android_kernel_xiaomi_sm8350/drivers/net/myri10ge/myri10ge.c

2862 lines
80 KiB
C
Raw Normal View History

/*************************************************************************
* myri10ge.c: Myricom Myri-10G Ethernet driver.
*
* Copyright (C) 2005, 2006 Myricom, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Myricom, Inc. nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*
* If the eeprom on your board is not recent enough, you will need to get a
* newer firmware image at:
* http://www.myri.com/scs/download-Myri10GE.html
*
* Contact Information:
* <help@myri.com>
* Myricom, Inc., 325N Santa Anita Avenue, Arcadia, CA 91006
*************************************************************************/
#include <linux/tcp.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/string.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/inet.h>
#include <linux/in.h>
#include <linux/ethtool.h>
#include <linux/firmware.h>
#include <linux/delay.h>
#include <linux/version.h>
#include <linux/timer.h>
#include <linux/vmalloc.h>
#include <linux/crc32.h>
#include <linux/moduleparam.h>
#include <linux/io.h>
#include <net/checksum.h>
#include <asm/byteorder.h>
#include <asm/io.h>
#include <asm/processor.h>
#ifdef CONFIG_MTRR
#include <asm/mtrr.h>
#endif
#include "myri10ge_mcp.h"
#include "myri10ge_mcp_gen_header.h"
#define MYRI10GE_VERSION_STR "1.0.0"
MODULE_DESCRIPTION("Myricom 10G driver (10GbE)");
MODULE_AUTHOR("Maintainer: help@myri.com");
MODULE_VERSION(MYRI10GE_VERSION_STR);
MODULE_LICENSE("Dual BSD/GPL");
#define MYRI10GE_MAX_ETHER_MTU 9014
#define MYRI10GE_ETH_STOPPED 0
#define MYRI10GE_ETH_STOPPING 1
#define MYRI10GE_ETH_STARTING 2
#define MYRI10GE_ETH_RUNNING 3
#define MYRI10GE_ETH_OPEN_FAILED 4
#define MYRI10GE_EEPROM_STRINGS_SIZE 256
#define MYRI10GE_MAX_SEND_DESC_TSO ((65536 / 2048) * 2)
#define MYRI10GE_NO_CONFIRM_DATA 0xffffffff
#define MYRI10GE_NO_RESPONSE_RESULT 0xffffffff
struct myri10ge_rx_buffer_state {
struct sk_buff *skb;
DECLARE_PCI_UNMAP_ADDR(bus)
DECLARE_PCI_UNMAP_LEN(len)
};
struct myri10ge_tx_buffer_state {
struct sk_buff *skb;
int last;
DECLARE_PCI_UNMAP_ADDR(bus)
DECLARE_PCI_UNMAP_LEN(len)
};
struct myri10ge_cmd {
u32 data0;
u32 data1;
u32 data2;
};
struct myri10ge_rx_buf {
struct mcp_kreq_ether_recv __iomem *lanai; /* lanai ptr for recv ring */
u8 __iomem *wc_fifo; /* w/c rx dma addr fifo address */
struct mcp_kreq_ether_recv *shadow; /* host shadow of recv ring */
struct myri10ge_rx_buffer_state *info;
int cnt;
int alloc_fail;
int mask; /* number of rx slots -1 */
};
struct myri10ge_tx_buf {
struct mcp_kreq_ether_send __iomem *lanai; /* lanai ptr for sendq */
u8 __iomem *wc_fifo; /* w/c send fifo address */
struct mcp_kreq_ether_send *req_list; /* host shadow of sendq */
char *req_bytes;
struct myri10ge_tx_buffer_state *info;
int mask; /* number of transmit slots -1 */
int boundary; /* boundary transmits cannot cross */
int req ____cacheline_aligned; /* transmit slots submitted */
int pkt_start; /* packets started */
int done ____cacheline_aligned; /* transmit slots completed */
int pkt_done; /* packets completed */
};
struct myri10ge_rx_done {
struct mcp_slot *entry;
dma_addr_t bus;
int cnt;
int idx;
};
struct myri10ge_priv {
int running; /* running? */
int csum_flag; /* rx_csums? */
struct myri10ge_tx_buf tx; /* transmit ring */
struct myri10ge_rx_buf rx_small;
struct myri10ge_rx_buf rx_big;
struct myri10ge_rx_done rx_done;
int small_bytes;
struct net_device *dev;
struct net_device_stats stats;
u8 __iomem *sram;
int sram_size;
unsigned long board_span;
unsigned long iomem_base;
u32 __iomem *irq_claim;
u32 __iomem *irq_deassert;
char *mac_addr_string;
struct mcp_cmd_response *cmd;
dma_addr_t cmd_bus;
struct mcp_irq_data *fw_stats;
dma_addr_t fw_stats_bus;
struct pci_dev *pdev;
int msi_enabled;
unsigned int link_state;
unsigned int rdma_tags_available;
int intr_coal_delay;
u32 __iomem *intr_coal_delay_ptr;
int mtrr;
int wake_queue;
int stop_queue;
int down_cnt;
wait_queue_head_t down_wq;
struct work_struct watchdog_work;
struct timer_list watchdog_timer;
int watchdog_tx_done;
int watchdog_resets;
int tx_linearized;
int pause;
char *fw_name;
char eeprom_strings[MYRI10GE_EEPROM_STRINGS_SIZE];
char fw_version[128];
u8 mac_addr[6]; /* eeprom mac address */
unsigned long serial_number;
int vendor_specific_offset;
u32 devctl;
u16 msi_flags;
u32 read_dma;
u32 write_dma;
u32 read_write_dma;
};
static char *myri10ge_fw_unaligned = "myri10ge_ethp_z8e.dat";
static char *myri10ge_fw_aligned = "myri10ge_eth_z8e.dat";
static char *myri10ge_fw_name = NULL;
module_param(myri10ge_fw_name, charp, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(myri10ge_fw_name, "Firmware image name\n");
static int myri10ge_ecrc_enable = 1;
module_param(myri10ge_ecrc_enable, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_ecrc_enable, "Enable Extended CRC on PCI-E\n");
static int myri10ge_max_intr_slots = 1024;
module_param(myri10ge_max_intr_slots, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_max_intr_slots, "Interrupt queue slots\n");
static int myri10ge_small_bytes = -1; /* -1 == auto */
module_param(myri10ge_small_bytes, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(myri10ge_small_bytes, "Threshold of small packets\n");
static int myri10ge_msi = 1; /* enable msi by default */
module_param(myri10ge_msi, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_msi, "Enable Message Signalled Interrupts\n");
static int myri10ge_intr_coal_delay = 25;
module_param(myri10ge_intr_coal_delay, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_intr_coal_delay, "Interrupt coalescing delay\n");
static int myri10ge_flow_control = 1;
module_param(myri10ge_flow_control, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_flow_control, "Pause parameter\n");
static int myri10ge_deassert_wait = 1;
module_param(myri10ge_deassert_wait, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(myri10ge_deassert_wait,
"Wait when deasserting legacy interrupts\n");
static int myri10ge_force_firmware = 0;
module_param(myri10ge_force_firmware, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_force_firmware,
"Force firmware to assume aligned completions\n");
static int myri10ge_skb_cross_4k = 0;
module_param(myri10ge_skb_cross_4k, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(myri10ge_skb_cross_4k,
"Can a small skb cross a 4KB boundary?\n");
static int myri10ge_initial_mtu = MYRI10GE_MAX_ETHER_MTU - ETH_HLEN;
module_param(myri10ge_initial_mtu, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_initial_mtu, "Initial MTU\n");
static int myri10ge_napi_weight = 64;
module_param(myri10ge_napi_weight, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_napi_weight, "Set NAPI weight\n");
static int myri10ge_watchdog_timeout = 1;
module_param(myri10ge_watchdog_timeout, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_watchdog_timeout, "Set watchdog timeout\n");
static int myri10ge_max_irq_loops = 1048576;
module_param(myri10ge_max_irq_loops, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_max_irq_loops,
"Set stuck legacy IRQ detection threshold\n");
#define MYRI10GE_FW_OFFSET 1024*1024
#define MYRI10GE_HIGHPART_TO_U32(X) \
(sizeof (X) == 8) ? ((u32)((u64)(X) >> 32)) : (0)
#define MYRI10GE_LOWPART_TO_U32(X) ((u32)(X))
#define myri10ge_pio_copy(to,from,size) __iowrite64_copy(to,from,size/8)
static int
