
** If we find one, then we re-use that slot.
*/
for ( entry=0; entry<MAX_RUP; entry++ )
{
if ( (HostP->Mapping[entry].Flags & SLOT_TENTATIVE) &&
(HostP->Mapping[entry].RtaUniqueNum == RtaUniq) )
{
if (RtaType == TYPE_RTA16)
{
entry2 = HostP->Mapping[entry].ID2 - 1;
if ( (HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) &&
(HostP->Mapping[entry2].RtaUniqueNum == RtaUniq) )
rio_dprintk (RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n",
entry, entry2);
else
continue;
}
else
rio_dprintk (RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n",entry);
if (! p->RIONoMessage)
cprintf("RTA connected to %s '%s' (%c) not configured.\n",MyType,MyName,MyLink+'A');
return TRUE;
}
}
/*
** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
** attached to the current host card in the driver table.
**
** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another
** host for this RTA in the driver table.
**
** For a SLOT_IN_USE entry on another host, we need to delete the RTA
** entry from the other host and add it to this host (using some of
** the functions from table.c which do this).
** For a SLOT_TENTATIVE entry on another host, we must cope with the
** following scenario:
**
** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry
** in table)
** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE
** entries)
** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE)
** + Unplug RTA and plug back into host A.
** + Configure RTA on host A. We now have the same RTA configured
** with different ports on two different hosts.
*/
rio_dprintk (RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq );
found = 0;
Flag = 0; /* Convince the compiler this variable is initialized */
for ( host = 0; !found && (host < p->RIONumHosts); host++ )
{
for ( rta=0; rta<MAX_RUP; rta++ )
{
if ((p->RIOHosts[host].Mapping[rta].Flags &
(SLOT_IN_USE | SLOT_TENTATIVE)) &&
(p->RIOHosts[host].Mapping[rta].RtaUniqueNum==RtaUniq))
{
Flag = p->RIOHosts[host].Mapping[rta].Flags;
MapP = &p->RIOHosts[host].Mapping[rta];
if (RtaType == TYPE_RTA16)
{
MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1];
rio_dprintk (RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n",
rta+1, MapP->ID2, p->RIOHosts[host].Name);
}
else
rio_dprintk (RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n",
rta+1, p->RIOHosts[host].Name);
found = 1;
break;
}
}
}
/*
** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
** attached to the current host card in the driver table.
**
** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on
** another host for this RTA in the driver table...
**
** Check for a SLOT_IN_USE entry for this RTA in the config table.
*/
if ( !MapP )
{
rio_dprintk (RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n",RtaUniq);
for ( rta=0; rta < TOTAL_MAP_ENTRIES; rta++ )
{
rio_dprintk (RIO_DEBUG_BOOT, "Check table entry %d (%x)",
rta,
p->RIOSavedTable[rta].RtaUniqueNum);
if ( (p->RIOSavedTable[rta].Flags & SLOT_IN_USE) &&
(p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq) )
{
MapP = &p->RIOSavedTable[rta];
Flag = p->RIOSavedTable[rta].Flags;
if (RtaType == TYPE_RTA16)
{
for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES;
entry2++)
{
if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq)
break;
}
MapP2 = &p->RIOSavedTable[entry2];
rio_dprintk (RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n",
rta, entry2);
}
else
rio_dprintk (RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta);
break;
