2017-11-01 10:08:43 -04:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
|
kernel: add kcov code coverage
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing). Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system. A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/). However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.
kcov does not aim to collect as much coverage as possible. It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g. scheduler, locking).
Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes. Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch). I've
dropped the second mode for simplicity.
This patch adds the necessary support on kernel side. The complimentary
compiler support was added in gcc revision 231296.
We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:
https://github.com/google/syzkaller/wiki/Found-Bugs
We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation". For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.
Why not gcov. Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat. A
typical coverage can be just a dozen of basic blocks (e.g. an invalid
input). In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M). Cost of
kcov depends only on number of executed basic blocks/edges. On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.
kcov exposes kernel PCs and control flow to user-space which is
insecure. But debugfs should not be mapped as user accessible.
Based on a patch by Quentin Casasnovas.
[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-22 17:27:30 -04:00
|
|
|
#ifndef _LINUX_KCOV_IOCTLS_H
|
|
|
|
#define _LINUX_KCOV_IOCTLS_H
|
|
|
|
|
|
|
|
#include <linux/types.h>
|
|
|
|
|
UPSTREAM: kcov: remote coverage support
(Upstream commit eec028c9386ed1a692aa01a85b55952202b41619.)
Patch series " kcov: collect coverage from usb and vhost", v3.
This patchset extends kcov to allow collecting coverage from backgound
kernel threads. This extension requires custom annotations for each of
the places where coverage collection is desired. This patchset
implements this for hub events in the USB subsystem and for vhost
workers. See the first patch description for details about the kcov
extension. The other two patches apply this kcov extension to USB and
vhost.
Examples of other subsystems that might potentially benefit from this
when custom annotations are added (the list is based on
process_one_work() callers for bugs recently reported by syzbot):
1. fs: writeback wb_workfn() worker,
2. net: addrconf_dad_work()/addrconf_verify_work() workers,
3. net: neigh_periodic_work() worker,
4. net/p9: p9_write_work()/p9_read_work() workers,
5. block: blk_mq_run_work_fn() worker.
These patches have been used to enable coverage-guided USB fuzzing with
syzkaller for the last few years, see the details here:
https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md
This patchset has been pushed to the public Linux kernel Gerrit
instance:
https://linux-review.googlesource.com/c/linux/kernel/git/torvalds/linux/+/1524
This patch (of 3):
Add background thread coverage collection ability to kcov.
With KCOV_ENABLE coverage is collected only for syscalls that are issued
from the current process. With KCOV_REMOTE_ENABLE it's possible to
collect coverage for arbitrary parts of the kernel code, provided that
those parts are annotated with kcov_remote_start()/kcov_remote_stop().
This allows to collect coverage from two types of kernel background
threads: the global ones, that are spawned during kernel boot in a
limited number of instances (e.g. one USB hub_event() worker thread is
spawned per USB HCD); and the local ones, that are spawned when a user
interacts with some kernel interface (e.g. vhost workers).
To enable collecting coverage from a global background thread, a unique
global handle must be assigned and passed to the corresponding
kcov_remote_start() call. Then a userspace process can pass a list of
such handles to the KCOV_REMOTE_ENABLE ioctl in the handles array field
of the kcov_remote_arg struct. This will attach the used kcov device to
the code sections, that are referenced by those handles.
Since there might be many local background threads spawned from
different userspace processes, we can't use a single global handle per
annotation. Instead, the userspace process passes a non-zero handle
through the common_handle field of the kcov_remote_arg struct. This
common handle gets saved to the kcov_handle field in the current
task_struct and needs to be passed to the newly spawned threads via
custom annotations. Those threads should in turn be annotated with
kcov_remote_start()/kcov_remote_stop().
Internally kcov stores handles as u64 integers. The top byte of a
handle is used to denote the id of a subsystem that this handle belongs
to, and the lower 4 bytes are used to denote the id of a thread instance
within that subsystem. A reserved value 0 is used as a subsystem id for
common handles as they don't belong to a particular subsystem. The
bytes 4-7 are currently reserved and must be zero. In the future the
number of bytes used for the subsystem or handle ids might be increased.
When a particular userspace process collects coverage by via a common
handle, kcov will collect coverage for each code section that is
annotated to use the common handle obtained as kcov_handle from the
current task_struct. However non common handles allow to collect
coverage selectively from different subsystems.