myri10ge_send_cmd(struct myri10ge_priv *mgp, u32 cmd,
struct myri10ge_cmd *data, int atomic)
{
struct mcp_cmd *buf;
char buf_bytes[sizeof(*buf) + 8];
struct mcp_cmd_response *response = mgp->cmd;
char __iomem *cmd_addr = mgp->sram + MXGEFW_CMD_OFFSET;
u32 dma_low, dma_high, result, value;
int sleep_total = 0;
/* ensure buf is aligned to 8 bytes */
buf = (struct mcp_cmd *)ALIGN((unsigned long)buf_bytes, 8);
buf->data0 = htonl(data->data0);
buf->data1 = htonl(data->data1);
buf->data2 = htonl(data->data2);
buf->cmd = htonl(cmd);
dma_low = MYRI10GE_LOWPART_TO_U32(mgp->cmd_bus);
dma_high = MYRI10GE_HIGHPART_TO_U32(mgp->cmd_bus);
buf->response_addr.low = htonl(dma_low);
buf->response_addr.high = htonl(dma_high);
response->result = MYRI10GE_NO_RESPONSE_RESULT;
mb();
myri10ge_pio_copy(cmd_addr, buf, sizeof(*buf));
/* wait up to 15ms. Longest command is the DMA benchmark,
* which is capped at 5ms, but runs from a timeout handler
* that runs every 7.8ms. So a 15ms timeout leaves us with
* a 2.2ms margin
*/
if (atomic) {
/* if atomic is set, do not sleep,
* and try to get the completion quickly
* (1ms will be enough for those commands) */
for (sleep_total = 0;
sleep_total < 1000
&& response->result == MYRI10GE_NO_RESPONSE_RESULT;
sleep_total += 10)
udelay(10);
} else {
/* use msleep for most command */
for (sleep_total = 0;
sleep_total < 15
&& response->result == MYRI10GE_NO_RESPONSE_RESULT;
sleep_total++)
msleep(1);
}
result = ntohl(response->result);
value = ntohl(response->data);
if (result != MYRI10GE_NO_RESPONSE_RESULT) {
if (result == 0) {
data->data0 = value;
return 0;
} else {
dev_err(&mgp->pdev->dev,
"command %d failed, result = %d\n",
cmd, result);
return -ENXIO;
}
}
dev_err(&mgp->pdev->dev, "command %d timed out, result = %d\n",
cmd, result);
return -EAGAIN;
}
/*
* The eeprom strings on the lanaiX have the format
* SN=x\0
* MAC=x:x:x:x:x:x\0
* PT:ddd mmm xx xx:xx:xx xx\0
* PV:ddd mmm xx xx:xx:xx xx\0
*/
static int myri10ge_read_mac_addr(struct myri10ge_priv *mgp)
{
char *ptr, *limit;
int i;
ptr = mgp->eeprom_strings;
limit = mgp->eeprom_strings + MYRI10GE_EEPROM_STRINGS_SIZE;
while (*ptr != '\0' && ptr < limit) {
if (memcmp(ptr, "MAC=", 4) == 0) {
ptr += 4;
mgp->mac_addr_string = ptr;
for (i = 0; i < 6; i++) {
if ((ptr + 2) > limit)
goto abort;
mgp->mac_addr[i] =
simple_strtoul(ptr, &ptr, 16);
ptr += 1;
}
}
if (memcmp((const void *)ptr, "SN=", 3) == 0) {
ptr += 3;
mgp->serial_number = simple_strtoul(ptr, &ptr, 10);
}
while (ptr < limit && *ptr++) ;
}
return 0;
abort:
dev_err(&mgp->pdev->dev, "failed to parse eeprom_strings\n");
return -ENXIO;
}
/*
* Enable or disable periodic RDMAs from the host to make certain
* chipsets resend dropped PCIe messages
*/
static void myri10ge_dummy_rdma(struct myri10ge_priv *mgp, int enable)
{
char __iomem *submit;
u32 buf[16];
u32 dma_low, dma_high;
int i;
/* clear confirmation addr */
mgp->cmd->data = 0;
mb();
/* send a rdma command to the PCIe engine, and wait for the
* response in the confirmation address. The firmware should
* write a -1 there to indicate it is alive and well
*/
dma_low = MYRI10GE_LOWPART_TO_U32(mgp->cmd_bus);
dma_high = MYRI10GE_HIGHPART_TO_U32(mgp->cmd_bus);
buf[0] = htonl(dma_high); /* confirm addr MSW */
buf[1] = htonl(dma_low); /* confirm addr LSW */
buf[2] = htonl(MYRI10GE_NO_CONFIRM_DATA); /* confirm data */
buf[3] = htonl(dma_high); /* dummy addr MSW */
buf[4] = htonl(dma_low); /* dummy addr LSW */
buf[5] = htonl(enable); /* enable? */
submit = mgp->sram + 0xfc01c0;
myri10ge_pio_copy(submit, &buf, sizeof(buf));
for (i = 0; mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA && i < 20; i++)
msleep(1);
if (mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA)
dev_err(&mgp->pdev->dev, "dummy rdma %s failed\n",
(enable ? "enable" : "disable"));
}
static int
myri10ge_validate_firmware(struct myri10ge_priv *mgp,
struct mcp_gen_header *hdr)
{
struct device *dev = &mgp->pdev->dev;
int major, minor;
/* check firmware type */
if (ntohl(hdr->mcp_type) != MCP_TYPE_ETH) {
dev_err(dev, "Bad firmware type: 0x%x\n", ntohl(hdr->mcp_type));
return -EINVAL;
}
/* save firmware version for ethtool */
strncpy(mgp->fw_version, hdr->version, sizeof(mgp->fw_version));
sscanf(mgp->fw_version, "%d.%d", &major, &minor);
if (!(major == MXGEFW_VERSION_MAJOR && minor == MXGEFW_VERSION_MINOR)) {
dev_err(dev, "Found firmware version %s\n", mgp->fw_version);
dev_err(dev, "Driver needs %d.%d\n", MXGEFW_VERSION_MAJOR,
MXGEFW_VERSION_MINOR);
return -EINVAL;
}
return 0;
}
static int myri10ge_load_hotplug_firmware(struct myri10ge_priv *mgp, u32 * size)
{
unsigned crc, reread_crc;
const struct firmware *fw;
struct device *dev = &mgp->pdev->dev;
struct mcp_gen_header *hdr;
size_t hdr_offset;
int status;
if ((status = request_firmware(&fw, mgp->fw_name, dev)) < 0) {
dev_err(dev, "Unable to load %s firmware image via hotplug\n",
mgp->fw_name);
status = -EINVAL;
goto abort_with_nothing;
}
/* check size */
if (fw->size >= mgp->sram_size - MYRI10GE_FW_OFFSET ||
fw->size < MCP_HEADER_PTR_OFFSET + 4) {
dev_err(dev, "Firmware size invalid:%d\n", (int)fw->size);
status = -EINVAL;
goto abort_with_fw;
}
/* check id */
hdr_offset = ntohl(*(u32 *) (fw->data + MCP_HEADER_PTR_OFFSET));
if ((hdr_offset & 3) || hdr_offset + sizeof(*hdr) > fw->size) {
dev_err(dev, "Bad firmware file\n");
status = -EINVAL;
goto abort_with_fw;
}
hdr = (void *)(fw->data + hdr_offset);
status = myri10ge_validate_firmware(mgp, hdr);
if (status != 0)
goto abort_with_fw;
crc = crc32(~0, fw->data, fw->size);
if (mgp->tx.boundary == 2048) {
/* Avoid PCI burst on chipset with unaligned completions. */
int i;
__iomem u32 *ptr = (__iomem u32 *) (mgp->sram +
MYRI10GE_FW_OFFSET);
for (i = 0; i < fw->size / 4; i++) {
__raw_writel(((u32 *) fw->data)[i], ptr + i);
wmb();
}
} else {
myri10ge_pio_copy(mgp->sram + MYRI10GE_FW_OFFSET, fw->data,
fw->size);
}
/* corruption checking is good for parity recovery and buggy chipset */
memcpy_fromio(fw->data, mgp->sram + MYRI10GE_FW_OFFSET, fw->size);
reread_crc = crc32(~0, fw->data, fw->size);
if (crc != reread_crc) {
dev_err(dev, "CRC failed(fw-len=%u), got 0x%x (expect 0x%x)\n",
(unsigned)fw->size, reread_crc, crc);
status = -EIO;
goto abort_with_fw;
}
*size = (u32) fw->size;
abort_with_fw:
release_firmware(fw);
abort_with_nothing:
return status;
}
static int myri10ge_adopt_running_firmware(struct myri10ge_priv *mgp)
{
struct mcp_gen_header *hdr;
struct device *dev = &mgp->pdev->dev;
const size_t bytes = sizeof(struct mcp_gen_header);
size_t hdr_offset;
int status;
/* find running firmware header */
hdr_offset = ntohl(__raw_readl(mgp->sram + MCP_HEADER_PTR_OFFSET));
if ((hdr_offset & 3) || hdr_offset + sizeof(*hdr) > mgp->sram_size) {
dev_err(dev, "Running firmware has bad header offset (%d)\n",
(int)hdr_offset);
return -EIO;
}
/* copy header of running firmware from SRAM to host memory to
* validate firmware */
hdr = kmalloc(bytes, GFP_KERNEL);
if (hdr == NULL) {
dev_err(dev, "could not malloc firmware hdr\n");
return -ENOMEM;
}
memcpy_fromio(hdr, mgp->sram + hdr_offset, bytes);
status = myri10ge_validate_firmware(mgp, hdr);
kfree(hdr);
return status;
}
static int myri10ge_load_firmware(struct myri10ge_priv *mgp)
{
char __iomem *submit;
u32 buf[16];
u32 dma_low, dma_high, size;
int status, i;
size = 0;
status = myri10ge_load_hotplug_firmware(mgp, &size);
if (status) {