}
}
}
/*
** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
** attached to the current host card in the driver table.
**
** We may have found a SLOT_IN_USE entry on another host for this
** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry
** on another host for this RTA in the driver table.
**
** Check the driver table for room to fit this newly discovered RTA.
** RIOFindFreeID() first looks for free slots and if it does not
** find any free slots it will then attempt to oust any
** tentative entry in the table.
*/
EmptySlot = 1;
if (RtaType == TYPE_RTA16)
{
if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0)
{
RIODefaultName(p, HostP, entry);
FillSlot(entry, entry2, RtaUniq, HostP);
EmptySlot = 0;
}
}
else
{
if (RIOFindFreeID(p, HostP, &entry, NULL) == 0)
{
RIODefaultName(p, HostP, entry);
FillSlot(entry, 0, RtaUniq, HostP);
EmptySlot = 0;
}
}
/*
** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
** attached to the current host card in the driver table.
**
** If we found a SLOT_IN_USE entry on another host for this
** RTA in the config or driver table, and there are enough free
** slots in the driver table, then we need to move it over and
** delete it from the other host.
** If we found a SLOT_TENTATIVE entry on another host for this
** RTA in the driver table, just delete the other host entry.
*/
if (EmptySlot == 0)
{
if ( MapP )
{
if (Flag & SLOT_IN_USE)
{
rio_dprintk (RIO_DEBUG_BOOT,
"This RTA configured on another host - move entry to current host (1)\n");
HostP->Mapping[entry].SysPort = MapP->SysPort;
CCOPY( MapP->Name, HostP->Mapping[entry].Name, MAX_NAME_LEN );
HostP->Mapping[entry].Flags =
SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT;
#ifdef NEED_TO_FIX
RIO_SV_BROADCAST(HostP->svFlags[entry]);
#endif
RIOReMapPorts( p, HostP, &HostP->Mapping[entry] );
if ( HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted )
p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort;
if ( HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted )
p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort;
rio_dprintk (RIO_DEBUG_BOOT, "SysPort %d, Name %s\n",(int)MapP->SysPort,MapP->Name);
}
else
{
rio_dprintk (RIO_DEBUG_BOOT,
"This RTA has a tentative entry on another host - delete that entry (1)\n");
HostP->Mapping[entry].Flags =
SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT;
#ifdef NEED_TO_FIX
RIO_SV_BROADCAST(HostP->svFlags[entry]);
#endif
}
if (RtaType == TYPE_RTA16)
{
if (Flag & SLOT_IN_USE)
{
HostP->Mapping[entry2].Flags = SLOT_IN_USE |
RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
#ifdef NEED_TO_FIX
RIO_SV_BROADCAST(HostP->svFlags[entry2]);
#endif
HostP->Mapping[entry2].SysPort = MapP2->SysPort;
/*
** Map second block of ttys for 16 port RTA
*/
RIOReMapPorts( p, HostP, &HostP->Mapping[entry2] );
if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted)
p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort;
if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted)
p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort;
rio_dprintk (RIO_DEBUG_BOOT, "SysPort %d, Name %s\n",
(int)HostP->Mapping[entry2].SysPort,
HostP->Mapping[entry].Name);
}
else
HostP->Mapping[entry2].Flags = SLOT_TENTATIVE |
RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
#ifdef NEED_TO_FIX
RIO_SV_BROADCAST(HostP->svFlags[entry2]);
#endif
bzero( (caddr_t)MapP2, sizeof(struct Map) );
}
bzero( (caddr_t)MapP, sizeof(struct Map) );
if (! p->RIONoMessage)
cprintf("An orphaned RTA has been adopted by %s '%s' (%c).\n",MyType,MyName,MyLink+'A');
}
else if (! p->RIONoMessage)
cprintf("RTA connected to %s '%s' (%c) not configured.\n",MyType,MyName,MyLink+'A');
RIOSetChange(p);
return TRUE;
}
/*
** There is no room in the driver table to make an entry for the
** booted RTA. Keep a note of its Uniq Num in the overflow table,
** so we can ignore it's ID requests.
*/
if (! p->RIONoMessage)
cprintf("The RTA connected to %s '%s' (%c) cannot be configured. You cannot configure more than 128 ports to one host card.\n",MyType,MyName,MyLink+'A');
for ( entry=0; entry<HostP->NumExtraBooted; entry++ )
{
if ( HostP->ExtraUnits[entry] == RtaUniq )