Link: http://lkml.kernel.org/r/e90e315426a384207edbec1d6aa89e43008e4caf.1572366574.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: David Windsor <dwindsor@gmail.com>
Cc: Elena Reshetova <elena.reshetova@intel.com>
Cc: Anders Roxell <anders.roxell@linaro.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Bug: 147413187
Change-Id: I868c4846a412bfbae16086017e113813571df377
2019-12-04 19:52:43 -05:00
|
|
|
/*
|
|
|
|
* Argument for KCOV_REMOTE_ENABLE ioctl, see Documentation/dev-tools/kcov.rst
|
|
|
|
* and the comment before kcov_remote_start() for usage details.
|
|
|
|
*/
|
|
|
|
struct kcov_remote_arg {
|
2020-01-04 15:59:39 -05:00
|
|
|
__u32 trace_mode; /* KCOV_TRACE_PC or KCOV_TRACE_CMP */
|
|
|
|
__u32 area_size; /* Length of coverage buffer in words */
|
|
|
|
__u32 num_handles; /* Size of handles array */
|
|
|
|
__aligned_u64 common_handle;
|
|
|
|
__aligned_u64 handles[0];
|
UPSTREAM: kcov: remote coverage support
(Upstream commit eec028c9386ed1a692aa01a85b55952202b41619.)
Patch series " kcov: collect coverage from usb and vhost", v3.
This patchset extends kcov to allow collecting coverage from backgound
kernel threads. This extension requires custom annotations for each of
the places where coverage collection is desired. This patchset
implements this for hub events in the USB subsystem and for vhost
workers. See the first patch description for details about the kcov
extension. The other two patches apply this kcov extension to USB and
vhost.
Examples of other subsystems that might potentially benefit from this
when custom annotations are added (the list is based on
process_one_work() callers for bugs recently reported by syzbot):
1. fs: writeback wb_workfn() worker,
2. net: addrconf_dad_work()/addrconf_verify_work() workers,
3. net: neigh_periodic_work() worker,
4. net/p9: p9_write_work()/p9_read_work() workers,
5. block: blk_mq_run_work_fn() worker.
These patches have been used to enable coverage-guided USB fuzzing with
syzkaller for the last few years, see the details here:
https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md
This patchset has been pushed to the public Linux kernel Gerrit
instance:
https://linux-review.googlesource.com/c/linux/kernel/git/torvalds/linux/+/1524
This patch (of 3):
Add background thread coverage collection ability to kcov.
With KCOV_ENABLE coverage is collected only for syscalls that are issued
from the current process. With KCOV_REMOTE_ENABLE it's possible to
collect coverage for arbitrary parts of the kernel code, provided that
those parts are annotated with kcov_remote_start()/kcov_remote_stop().
This allows to collect coverage from two types of kernel background
threads: the global ones, that are spawned during kernel boot in a
limited number of instances (e.g. one USB hub_event() worker thread is
spawned per USB HCD); and the local ones, that are spawned when a user
interacts with some kernel interface (e.g. vhost workers).
To enable collecting coverage from a global background thread, a unique
global handle must be assigned and passed to the corresponding
kcov_remote_start() call. Then a userspace process can pass a list of
such handles to the KCOV_REMOTE_ENABLE ioctl in the handles array field
of the kcov_remote_arg struct. This will attach the used kcov device to
the code sections, that are referenced by those handles.
Since there might be many local background threads spawned from
different userspace processes, we can't use a single global handle per
annotation. Instead, the userspace process passes a non-zero handle
through the common_handle field of the kcov_remote_arg struct. This
common handle gets saved to the kcov_handle field in the current
task_struct and needs to be passed to the newly spawned threads via
custom annotations. Those threads should in turn be annotated with
kcov_remote_start()/kcov_remote_stop().
Internally kcov stores handles as u64 integers. The top byte of a
handle is used to denote the id of a subsystem that this handle belongs
to, and the lower 4 bytes are used to denote the id of a thread instance
within that subsystem. A reserved value 0 is used as a subsystem id for
common handles as they don't belong to a particular subsystem. The
bytes 4-7 are currently reserved and must be zero. In the future the
number of bytes used for the subsystem or handle ids might be increased.
When a particular userspace process collects coverage by via a common
handle, kcov will collect coverage for each code section that is
annotated to use the common handle obtained as kcov_handle from the
current task_struct. However non common handles allow to collect
coverage selectively from different subsystems.