dev_warn(&mgp->pdev->dev, "hotplug firmware loading failed\n");
/* Do not attempt to adopt firmware if there
* was a bad crc */
if (status == -EIO)
return status;
status = myri10ge_adopt_running_firmware(mgp);
if (status != 0) {
dev_err(&mgp->pdev->dev,
"failed to adopt running firmware\n");
return status;
}
dev_info(&mgp->pdev->dev,
"Successfully adopted running firmware\n");
if (mgp->tx.boundary == 4096) {
dev_warn(&mgp->pdev->dev,
"Using firmware currently running on NIC"
". For optimal\n");
dev_warn(&mgp->pdev->dev,
"performance consider loading optimized "
"firmware\n");
dev_warn(&mgp->pdev->dev, "via hotplug\n");
}
mgp->fw_name = "adopted";
mgp->tx.boundary = 2048;
return status;
}
/* clear confirmation addr */
mgp->cmd->data = 0;
mb();
/* send a reload command to the bootstrap MCP, and wait for the
* response in the confirmation address. The firmware should
* write a -1 there to indicate it is alive and well
*/
dma_low = MYRI10GE_LOWPART_TO_U32(mgp->cmd_bus);
dma_high = MYRI10GE_HIGHPART_TO_U32(mgp->cmd_bus);
buf[0] = htonl(dma_high); /* confirm addr MSW */
buf[1] = htonl(dma_low); /* confirm addr LSW */
buf[2] = htonl(MYRI10GE_NO_CONFIRM_DATA); /* confirm data */
/* FIX: All newest firmware should un-protect the bottom of
* the sram before handoff. However, the very first interfaces
* do not. Therefore the handoff copy must skip the first 8 bytes
*/
buf[3] = htonl(MYRI10GE_FW_OFFSET + 8); /* where the code starts */
buf[4] = htonl(size - 8); /* length of code */
buf[5] = htonl(8); /* where to copy to */
buf[6] = htonl(0); /* where to jump to */
submit = mgp->sram + 0xfc0000;
myri10ge_pio_copy(submit, &buf, sizeof(buf));
mb();
msleep(1);
mb();
i = 0;
while (mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA && i < 20) {
msleep(1);
i++;
}
if (mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA) {
dev_err(&mgp->pdev->dev, "handoff failed\n");
return -ENXIO;
}
dev_info(&mgp->pdev->dev, "handoff confirmed\n");
myri10ge_dummy_rdma(mgp, mgp->tx.boundary != 4096);
return 0;
}
static int myri10ge_update_mac_address(struct myri10ge_priv *mgp, u8 * addr)
{
struct myri10ge_cmd cmd;
int status;
cmd.data0 = ((addr[0] << 24) | (addr[1] << 16)
| (addr[2] << 8) | addr[3]);
cmd.data1 = ((addr[4] << 8) | (addr[5]));
status = myri10ge_send_cmd(mgp, MXGEFW_SET_MAC_ADDRESS, &cmd, 0);
return status;
}
static int myri10ge_change_pause(struct myri10ge_priv *mgp, int pause)
{
struct myri10ge_cmd cmd;
int status, ctl;
ctl = pause ? MXGEFW_ENABLE_FLOW_CONTROL : MXGEFW_DISABLE_FLOW_CONTROL;
status = myri10ge_send_cmd(mgp, ctl, &cmd, 0);
if (status) {
printk(KERN_ERR
"myri10ge: %s: Failed to set flow control mode\n",
mgp->dev->name);
return status;
}
mgp->pause = pause;
return 0;
}
static void
myri10ge_change_promisc(struct myri10ge_priv *mgp, int promisc, int atomic)
{
struct myri10ge_cmd cmd;
int status, ctl;
ctl = promisc ? MXGEFW_ENABLE_PROMISC : MXGEFW_DISABLE_PROMISC;
status = myri10ge_send_cmd(mgp, ctl, &cmd, atomic);
if (status)
printk(KERN_ERR "myri10ge: %s: Failed to set promisc mode\n",
mgp->dev->name);
}
static int myri10ge_reset(struct myri10ge_priv *mgp)
{
struct myri10ge_cmd cmd;
int status;
size_t bytes;
u32 len;
/* try to send a reset command to the card to see if it
* is alive */
memset(&cmd, 0, sizeof(cmd));
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_RESET, &cmd, 0);
if (status != 0) {
dev_err(&mgp->pdev->dev, "failed reset\n");
return -ENXIO;
}
/* Now exchange information about interrupts */
bytes = myri10ge_max_intr_slots * sizeof(*mgp->rx_done.entry);
memset(mgp->rx_done.entry, 0, bytes);
cmd.data0 = (u32) bytes;
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_INTRQ_SIZE, &cmd, 0);
cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->rx_done.bus);
cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->rx_done.bus);
status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_INTRQ_DMA, &cmd, 0);
status |=
myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_IRQ_ACK_OFFSET, &cmd, 0);
mgp->irq_claim = (__iomem u32 *) (mgp->sram + cmd.data0);
if (!mgp->msi_enabled) {
status |= myri10ge_send_cmd
(mgp, MXGEFW_CMD_GET_IRQ_DEASSERT_OFFSET, &cmd, 0);
mgp->irq_deassert = (__iomem u32 *) (mgp->sram + cmd.data0);
}
status |= myri10ge_send_cmd
(mgp, MXGEFW_CMD_GET_INTR_COAL_DELAY_OFFSET, &cmd, 0);
mgp->intr_coal_delay_ptr = (__iomem u32 *) (mgp->sram + cmd.data0);
if (status != 0) {
dev_err(&mgp->pdev->dev, "failed set interrupt parameters\n");
return status;
}
__raw_writel(htonl(mgp->intr_coal_delay), mgp->intr_coal_delay_ptr);
/* Run a small DMA test.
* The magic multipliers to the length tell the firmware
* to do DMA read, write, or read+write tests. The
* results are returned in cmd.data0. The upper 16
* bits or the return is the number of transfers completed.
* The lower 16 bits is the time in 0.5us ticks that the
* transfers took to complete.
*/
len = mgp->tx.boundary;
cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->rx_done.bus);
cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->rx_done.bus);
cmd.data2 = len * 0x10000;
status = myri10ge_send_cmd(mgp, MXGEFW_DMA_TEST, &cmd, 0);
if (status == 0)
mgp->read_dma = ((cmd.data0 >> 16) * len * 2) /
(cmd.data0 & 0xffff);
else
dev_warn(&mgp->pdev->dev, "DMA read benchmark failed: %d\n",
status);
cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->rx_done.bus);
cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->rx_done.bus);
cmd.data2 = len * 0x1;
status = myri10ge_send_cmd(mgp, MXGEFW_DMA_TEST, &cmd, 0);
if (status == 0)
mgp->write_dma = ((cmd.data0 >> 16) * len * 2) /
(cmd.data0 & 0xffff);
else
dev_warn(&mgp->pdev->dev, "DMA write benchmark failed: %d\n",
status);
cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->rx_done.bus);
cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->rx_done.bus);
cmd.data2 = len * 0x10001;
status = myri10ge_send_cmd(mgp, MXGEFW_DMA_TEST, &cmd, 0);
if (status == 0)
mgp->read_write_dma = ((cmd.data0 >> 16) * len * 2 * 2) /
(cmd.data0 & 0xffff);
else
dev_warn(&mgp->pdev->dev,
"DMA read/write benchmark failed: %d\n", status);
memset(mgp->rx_done.entry, 0, bytes);
/* reset mcp/driver shared state back to 0 */
mgp->tx.req = 0;
mgp->tx.done = 0;
mgp->tx.pkt_start = 0;
mgp->tx.pkt_done = 0;
mgp->rx_big.cnt = 0;
mgp->rx_small.cnt = 0;
mgp->rx_done.idx = 0;
mgp->rx_done.cnt = 0;
status = myri10ge_update_mac_address(mgp, mgp->dev->dev_addr);
myri10ge_change_promisc(mgp, 0, 0);
myri10ge_change_pause(mgp, mgp->pause);
return status;
}
static inline void
myri10ge_submit_8rx(struct mcp_kreq_ether_recv __iomem * dst,
struct mcp_kreq_ether_recv *src)
{
u32 low;
low = src->addr_low;
src->addr_low = DMA_32BIT_MASK;
myri10ge_pio_copy(dst, src, 8 * sizeof(*src));
mb();
src->addr_low = low;
__raw_writel(low, &dst->addr_low);
mb();
}
/*
* Set of routines to get a new receive buffer. Any buffer which
* crosses a 4KB boundary must start on a 4KB boundary due to PCIe
* wdma restrictions. We also try to align any smaller allocation to
* at least a 16 byte boundary for efficiency. We assume the linux
* memory allocator works by powers of 2, and will not return memory
* smaller than 2KB which crosses a 4KB boundary. If it does, we fall
* back to allocating 2x as much space as required.
*
* We intend to replace large (>4KB) skb allocations by using
* pages directly and building a fraglist in the near future.