{
/*
** already got it!
*/
return TRUE;
}
}
/*
** If there is room, add the unit to the list of extras
*/
if ( HostP->NumExtraBooted < MAX_EXTRA_UNITS )
HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq;
return TRUE;
}
/*
** If the RTA or its host appears in the RIOBindTab[] structure then
** we mustn't boot the RTA and should return FALSE.
** This operation is slightly different from the other drivers for RIO
** in that this is designed to work with the new utilities
** not config.rio and is FAR SIMPLER.
** We no longer support the RIOBootMode variable. It is all done from the
** "boot/noboot" field in the rio.cf file.
*/
int
RIOBootOk(p, HostP, RtaUniq)
struct rio_info * p;
struct Host * HostP;
ulong RtaUniq;
{
int Entry;
uint HostUniq = HostP->UniqueNum;
/*
** Search bindings table for RTA or its parent.
** If it exists, return 0, else 1.
*/
for (Entry = 0;
( Entry < MAX_RTA_BINDINGS ) && ( p->RIOBindTab[Entry] != 0 );
Entry++)
{
if ( (p->RIOBindTab[Entry] == HostUniq) ||
(p->RIOBindTab[Entry] == RtaUniq) )
return 0;
}
return 1;
}
/*
** Make an empty slot tentative. If this is a 16 port RTA, make both
** slots tentative, and the second one RTA_SECOND_SLOT as well.
*/
void
FillSlot(entry, entry2, RtaUniq, HostP)
int entry;
int entry2;
uint RtaUniq;
struct Host *HostP;
{
int link;
rio_dprintk (RIO_DEBUG_BOOT, "FillSlot(%d, %d, 0x%x...)\n", entry, entry2, RtaUniq);
HostP->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE);
HostP->Mapping[entry].SysPort = NO_PORT;
HostP->Mapping[entry].RtaUniqueNum = RtaUniq;
HostP->Mapping[entry].HostUniqueNum = HostP->UniqueNum;
HostP->Mapping[entry].ID = entry + 1;
HostP->Mapping[entry].ID2 = 0;
if (entry2) {
HostP->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT |
SLOT_TENTATIVE | RTA16_SECOND_SLOT);
HostP->Mapping[entry2].SysPort = NO_PORT;
HostP->Mapping[entry2].RtaUniqueNum = RtaUniq;
HostP->Mapping[entry2].HostUniqueNum = HostP->UniqueNum;
HostP->Mapping[entry2].Name[0] = '\0';
HostP->Mapping[entry2].ID = entry2 + 1;
HostP->Mapping[entry2].ID2 = entry + 1;
HostP->Mapping[entry].ID2 = entry2 + 1;
}
/*
** Must set these up, so that utilities show
** topology of 16 port RTAs correctly
*/
for ( link=0; link<LINKS_PER_UNIT; link++ ) {
HostP->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT;
HostP->Mapping[entry].Topology[link].Link = NO_LINK;
if (entry2) {
HostP->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT;
HostP->Mapping[entry2].Topology[link].Link = NO_LINK;
}
}
}
#if 0
/*
Function: This function is to disable the disk interrupt
Returns : Nothing
*/
void
disable_interrupt(vector)
int vector;
{
int ps;
int val;
disable(ps);
if (vector > 40) {
val = 1 << (vector - 40);
__outb(S8259+1, __inb(S8259+1) | val);
}
else {
val = 1 << (vector - 32);
__outb(M8259+1, __inb(M8259+1) | val);
}
restore(ps);
}
/*
Function: This function is to enable the disk interrupt
Returns : Nothing
*/
void
enable_interrupt(vector)
int vector;
{
int ps;
int val;
disable(ps);
if (vector > 40) {
val = 1 << (vector - 40);
val = ~val;
__outb(S8259+1, __inb(S8259+1) & val);
}
else {
val = 1 << (vector - 32);
val = ~val;
__outb(M8259+1, __inb(M8259+1) & val);
}
restore(ps);
}
#endif