Link: http://lkml.kernel.org/r/e90e315426a384207edbec1d6aa89e43008e4caf.1572366574.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: David Windsor <dwindsor@gmail.com>
Cc: Elena Reshetova <elena.reshetova@intel.com>
Cc: Anders Roxell <anders.roxell@linaro.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Bug: 147413187
Change-Id: I868c4846a412bfbae16086017e113813571df377
2019-12-04 19:52:43 -05:00
|
|
|
};
|
|
|
|
|
|
|
|
#define KCOV_REMOTE_MAX_HANDLES 0x100
|
|
|
|
|
kernel: add kcov code coverage
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing). Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system. A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/). However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.
kcov does not aim to collect as much coverage as possible. It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g. scheduler, locking).
Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes. Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch). I've
dropped the second mode for simplicity.
This patch adds the necessary support on kernel side. The complimentary
compiler support was added in gcc revision 231296.
We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:
https://github.com/google/syzkaller/wiki/Found-Bugs
We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation". For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.
Why not gcov. Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat. A
typical coverage can be just a dozen of basic blocks (e.g. an invalid
input). In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M). Cost of
kcov depends only on number of executed basic blocks/edges. On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.
kcov exposes kernel PCs and control flow to user-space which is
insecure. But debugfs should not be mapped as user accessible.
Based on a patch by Quentin Casasnovas.
[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-22 17:27:30 -04:00
|
|
|
#define KCOV_INIT_TRACE _IOR('c', 1, unsigned long)
|
|
|
|
#define KCOV_ENABLE _IO('c', 100)
|
|
|
|
#define KCOV_DISABLE _IO('c', 101)
|
UPSTREAM: kcov: remote coverage support
(Upstream commit eec028c9386ed1a692aa01a85b55952202b41619.)
Patch series " kcov: collect coverage from usb and vhost", v3.
This patchset extends kcov to allow collecting coverage from backgound
kernel threads. This extension requires custom annotations for each of
the places where coverage collection is desired. This patchset
implements this for hub events in the USB subsystem and for vhost
workers. See the first patch description for details about the kcov
extension. The other two patches apply this kcov extension to USB and
vhost.
Examples of other subsystems that might potentially benefit from this
when custom annotations are added (the list is based on
process_one_work() callers for bugs recently reported by syzbot):
1. fs: writeback wb_workfn() worker,
2. net: addrconf_dad_work()/addrconf_verify_work() workers,
3. net: neigh_periodic_work() worker,
4. net/p9: p9_write_work()/p9_read_work() workers,
5. block: blk_mq_run_work_fn() worker.
These patches have been used to enable coverage-guided USB fuzzing with
syzkaller for the last few years, see the details here:
https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md
This patchset has been pushed to the public Linux kernel Gerrit
instance:
https://linux-review.googlesource.com/c/linux/kernel/git/torvalds/linux/+/1524
This patch (of 3):
Add background thread coverage collection ability to kcov.
With KCOV_ENABLE coverage is collected only for syscalls that are issued
from the current process. With KCOV_REMOTE_ENABLE it's possible to
collect coverage for arbitrary parts of the kernel code, provided that
those parts are annotated with kcov_remote_start()/kcov_remote_stop().
This allows to collect coverage from two types of kernel background
threads: the global ones, that are spawned during kernel boot in a
limited number of instances (e.g. one USB hub_event() worker thread is
spawned per USB HCD); and the local ones, that are spawned when a user
interacts with some kernel interface (e.g. vhost workers).
To enable collecting coverage from a global background thread, a unique
global handle must be assigned and passed to the corresponding
kcov_remote_start() call. Then a userspace process can pass a list of
such handles to the KCOV_REMOTE_ENABLE ioctl in the handles array field
of the kcov_remote_arg struct. This will attach the used kcov device to
the code sections, that are referenced by those handles.
Since there might be many local background threads spawned from
different userspace processes, we can't use a single global handle per
annotation. Instead, the userspace process passes a non-zero handle
through the common_handle field of the kcov_remote_arg struct. This
common handle gets saved to the kcov_handle field in the current
task_struct and needs to be passed to the newly spawned threads via
custom annotations. Those threads should in turn be annotated with
kcov_remote_start()/kcov_remote_stop().