*/
static inline struct sk_buff *myri10ge_alloc_big(int bytes)
{
struct sk_buff *skb;
unsigned long data, roundup;
skb = dev_alloc_skb(bytes + 4096 + MXGEFW_PAD);
if (skb == NULL)
return NULL;
/* Correct skb->truesize so that socket buffer
* accounting is not confused the rounding we must
* do to satisfy alignment constraints.
*/
skb->truesize -= 4096;
data = (unsigned long)(skb->data);
roundup = (-data) & (4095);
skb_reserve(skb, roundup);
return skb;
}
/* Allocate 2x as much space as required and use whichever portion
* does not cross a 4KB boundary */
static inline struct sk_buff *myri10ge_alloc_small_safe(unsigned int bytes)
{
struct sk_buff *skb;
unsigned long data, boundary;
skb = dev_alloc_skb(2 * (bytes + MXGEFW_PAD) - 1);
if (unlikely(skb == NULL))
return NULL;
/* Correct skb->truesize so that socket buffer
* accounting is not confused the rounding we must
* do to satisfy alignment constraints.
*/
skb->truesize -= bytes + MXGEFW_PAD;
data = (unsigned long)(skb->data);
boundary = (data + 4095UL) & ~4095UL;
if ((boundary - data) >= (bytes + MXGEFW_PAD))
return skb;
skb_reserve(skb, boundary - data);
return skb;
}
/* Allocate just enough space, and verify that the allocated
* space does not cross a 4KB boundary */
static inline struct sk_buff *myri10ge_alloc_small(int bytes)
{
struct sk_buff *skb;
unsigned long roundup, data, end;
skb = dev_alloc_skb(bytes + 16 + MXGEFW_PAD);
if (unlikely(skb == NULL))
return NULL;
/* Round allocated buffer to 16 byte boundary */
data = (unsigned long)(skb->data);
roundup = (-data) & 15UL;
skb_reserve(skb, roundup);
/* Verify that the data buffer does not cross a page boundary */
data = (unsigned long)(skb->data);
end = data + bytes + MXGEFW_PAD - 1;
if (unlikely(((end >> 12) != (data >> 12)) && (data & 4095UL))) {
printk(KERN_NOTICE
"myri10ge_alloc_small: small skb crossed 4KB boundary\n");
myri10ge_skb_cross_4k = 1;
dev_kfree_skb_any(skb);
skb = myri10ge_alloc_small_safe(bytes);
}
return skb;
}
static inline int
myri10ge_getbuf(struct myri10ge_rx_buf *rx, struct pci_dev *pdev, int bytes,
int idx)
{
struct sk_buff *skb;
dma_addr_t bus;
int len, retval = 0;
bytes += VLAN_HLEN; /* account for 802.1q vlan tag */
if ((bytes + MXGEFW_PAD) > (4096 - 16) /* linux overhead */ )
skb = myri10ge_alloc_big(bytes);
else if (myri10ge_skb_cross_4k)
skb = myri10ge_alloc_small_safe(bytes);
else
skb = myri10ge_alloc_small(bytes);
if (unlikely(skb == NULL)) {
rx->alloc_fail++;
retval = -ENOBUFS;
goto done;
}
/* set len so that it only covers the area we
* need mapped for DMA */
len = bytes + MXGEFW_PAD;
bus = pci_map_single(pdev, skb->data, len, PCI_DMA_FROMDEVICE);
rx->info[idx].skb = skb;
pci_unmap_addr_set(&rx->info[idx], bus, bus);
pci_unmap_len_set(&rx->info[idx], len, len);
rx->shadow[idx].addr_low = htonl(MYRI10GE_LOWPART_TO_U32(bus));
rx->shadow[idx].addr_high = htonl(MYRI10GE_HIGHPART_TO_U32(bus));
done:
/* copy 8 descriptors (64-bytes) to the mcp at a time */
if ((idx & 7) == 7) {
if (rx->wc_fifo == NULL)
myri10ge_submit_8rx(&rx->lanai[idx - 7],
&rx->shadow[idx - 7]);
else {
mb();
myri10ge_pio_copy(rx->wc_fifo,
&rx->shadow[idx - 7], 64);
}
}
return retval;
}
static inline void myri10ge_vlan_ip_csum(struct sk_buff *skb, u16 hw_csum)
{
struct vlan_hdr *vh = (struct vlan_hdr *)(skb->data);
if ((skb->protocol == ntohs(ETH_P_8021Q)) &&
(vh->h_vlan_encapsulated_proto == htons(ETH_P_IP) ||
vh->h_vlan_encapsulated_proto == htons(ETH_P_IPV6))) {
skb->csum = hw_csum;
skb->ip_summed = CHECKSUM_HW;
}
}
static inline unsigned long
myri10ge_rx_done(struct myri10ge_priv *mgp, struct myri10ge_rx_buf *rx,
int bytes, int len, int csum)
{
dma_addr_t bus;
struct sk_buff *skb;
int idx, unmap_len;
idx = rx->cnt & rx->mask;
rx->cnt++;
/* save a pointer to the received skb */
skb = rx->info[idx].skb;
bus = pci_unmap_addr(&rx->info[idx], bus);
unmap_len = pci_unmap_len(&rx->info[idx], len);
/* try to replace the received skb */
if (myri10ge_getbuf(rx, mgp->pdev, bytes, idx)) {
/* drop the frame -- the old skbuf is re-cycled */
mgp->stats.rx_dropped += 1;
return 0;
}
/* unmap the recvd skb */
pci_unmap_single(mgp->pdev, bus, unmap_len, PCI_DMA_FROMDEVICE);
/* mcp implicitly skips 1st bytes so that packet is properly
* aligned */
skb_reserve(skb, MXGEFW_PAD);
/* set the length of the frame */
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, mgp->dev);
skb->dev = mgp->dev;
if (mgp->csum_flag) {
if ((skb->protocol == ntohs(ETH_P_IP)) ||
(skb->protocol == ntohs(ETH_P_IPV6))) {
skb->csum = ntohs((u16) csum);
skb->ip_summed = CHECKSUM_HW;
} else
myri10ge_vlan_ip_csum(skb, ntohs((u16) csum));
}
netif_receive_skb(skb);
mgp->dev->last_rx = jiffies;
return 1;
}
static inline void myri10ge_tx_done(struct myri10ge_priv *mgp, int mcp_index)
{
struct pci_dev *pdev = mgp->pdev;
struct myri10ge_tx_buf *tx = &mgp->tx;
struct sk_buff *skb;
int idx, len;
int limit = 0;
while (tx->pkt_done != mcp_index) {
idx = tx->done & tx->mask;
skb = tx->info[idx].skb;
/* Mark as free */
tx->info[idx].skb = NULL;
if (tx->info[idx].last) {
tx->pkt_done++;
tx->info[idx].last = 0;
}
tx->done++;
len = pci_unmap_len(&tx->info[idx], len);
pci_unmap_len_set(&tx->info[idx], len, 0);
if (skb) {
mgp->stats.tx_bytes += skb->len;
mgp->stats.tx_packets++;
dev_kfree_skb_irq(skb);
if (len)
pci_unmap_single(pdev,
pci_unmap_addr(&tx->info[idx],
bus), len,
PCI_DMA_TODEVICE);
} else {
if (len)
pci_unmap_page(pdev,
pci_unmap_addr(&tx->info[idx],
bus), len,
PCI_DMA_TODEVICE);
}
/* limit potential for livelock by only handling
* 2 full tx rings per call */
if (unlikely(++limit > 2 * tx->mask))
break;
}
/* start the queue if we've stopped it */
if (netif_queue_stopped(mgp->dev)
&& tx->req - tx->done < (tx->mask >> 1)) {
mgp->wake_queue++;
netif_wake_queue(mgp->dev);
}
}
static inline void myri10ge_clean_rx_done(struct myri10ge_priv *mgp, int *limit)
{
struct myri10ge_rx_done *rx_done = &mgp->rx_done;
unsigned long rx_bytes = 0;
unsigned long rx_packets = 0;
unsigned long rx_ok;
int idx = rx_done->idx;
int cnt = rx_done->cnt;
u16 length;
u16 checksum;
while (rx_done->entry[idx].length != 0 && *limit != 0) {
length = ntohs(rx_done->entry[idx].length);
rx_done->entry[idx].length = 0;
checksum = ntohs(rx_done->entry[idx].checksum);
if (length <= mgp->small_bytes)
rx_ok = myri10ge_rx_done(mgp, &mgp->rx_small,
mgp->small_bytes,
length, checksum);
else
rx_ok = myri10ge_rx_done(mgp, &mgp->rx_big,
mgp->dev->mtu + ETH_HLEN,
length, checksum);
rx_packets += rx_ok;
rx_bytes += rx_ok * (unsigned long)length;
cnt++;
idx = cnt & (myri10ge_max_intr_slots - 1);
/* limit potential for livelock by only handling a
* limited number of frames. */
(*limit)--;
}
rx_done->idx = idx;
rx_done->cnt = cnt;
mgp->stats.rx_packets += rx_packets;
mgp->stats.rx_bytes += rx_bytes;
}
static inline void myri10ge_check_statblock(struct myri10ge_priv *mgp)
{
struct mcp_irq_data *stats = mgp->fw_stats;
if (unlikely(stats->stats_updated)) {
if (mgp->link_state != stats->link_up) {
mgp->link_state = stats->link_up;
if (mgp->link_state) {
printk(KERN_INFO "myri10ge: %s: link up\n",
mgp->dev->name);
netif_carrier_on(mgp->dev);
} else {
printk(KERN_INFO "myri10ge: %s: link down\n",
mgp->dev->name);
netif_carrier_off(mgp->dev);
}
}
if (mgp->rdma_tags_available !=
ntohl(mgp->fw_stats->rdma_tags_available)) {
mgp->rdma_tags_available =
ntohl(mgp->fw_stats->rdma_tags_available);
printk(KERN_WARNING "myri10ge: %s: RDMA timed out! "
"%d tags left\n", mgp->dev->name,
mgp->rdma_tags_available);
}
mgp->down_cnt += stats->link_down;
if (stats->link_down)
wake_up(&mgp->down_wq);
}
}
static int myri10ge_poll(struct net_device *netdev, int *budget)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
struct myri10ge_rx_done *rx_done = &mgp->rx_done;
int limit, orig_limit, work_done;
/* process as many rx events as NAPI will allow */
limit = min(*budget, netdev->quota);
orig_limit = limit;
myri10ge_clean_rx_done(mgp, &limit);
work_done = orig_limit - limit;
*budget -= work_done;
netdev->quota -= work_done;
if (rx_done->entry[rx_done->idx].length == 0 || !netif_running(netdev)) {
netif_rx_complete(netdev);
__raw_writel(htonl(3), mgp->irq_claim);
return 0;
}
return 1;
}
static irqreturn_t myri10ge_intr(int irq, void *arg, struct pt_regs *regs)
{
struct myri10ge_priv *mgp = arg;
struct mcp_irq_data *stats = mgp->fw_stats;
struct myri10ge_tx_buf *tx = &mgp->tx;
u32 send_done_count;
int i;
/* make sure it is our IRQ, and that the DMA has finished */
if (unlikely(!stats->valid))
return (IRQ_NONE);
/* low bit indicates receives are present, so schedule
* napi poll handler */
if (stats->valid & 1)
netif_rx_schedule(mgp->dev);
if (!mgp->msi_enabled) {
__raw_writel(0, mgp->irq_deassert);
if (!myri10ge_deassert_wait)
stats->valid = 0;
mb();
} else
stats->valid = 0;
/* Wait for IRQ line to go low, if using INTx */
i = 0;
while (1) {
i++;
/* check for transmit completes and receives */
send_done_count = ntohl(stats->send_done_count);
if (send_done_count != tx->pkt_done)
myri10ge_tx_done(mgp, (int)send_done_count);
if (unlikely(i > myri10ge_max_irq_loops)) {
printk(KERN_WARNING "myri10ge: %s: irq stuck?\n",
mgp->dev->name);
stats->valid = 0;
schedule_work(&mgp->watchdog_work);
}
if (likely(stats->valid == 0))
break;
cpu_relax();
barrier();
}
myri10ge_check_statblock(mgp);
__raw_writel(htonl(3), mgp->irq_claim + 1);
return (IRQ_HANDLED);
}
static int
myri10ge_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
{
cmd->autoneg = AUTONEG_DISABLE;
cmd->speed = SPEED_10000;
cmd->duplex = DUPLEX_FULL;
return 0;
}
static void
myri10ge_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *info)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
strlcpy(info->driver, "myri10ge", sizeof(info->driver));
strlcpy(info->version, MYRI10GE_VERSION_STR, sizeof(info->version));
strlcpy(info->fw_version, mgp->fw_version, sizeof(info->fw_version));
strlcpy(info->bus_info, pci_name(mgp->pdev), sizeof(info->bus_info));
}
static int
myri10ge_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *coal)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
coal->rx_coalesce_usecs = mgp->intr_coal_delay;
return 0;
}
static int
myri10ge_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *coal)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
mgp->intr_coal_delay = coal->rx_coalesce_usecs;
__raw_writel(htonl(mgp->intr_coal_delay), mgp->intr_coal_delay_ptr);
return 0;
}
static void
myri10ge_get_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
pause->autoneg = 0;
pause->rx_pause = mgp->pause;
pause->tx_pause = mgp->pause;
}
static int
myri10ge_set_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
if (pause->tx_pause != mgp->pause)
return myri10ge_change_pause(mgp, pause->tx_pause);
if (pause->rx_pause != mgp->pause)
return myri10ge_change_pause(mgp, pause->tx_pause);
if (pause->autoneg != 0)
return -EINVAL;
return 0;
}
static void
myri10ge_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
ring->rx_mini_max_pending = mgp->rx_small.mask + 1;
ring->rx_max_pending = mgp->rx_big.mask + 1;
ring->rx_jumbo_max_pending = 0;
ring->tx_max_pending = mgp->rx_small.mask + 1;
ring->rx_mini_pending = ring->rx_mini_max_pending;
ring->rx_pending = ring->rx_max_pending;
ring->rx_jumbo_pending = ring->rx_jumbo_max_pending;
ring->tx_pending = ring->tx_max_pending;
}
static u32 myri10ge_get_rx_csum(struct net_device *netdev)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
if (mgp->csum_flag)
return 1;
else
return 0;
}
static int myri10ge_set_rx_csum(struct net_device *netdev, u32 csum_enabled)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
if (csum_enabled)
mgp->csum_flag = MXGEFW_FLAGS_CKSUM;
else
mgp->csum_flag = 0;
return 0;
}
static const char myri10ge_gstrings_stats[][ETH_GSTRING_LEN] = {
"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
"rx_length_errors", "rx_over_errors", "rx_crc_errors",
"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
"tx_heartbeat_errors", "tx_window_errors",
/* device-specific stats */
"tx_boundary", "WC", "irq", "MSI",
"read_dma_bw_MBs", "write_dma_bw_MBs", "read_write_dma_bw_MBs",
"serial_number", "tx_pkt_start", "tx_pkt_done",
"tx_req", "tx_done", "rx_small_cnt", "rx_big_cnt",
"wake_queue", "stop_queue", "watchdog_resets", "tx_linearized",
"link_up", "dropped_link_overflow", "dropped_link_error_or_filtered",
"dropped_runt", "dropped_overrun", "dropped_no_small_buffer",
"dropped_no_big_buffer"
};
#define MYRI10GE_NET_STATS_LEN 21
#define MYRI10GE_STATS_LEN sizeof(myri10ge_gstrings_stats) / ETH_GSTRING_LEN
static void
myri10ge_get_strings(struct net_device *netdev, u32 stringset, u8 * data)
{
switch (stringset) {
case ETH_SS_STATS:
memcpy(data, *myri10ge_gstrings_stats,
sizeof(myri10ge_gstrings_stats));
break;
}
}
static int myri10ge_get_stats_count(struct net_device *netdev)
{
return MYRI10GE_STATS_LEN;
}
static void
myri10ge_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats *stats, u64 * data)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
int i;
for (i = 0; i < MYRI10GE_NET_STATS_LEN; i++)
data[i] = ((unsigned long *)&mgp->stats)[i];
data[i++] = (unsigned int)mgp->tx.boundary;
data[i++] = (unsigned int)(mgp->mtrr >= 0);
data[i++] = (unsigned int)mgp->pdev->irq;
data[i++] = (unsigned int)mgp->msi_enabled;
data[i++] = (unsigned int)mgp->read_dma;
data[i++] = (unsigned int)mgp->write_dma;
data[i++] = (unsigned int)mgp->read_write_dma;
data[i++] = (unsigned int)mgp->serial_number;
data[i++] = (unsigned int)mgp->tx.pkt_start;
data[i++] = (unsigned int)mgp->tx.pkt_done;
data[i++] = (unsigned int)mgp->tx.req;
data[i++] = (unsigned int)mgp->tx.done;
data[i++] = (unsigned int)mgp->rx_small.cnt;
data[i++] = (unsigned int)mgp->rx_big.cnt;
data[i++] = (unsigned int)mgp->wake_queue;
data[i++] = (unsigned int)mgp->stop_queue;
data[i++] = (unsigned int)mgp->watchdog_resets;
data[i++] = (unsigned int)mgp->tx_linearized;