Internally kcov stores handles as u64 integers. The top byte of a
handle is used to denote the id of a subsystem that this handle belongs
to, and the lower 4 bytes are used to denote the id of a thread instance
within that subsystem. A reserved value 0 is used as a subsystem id for
common handles as they don't belong to a particular subsystem. The
bytes 4-7 are currently reserved and must be zero. In the future the
number of bytes used for the subsystem or handle ids might be increased.
When a particular userspace process collects coverage by via a common
handle, kcov will collect coverage for each code section that is
annotated to use the common handle obtained as kcov_handle from the
current task_struct. However non common handles allow to collect
coverage selectively from different subsystems.
Link: http://lkml.kernel.org/r/e90e315426a384207edbec1d6aa89e43008e4caf.1572366574.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: David Windsor <dwindsor@gmail.com>
Cc: Elena Reshetova <elena.reshetova@intel.com>
Cc: Anders Roxell <anders.roxell@linaro.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Bug: 147413187
Change-Id: I868c4846a412bfbae16086017e113813571df377
2019-12-04 19:52:43 -05:00
|
|
|
#define KCOV_REMOTE_ENABLE _IOW('c', 102, struct kcov_remote_arg)
|
kernel: add kcov code coverage
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing). Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system. A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/). However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.
kcov does not aim to collect as much coverage as possible. It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g. scheduler, locking).
Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes. Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch). I've
dropped the second mode for simplicity.
This patch adds the necessary support on kernel side. The complimentary
compiler support was added in gcc revision 231296.
We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:
https://github.com/google/syzkaller/wiki/Found-Bugs
We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation". For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.
Why not gcov. Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat. A
typical coverage can be just a dozen of basic blocks (e.g. an invalid
input). In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M). Cost of
kcov depends only on number of executed basic blocks/edges. On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.
kcov exposes kernel PCs and control flow to user-space which is
insecure. But debugfs should not be mapped as user accessible.
Based on a patch by Quentin Casasnovas.
[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-22 17:27:30 -04:00
|
|
|
|
2017-11-17 18:30:46 -05:00
|
|
|
enum {
|
|
|
|
/*
|
|
|
|
* Tracing coverage collection mode.
|
|
|
|
* Covered PCs are collected in a per-task buffer.
|
|
|
|
* In new KCOV version the mode is chosen by calling
|
|
|
|
* ioctl(fd, KCOV_ENABLE, mode). In older versions the mode argument
|
|
|
|
* was supposed to be 0 in such a call. So, for reasons of backward
|
|
|
|
* compatibility, we have chosen the value KCOV_TRACE_PC to be 0.
|
|
|
|
*/
|
|
|
|
KCOV_TRACE_PC = 0,
|
|
|
|
/* Collecting comparison operands mode. */
|
|
|
|
KCOV_TRACE_CMP = 1,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The format for the types of collected comparisons.
|
|
|
|
*
|
|
|
|
* Bit 0 shows whether one of the arguments is a compile-time constant.
|
|
|
|
* Bits 1 & 2 contain log2 of the argument size, up to 8 bytes.
|
|
|
|
*/
|
|
|
|
#define KCOV_CMP_CONST (1 << 0)
|
|
|
|
#define KCOV_CMP_SIZE(n) ((n) << 1)
|
|
|
|
#define KCOV_CMP_MASK KCOV_CMP_SIZE(3)
|
|
|
|
|
UPSTREAM: kcov: remote coverage support
(Upstream commit eec028c9386ed1a692aa01a85b55952202b41619.)
Patch series " kcov: collect coverage from usb and vhost", v3.
This patchset extends kcov to allow collecting coverage from backgound
kernel threads. This extension requires custom annotations for each of
the places where coverage collection is desired. This patchset
implements this for hub events in the USB subsystem and for vhost
workers. See the first patch description for details about the kcov
extension. The other two patches apply this kcov extension to USB and
vhost.
Examples of other subsystems that might potentially benefit from this
when custom annotations are added (the list is based on
process_one_work() callers for bugs recently reported by syzbot):
1. fs: writeback wb_workfn() worker,
2. net: addrconf_dad_work()/addrconf_verify_work() workers,
3. net: neigh_periodic_work() worker,
4. net/p9: p9_write_work()/p9_read_work() workers,
5. block: blk_mq_run_work_fn() worker.