data[i++] = (unsigned int)ntohl(mgp->fw_stats->link_up);
data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_link_overflow);
data[i++] =
(unsigned int)ntohl(mgp->fw_stats->dropped_link_error_or_filtered);
data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_runt);
data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_overrun);
data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_no_small_buffer);
data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_no_big_buffer);
}
static struct ethtool_ops myri10ge_ethtool_ops = {
.get_settings = myri10ge_get_settings,
.get_drvinfo = myri10ge_get_drvinfo,
.get_coalesce = myri10ge_get_coalesce,
.set_coalesce = myri10ge_set_coalesce,
.get_pauseparam = myri10ge_get_pauseparam,
.set_pauseparam = myri10ge_set_pauseparam,
.get_ringparam = myri10ge_get_ringparam,
.get_rx_csum = myri10ge_get_rx_csum,
.set_rx_csum = myri10ge_set_rx_csum,
.get_tx_csum = ethtool_op_get_tx_csum,
.set_tx_csum = ethtool_op_set_tx_hw_csum,
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
#ifdef NETIF_F_TSO
.get_tso = ethtool_op_get_tso,
.set_tso = ethtool_op_set_tso,
#endif
.get_strings = myri10ge_get_strings,
.get_stats_count = myri10ge_get_stats_count,
.get_ethtool_stats = myri10ge_get_ethtool_stats
};
static int myri10ge_allocate_rings(struct net_device *dev)
{
struct myri10ge_priv *mgp;
struct myri10ge_cmd cmd;
int tx_ring_size, rx_ring_size;
int tx_ring_entries, rx_ring_entries;
int i, status;
size_t bytes;
mgp = netdev_priv(dev);
/* get ring sizes */
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_SEND_RING_SIZE, &cmd, 0);
tx_ring_size = cmd.data0;
status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_RX_RING_SIZE, &cmd, 0);
rx_ring_size = cmd.data0;
tx_ring_entries = tx_ring_size / sizeof(struct mcp_kreq_ether_send);
rx_ring_entries = rx_ring_size / sizeof(struct mcp_dma_addr);
mgp->tx.mask = tx_ring_entries - 1;
mgp->rx_small.mask = mgp->rx_big.mask = rx_ring_entries - 1;
/* allocate the host shadow rings */
bytes = 8 + (MYRI10GE_MAX_SEND_DESC_TSO + 4)
* sizeof(*mgp->tx.req_list);
mgp->tx.req_bytes = kzalloc(bytes, GFP_KERNEL);
if (mgp->tx.req_bytes == NULL)
goto abort_with_nothing;
/* ensure req_list entries are aligned to 8 bytes */
mgp->tx.req_list = (struct mcp_kreq_ether_send *)
ALIGN((unsigned long)mgp->tx.req_bytes, 8);
bytes = rx_ring_entries * sizeof(*mgp->rx_small.shadow);
mgp->rx_small.shadow = kzalloc(bytes, GFP_KERNEL);
if (mgp->rx_small.shadow == NULL)
goto abort_with_tx_req_bytes;
bytes = rx_ring_entries * sizeof(*mgp->rx_big.shadow);
mgp->rx_big.shadow = kzalloc(bytes, GFP_KERNEL);
if (mgp->rx_big.shadow == NULL)
goto abort_with_rx_small_shadow;
/* allocate the host info rings */
bytes = tx_ring_entries * sizeof(*mgp->tx.info);
mgp->tx.info = kzalloc(bytes, GFP_KERNEL);
if (mgp->tx.info == NULL)
goto abort_with_rx_big_shadow;
bytes = rx_ring_entries * sizeof(*mgp->rx_small.info);
mgp->rx_small.info = kzalloc(bytes, GFP_KERNEL);
if (mgp->rx_small.info == NULL)
goto abort_with_tx_info;
bytes = rx_ring_entries * sizeof(*mgp->rx_big.info);
mgp->rx_big.info = kzalloc(bytes, GFP_KERNEL);
if (mgp->rx_big.info == NULL)
goto abort_with_rx_small_info;
/* Fill the receive rings */
for (i = 0; i <= mgp->rx_small.mask; i++) {
status = myri10ge_getbuf(&mgp->rx_small, mgp->pdev,
mgp->small_bytes, i);
if (status) {
printk(KERN_ERR
"myri10ge: %s: alloced only %d small bufs\n",
dev->name, i);
goto abort_with_rx_small_ring;
}
}
for (i = 0; i <= mgp->rx_big.mask; i++) {
status =
myri10ge_getbuf(&mgp->rx_big, mgp->pdev,
dev->mtu + ETH_HLEN, i);
if (status) {
printk(KERN_ERR
"myri10ge: %s: alloced only %d big bufs\n",
dev->name, i);
goto abort_with_rx_big_ring;
}
}
return 0;
abort_with_rx_big_ring:
for (i = 0; i <= mgp->rx_big.mask; i++) {
if (mgp->rx_big.info[i].skb != NULL)
dev_kfree_skb_any(mgp->rx_big.info[i].skb);
if (pci_unmap_len(&mgp->rx_big.info[i], len))
pci_unmap_single(mgp->pdev,
pci_unmap_addr(&mgp->rx_big.info[i],
bus),
pci_unmap_len(&mgp->rx_big.info[i],
len),
PCI_DMA_FROMDEVICE);
}
abort_with_rx_small_ring:
for (i = 0; i <= mgp->rx_small.mask; i++) {
if (mgp->rx_small.info[i].skb != NULL)
dev_kfree_skb_any(mgp->rx_small.info[i].skb);
if (pci_unmap_len(&mgp->rx_small.info[i], len))
pci_unmap_single(mgp->pdev,
pci_unmap_addr(&mgp->rx_small.info[i],
bus),
pci_unmap_len(&mgp->rx_small.info[i],
len),
PCI_DMA_FROMDEVICE);
}
kfree(mgp->rx_big.info);
abort_with_rx_small_info:
kfree(mgp->rx_small.info);
abort_with_tx_info:
kfree(mgp->tx.info);
abort_with_rx_big_shadow:
kfree(mgp->rx_big.shadow);
abort_with_rx_small_shadow:
kfree(mgp->rx_small.shadow);
abort_with_tx_req_bytes:
kfree(mgp->tx.req_bytes);
mgp->tx.req_bytes = NULL;
mgp->tx.req_list = NULL;
abort_with_nothing:
return status;
}
static void myri10ge_free_rings(struct net_device *dev)
{
struct myri10ge_priv *mgp;
struct sk_buff *skb;
struct myri10ge_tx_buf *tx;
int i, len, idx;
mgp = netdev_priv(dev);
for (i = 0; i <= mgp->rx_big.mask; i++) {
if (mgp->rx_big.info[i].skb != NULL)
dev_kfree_skb_any(mgp->rx_big.info[i].skb);
if (pci_unmap_len(&mgp->rx_big.info[i], len))
pci_unmap_single(mgp->pdev,
pci_unmap_addr(&mgp->rx_big.info[i],
bus),
pci_unmap_len(&mgp->rx_big.info[i],
len),
PCI_DMA_FROMDEVICE);
}
for (i = 0; i <= mgp->rx_small.mask; i++) {
if (mgp->rx_small.info[i].skb != NULL)
dev_kfree_skb_any(mgp->rx_small.info[i].skb);
if (pci_unmap_len(&mgp->rx_small.info[i], len))
pci_unmap_single(mgp->pdev,
pci_unmap_addr(&mgp->rx_small.info[i],
bus),
pci_unmap_len(&mgp->rx_small.info[i],
len),
PCI_DMA_FROMDEVICE);
}
tx = &mgp->tx;
while (tx->done != tx->req) {
idx = tx->done & tx->mask;
skb = tx->info[idx].skb;
/* Mark as free */
tx->info[idx].skb = NULL;
tx->done++;
len = pci_unmap_len(&tx->info[idx], len);
pci_unmap_len_set(&tx->info[idx], len, 0);
if (skb) {
mgp->stats.tx_dropped++;
dev_kfree_skb_any(skb);
if (len)
pci_unmap_single(mgp->pdev,
pci_unmap_addr(&tx->info[idx],
bus), len,
PCI_DMA_TODEVICE);
} else {
if (len)
pci_unmap_page(mgp->pdev,
pci_unmap_addr(&tx->info[idx],
bus), len,
PCI_DMA_TODEVICE);
}
}
kfree(mgp->rx_big.info);
kfree(mgp->rx_small.info);
kfree(mgp->tx.info);
kfree(mgp->rx_big.shadow);
kfree(mgp->rx_small.shadow);
kfree(mgp->tx.req_bytes);
mgp->tx.req_bytes = NULL;
mgp->tx.req_list = NULL;
}
static int myri10ge_open(struct net_device *dev)
{
struct myri10ge_priv *mgp;
struct myri10ge_cmd cmd;
int status, big_pow2;
mgp = netdev_priv(dev);
if (mgp->running != MYRI10GE_ETH_STOPPED)
return -EBUSY;
mgp->running = MYRI10GE_ETH_STARTING;
status = myri10ge_reset(mgp);
if (status != 0) {
printk(KERN_ERR "myri10ge: %s: failed reset\n", dev->name);
mgp->running = MYRI10GE_ETH_STOPPED;
return -ENXIO;
}
/* decide what small buffer size to use. For good TCP rx
* performance, it is important to not receive 1514 byte
* frames into jumbo buffers, as it confuses the socket buffer
* accounting code, leading to drops and erratic performance.
*/
if (dev->mtu <= ETH_DATA_LEN)
mgp->small_bytes = 128; /* enough for a TCP header */
else
mgp->small_bytes = ETH_FRAME_LEN; /* enough for an ETH_DATA_LEN frame */
/* Override the small buffer size? */
if (myri10ge_small_bytes > 0)
mgp->small_bytes = myri10ge_small_bytes;
/* If the user sets an obscenely small MTU, adjust the small
* bytes down to nearly nothing */
if (mgp->small_bytes >= (dev->mtu + ETH_HLEN))
mgp->small_bytes = 64;
/* get the lanai pointers to the send and receive rings */
status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_SEND_OFFSET, &cmd, 0);
mgp->tx.lanai =
(struct mcp_kreq_ether_send __iomem *)(mgp->sram + cmd.data0);
status |=
myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_SMALL_RX_OFFSET, &cmd, 0);
mgp->rx_small.lanai =
(struct mcp_kreq_ether_recv __iomem *)(mgp->sram + cmd.data0);
status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_BIG_RX_OFFSET, &cmd, 0);
mgp->rx_big.lanai =
(struct mcp_kreq_ether_recv __iomem *)(mgp->sram + cmd.data0);
if (status != 0) {
printk(KERN_ERR
"myri10ge: %s: failed to get ring sizes or locations\n",
dev->name);
mgp->running = MYRI10GE_ETH_STOPPED;
return -ENXIO;
}
if (mgp->mtrr >= 0) {
mgp->tx.wc_fifo = (u8 __iomem *) mgp->sram + 0x200000;
mgp->rx_small.wc_fifo = (u8 __iomem *) mgp->sram + 0x300000;
mgp->rx_big.wc_fifo = (u8 __iomem *) mgp->sram + 0x340000;
} else {
mgp->tx.wc_fifo = NULL;
mgp->rx_small.wc_fifo = NULL;
mgp->rx_big.wc_fifo = NULL;
}
status = myri10ge_allocate_rings(dev);
if (status != 0)
goto abort_with_nothing;
/* Firmware needs the big buff size as a power of 2. Lie and
* tell him the buffer is larger, because we only use 1
* buffer/pkt, and the mtu will prevent overruns.
*/
big_pow2 = dev->mtu + ETH_HLEN + MXGEFW_PAD;
while ((big_pow2 & (big_pow2 - 1)) != 0)
big_pow2++;
/* now give firmware buffers sizes, and MTU */
cmd.data0 = dev->mtu + ETH_HLEN + VLAN_HLEN;
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_MTU, &cmd, 0);
cmd.data0 = mgp->small_bytes;
status |=
myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_SMALL_BUFFER_SIZE, &cmd, 0);
cmd.data0 = big_pow2;
status |=
myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_BIG_BUFFER_SIZE, &cmd, 0);
if (status) {
printk(KERN_ERR "myri10ge: %s: Couldn't set buffer sizes\n",
dev->name);
goto abort_with_rings;
}
cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->fw_stats_bus);
cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->fw_stats_bus);
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_STATS_DMA, &cmd, 0);
if (status) {
printk(KERN_ERR "myri10ge: %s: Couldn't set stats DMA\n",
dev->name);
goto abort_with_rings;
}
mgp->link_state = -1;
mgp->rdma_tags_available = 15;
netif_poll_enable(mgp->dev); /* must happen prior to any irq */
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_ETHERNET_UP, &cmd, 0);
if (status) {
printk(KERN_ERR "myri10ge: %s: Couldn't bring up link\n",
dev->name);
goto abort_with_rings;
}
mgp->wake_queue = 0;
mgp->stop_queue = 0;
mgp->running = MYRI10GE_ETH_RUNNING;
mgp->watchdog_timer.expires = jiffies + myri10ge_watchdog_timeout * HZ;
add_timer(&mgp->watchdog_timer);
netif_wake_queue(dev);
return 0;
abort_with_rings:
myri10ge_free_rings(dev);
abort_with_nothing:
mgp->running = MYRI10GE_ETH_STOPPED;
return -ENOMEM;
}
static int myri10ge_close(struct net_device *dev)
{
struct myri10ge_priv *mgp;
struct myri10ge_cmd cmd;
int status, old_down_cnt;
mgp = netdev_priv(dev);
if (mgp->running != MYRI10GE_ETH_RUNNING)
return 0;
if (mgp->tx.req_bytes == NULL)
return 0;
del_timer_sync(&mgp->watchdog_timer);
mgp->running = MYRI10GE_ETH_STOPPING;
netif_poll_disable(mgp->dev);
netif_carrier_off(dev);
netif_stop_queue(dev);
old_down_cnt = mgp->down_cnt;
mb();
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_ETHERNET_DOWN, &cmd, 0);
if (status)
printk(KERN_ERR "myri10ge: %s: Couldn't bring down link\n",
dev->name);
wait_event_timeout(mgp->down_wq, old_down_cnt != mgp->down_cnt, HZ);
if (old_down_cnt == mgp->down_cnt)
printk(KERN_ERR "myri10ge: %s never got down irq\n", dev->name);
netif_tx_disable(dev);
myri10ge_free_rings(dev);
mgp->running = MYRI10GE_ETH_STOPPED;
return 0;
}
/* copy an array of struct mcp_kreq_ether_send's to the mcp. Copy
* backwards one at a time and handle ring wraps */
static inline void
myri10ge_submit_req_backwards(struct myri10ge_tx_buf *tx,
struct mcp_kreq_ether_send *src, int cnt)
{
int idx, starting_slot;
starting_slot = tx->req;
while (cnt > 1) {
cnt--;
idx = (starting_slot + cnt) & tx->mask;
myri10ge_pio_copy(&tx->lanai[idx], &src[cnt], sizeof(*src));
mb();
}
}
/*
* copy an array of struct mcp_kreq_ether_send's to the mcp. Copy
* at most 32 bytes at a time, so as to avoid involving the software
* pio handler in the nic. We re-write the first segment's flags
* to mark them valid only after writing the entire chain.
*/
static inline void
myri10ge_submit_req(struct myri10ge_tx_buf *tx, struct mcp_kreq_ether_send *src,
int cnt)
{
int idx, i;
struct mcp_kreq_ether_send __iomem *dstp, *dst;
struct mcp_kreq_ether_send *srcp;
u8 last_flags;
idx = tx->req & tx->mask;
last_flags = src->flags;
src->flags = 0;
mb();
dst = dstp = &tx->lanai[idx];
srcp = src;
if ((idx + cnt) < tx->mask) {
for (i = 0; i < (cnt - 1); i += 2) {
myri10ge_pio_copy(dstp, srcp, 2 * sizeof(*src));
mb(); /* force write every 32 bytes */
srcp += 2;
dstp += 2;
}
} else {
/* submit all but the first request, and ensure
* that it is submitted below */
myri10ge_submit_req_backwards(tx, src, cnt);
i = 0;
}
if (i < cnt) {
/* submit the first request */
myri10ge_pio_copy(dstp, srcp, sizeof(*src));
mb(); /* barrier before setting valid flag */
}
/* re-write the last 32-bits with the valid flags */
src->flags = last_flags;
__raw_writel(*((u32 *) src + 3), (u32 __iomem *) dst + 3);
tx->req += cnt;
mb();
}
static inline void
myri10ge_submit_req_wc(struct myri10ge_tx_buf *tx,
struct mcp_kreq_ether_send *src, int cnt)
{
tx->req += cnt;
mb();
while (cnt >= 4) {
myri10ge_pio_copy(tx->wc_fifo, src, 64);
mb();
src += 4;
cnt -= 4;
}
if (cnt > 0) {
/* pad it to 64 bytes. The src is 64 bytes bigger than it
* needs to be so that we don't overrun it */
myri10ge_pio_copy(tx->wc_fifo + (cnt << 18), src, 64);
mb();
}
}
/*
* Transmit a packet. We need to split the packet so that a single
* segment does not cross myri10ge->tx.boundary, so this makes segment
* counting tricky. So rather than try to count segments up front, we
* just give up if there are too few segments to hold a reasonably
* fragmented packet currently available. If we run
* out of segments while preparing a packet for DMA, we just linearize
* it and try again.
*/
static int myri10ge_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct myri10ge_priv *mgp = netdev_priv(dev);
struct mcp_kreq_ether_send *req;
struct myri10ge_tx_buf *tx = &mgp->tx;
struct skb_frag_struct *frag;
dma_addr_t bus;
u32 low, high_swapped;
unsigned int len;
int idx, last_idx, avail, frag_cnt, frag_idx, count, mss, max_segments;
u16 pseudo_hdr_offset, cksum_offset;
int cum_len, seglen, boundary, rdma_count;
u8 flags, odd_flag;
again:
req = tx->req_list;
avail = tx->mask - 1 - (tx->req - tx->done);
mss = 0;
max_segments = MXGEFW_MAX_SEND_DESC;
#ifdef NETIF_F_TSO
if (skb->len > (dev->mtu + ETH_HLEN)) {
mss = skb_shinfo(skb)->gso_size;
if (mss != 0)
max_segments = MYRI10GE_MAX_SEND_DESC_TSO;
}
#endif /*NETIF_F_TSO */
if ((unlikely(avail < max_segments))) {
/* we are out of transmit resources */
mgp->stop_queue++;
netif_stop_queue(dev);
return 1;
}
/* Setup checksum offloading, if needed */
cksum_offset = 0;
pseudo_hdr_offset = 0;
odd_flag = 0;
flags = (MXGEFW_FLAGS_NO_TSO | MXGEFW_FLAGS_FIRST);
if (likely(skb->ip_summed == CHECKSUM_HW)) {
cksum_offset = (skb->h.raw - skb->data);
pseudo_hdr_offset = (skb->h.raw + skb->csum) - skb->data;
/* If the headers are excessively large, then we must
* fall back to a software checksum */
if (unlikely(cksum_offset > 255 || pseudo_hdr_offset > 127)) {
if (skb_checksum_help(skb, 0))
goto drop;
cksum_offset = 0;
pseudo_hdr_offset = 0;
} else {
pseudo_hdr_offset = htons(pseudo_hdr_offset);
odd_flag = MXGEFW_FLAGS_ALIGN_ODD;
flags |= MXGEFW_FLAGS_CKSUM;
}
}
cum_len = 0;
#ifdef NETIF_F_TSO
if (mss) { /* TSO */
/* this removes any CKSUM flag from before */
flags = (MXGEFW_FLAGS_TSO_HDR | MXGEFW_FLAGS_FIRST);
/* negative cum_len signifies to the
* send loop that we are still in the
* header portion of the TSO packet.