These patches have been used to enable coverage-guided USB fuzzing with
syzkaller for the last few years, see the details here:
https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md
This patchset has been pushed to the public Linux kernel Gerrit
instance:
https://linux-review.googlesource.com/c/linux/kernel/git/torvalds/linux/+/1524
This patch (of 3):
Add background thread coverage collection ability to kcov.
With KCOV_ENABLE coverage is collected only for syscalls that are issued
from the current process. With KCOV_REMOTE_ENABLE it's possible to
collect coverage for arbitrary parts of the kernel code, provided that
those parts are annotated with kcov_remote_start()/kcov_remote_stop().
This allows to collect coverage from two types of kernel background
threads: the global ones, that are spawned during kernel boot in a
limited number of instances (e.g. one USB hub_event() worker thread is
spawned per USB HCD); and the local ones, that are spawned when a user
interacts with some kernel interface (e.g. vhost workers).
To enable collecting coverage from a global background thread, a unique
global handle must be assigned and passed to the corresponding
kcov_remote_start() call. Then a userspace process can pass a list of
such handles to the KCOV_REMOTE_ENABLE ioctl in the handles array field
of the kcov_remote_arg struct. This will attach the used kcov device to
the code sections, that are referenced by those handles.
Since there might be many local background threads spawned from
different userspace processes, we can't use a single global handle per
annotation. Instead, the userspace process passes a non-zero handle
through the common_handle field of the kcov_remote_arg struct. This
common handle gets saved to the kcov_handle field in the current
task_struct and needs to be passed to the newly spawned threads via
custom annotations. Those threads should in turn be annotated with
kcov_remote_start()/kcov_remote_stop().
Internally kcov stores handles as u64 integers. The top byte of a
handle is used to denote the id of a subsystem that this handle belongs
to, and the lower 4 bytes are used to denote the id of a thread instance
within that subsystem. A reserved value 0 is used as a subsystem id for
common handles as they don't belong to a particular subsystem. The
bytes 4-7 are currently reserved and must be zero. In the future the
number of bytes used for the subsystem or handle ids might be increased.
When a particular userspace process collects coverage by via a common
handle, kcov will collect coverage for each code section that is
annotated to use the common handle obtained as kcov_handle from the
current task_struct. However non common handles allow to collect
coverage selectively from different subsystems.
Link: http://lkml.kernel.org/r/e90e315426a384207edbec1d6aa89e43008e4caf.1572366574.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: David Windsor <dwindsor@gmail.com>
Cc: Elena Reshetova <elena.reshetova@intel.com>
Cc: Anders Roxell <anders.roxell@linaro.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Bug: 147413187
Change-Id: I868c4846a412bfbae16086017e113813571df377
2019-12-04 19:52:43 -05:00
|
|
|
#define KCOV_SUBSYSTEM_COMMON (0x00ull << 56)
|
|
|
|
#define KCOV_SUBSYSTEM_USB (0x01ull << 56)
|
|
|
|
|
|
|
|
#define KCOV_SUBSYSTEM_MASK (0xffull << 56)
|
|
|
|
#define KCOV_INSTANCE_MASK (0xffffffffull)
|
|
|
|
|
|
|
|
static inline __u64 kcov_remote_handle(__u64 subsys, __u64 inst)
|
|
|
|
{
|
|
|
|
if (subsys & ~KCOV_SUBSYSTEM_MASK || inst & ~KCOV_INSTANCE_MASK)
|
|
|
|
return 0;
|
|
|
|
return subsys | inst;
|
|
|
|
}
|
|
|
|
|
kernel: add kcov code coverage
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing). Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system. A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/). However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.
kcov does not aim to collect as much coverage as possible. It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g. scheduler, locking).
Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes. Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch). I've
dropped the second mode for simplicity.
This patch adds the necessary support on kernel side. The complimentary
compiler support was added in gcc revision 231296.
We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:
https://github.com/google/syzkaller/wiki/Found-Bugs
We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation". For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.
Why not gcov. Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat. A
typical coverage can be just a dozen of basic blocks (e.g. an invalid
input). In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M). Cost of
kcov depends only on number of executed basic blocks/edges. On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.
kcov exposes kernel PCs and control flow to user-space which is
insecure. But debugfs should not be mapped as user accessible.
Based on a patch by Quentin Casasnovas.
[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-22 17:27:30 -04:00
|
|
|
#endif /* _LINUX_KCOV_IOCTLS_H */
|