* TSO header must be at most 134 bytes long */
cum_len = -((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
/* for TSO, pseudo_hdr_offset holds mss.
* The firmware figures out where to put
* the checksum by parsing the header. */
pseudo_hdr_offset = htons(mss);
} else
#endif /*NETIF_F_TSO */
/* Mark small packets, and pad out tiny packets */
if (skb->len <= MXGEFW_SEND_SMALL_SIZE) {
flags |= MXGEFW_FLAGS_SMALL;
/* pad frames to at least ETH_ZLEN bytes */
if (unlikely(skb->len < ETH_ZLEN)) {
if (skb_padto(skb, ETH_ZLEN)) {
/* The packet is gone, so we must
* return 0 */
mgp->stats.tx_dropped += 1;
return 0;
}
/* adjust the len to account for the zero pad
* so that the nic can know how long it is */
skb->len = ETH_ZLEN;
}
}
/* map the skb for DMA */
len = skb->len - skb->data_len;
idx = tx->req & tx->mask;
tx->info[idx].skb = skb;
bus = pci_map_single(mgp->pdev, skb->data, len, PCI_DMA_TODEVICE);
pci_unmap_addr_set(&tx->info[idx], bus, bus);
pci_unmap_len_set(&tx->info[idx], len, len);
frag_cnt = skb_shinfo(skb)->nr_frags;
frag_idx = 0;
count = 0;
rdma_count = 0;
/* "rdma_count" is the number of RDMAs belonging to the
* current packet BEFORE the current send request. For
* non-TSO packets, this is equal to "count".
* For TSO packets, rdma_count needs to be reset
* to 0 after a segment cut.
*
* The rdma_count field of the send request is
* the number of RDMAs of the packet starting at
* that request. For TSO send requests with one ore more cuts
* in the middle, this is the number of RDMAs starting
* after the last cut in the request. All previous
* segments before the last cut implicitly have 1 RDMA.
*
* Since the number of RDMAs is not known beforehand,
* it must be filled-in retroactively - after each
* segmentation cut or at the end of the entire packet.
*/
while (1) {
/* Break the SKB or Fragment up into pieces which
* do not cross mgp->tx.boundary */
low = MYRI10GE_LOWPART_TO_U32(bus);
high_swapped = htonl(MYRI10GE_HIGHPART_TO_U32(bus));
while (len) {
u8 flags_next;
int cum_len_next;
if (unlikely(count == max_segments))
goto abort_linearize;
boundary = (low + tx->boundary) & ~(tx->boundary - 1);
seglen = boundary - low;
if (seglen > len)
seglen = len;
flags_next = flags & ~MXGEFW_FLAGS_FIRST;
cum_len_next = cum_len + seglen;
#ifdef NETIF_F_TSO
if (mss) { /* TSO */
(req - rdma_count)->rdma_count = rdma_count + 1;
if (likely(cum_len >= 0)) { /* payload */
int next_is_first, chop;
chop = (cum_len_next > mss);
cum_len_next = cum_len_next % mss;
next_is_first = (cum_len_next == 0);
flags |= chop * MXGEFW_FLAGS_TSO_CHOP;
flags_next |= next_is_first *
MXGEFW_FLAGS_FIRST;
rdma_count |= -(chop | next_is_first);
rdma_count += chop & !next_is_first;
} else if (likely(cum_len_next >= 0)) { /* header ends */
int small;
rdma_count = -1;
cum_len_next = 0;
seglen = -cum_len;
small = (mss <= MXGEFW_SEND_SMALL_SIZE);
flags_next = MXGEFW_FLAGS_TSO_PLD |
MXGEFW_FLAGS_FIRST |
(small * MXGEFW_FLAGS_SMALL);
}
}
#endif /* NETIF_F_TSO */
req->addr_high = high_swapped;
req->addr_low = htonl(low);
req->pseudo_hdr_offset = pseudo_hdr_offset;
req->pad = 0; /* complete solid 16-byte block; does this matter? */
req->rdma_count = 1;
req->length = htons(seglen);
req->cksum_offset = cksum_offset;
req->flags = flags | ((cum_len & 1) * odd_flag);
low += seglen;
len -= seglen;
cum_len = cum_len_next;
flags = flags_next;
req++;
count++;
rdma_count++;
if (unlikely(cksum_offset > seglen))
cksum_offset -= seglen;
else
cksum_offset = 0;
}
if (frag_idx == frag_cnt)
break;
/* map next fragment for DMA */
idx = (count + tx->req) & tx->mask;
frag = &skb_shinfo(skb)->frags[frag_idx];
frag_idx++;
len = frag->size;
bus = pci_map_page(mgp->pdev, frag->page, frag->page_offset,
len, PCI_DMA_TODEVICE);
pci_unmap_addr_set(&tx->info[idx], bus, bus);
pci_unmap_len_set(&tx->info[idx], len, len);
}
(req - rdma_count)->rdma_count = rdma_count;
#ifdef NETIF_F_TSO
if (mss)
do {
req--;
req->flags |= MXGEFW_FLAGS_TSO_LAST;
} while (!(req->flags & (MXGEFW_FLAGS_TSO_CHOP |
MXGEFW_FLAGS_FIRST)));
#endif
idx = ((count - 1) + tx->req) & tx->mask;
tx->info[idx].last = 1;
if (tx->wc_fifo == NULL)
myri10ge_submit_req(tx, tx->req_list, count);
else
myri10ge_submit_req_wc(tx, tx->req_list, count);
tx->pkt_start++;
if ((avail - count) < MXGEFW_MAX_SEND_DESC) {
mgp->stop_queue++;
netif_stop_queue(dev);
}
dev->trans_start = jiffies;
return 0;
abort_linearize:
/* Free any DMA resources we've alloced and clear out the skb
* slot so as to not trip up assertions, and to avoid a
* double-free if linearizing fails */
last_idx = (idx + 1) & tx->mask;
idx = tx->req & tx->mask;
tx->info[idx].skb = NULL;
do {
len = pci_unmap_len(&tx->info[idx], len);
if (len) {
if (tx->info[idx].skb != NULL)
pci_unmap_single(mgp->pdev,
pci_unmap_addr(&tx->info[idx],
bus), len,
PCI_DMA_TODEVICE);
else
pci_unmap_page(mgp->pdev,
pci_unmap_addr(&tx->info[idx],
bus), len,
PCI_DMA_TODEVICE);
pci_unmap_len_set(&tx->info[idx], len, 0);
tx->info[idx].skb = NULL;
}
idx = (idx + 1) & tx->mask;
} while (idx != last_idx);
if (skb_shinfo(skb)->gso_size) {
printk(KERN_ERR
"myri10ge: %s: TSO but wanted to linearize?!?!?\n",
mgp->dev->name);
goto drop;
}
if (skb_linearize(skb))
goto drop;
mgp->tx_linearized++;
goto again;
drop:
dev_kfree_skb_any(skb);
mgp->stats.tx_dropped += 1;
return 0;
}
static struct net_device_stats *myri10ge_get_stats(struct net_device *dev)
{
struct myri10ge_priv *mgp = netdev_priv(dev);
return &mgp->stats;
}
static void myri10ge_set_multicast_list(struct net_device *dev)
{
/* can be called from atomic contexts,
* pass 1 to force atomicity in myri10ge_send_cmd() */
myri10ge_change_promisc(netdev_priv(dev), dev->flags & IFF_PROMISC, 1);
}
static int myri10ge_set_mac_address(struct net_device *dev, void *addr)
{
struct sockaddr *sa = addr;
struct myri10ge_priv *mgp = netdev_priv(dev);
int status;
if (!is_valid_ether_addr(sa->sa_data))
return -EADDRNOTAVAIL;
status = myri10ge_update_mac_address(mgp, sa->sa_data);
if (status != 0) {
printk(KERN_ERR
"myri10ge: %s: changing mac address failed with %d\n",
dev->name, status);
return status;
}
/* change the dev structure */
memcpy(dev->dev_addr, sa->sa_data, 6);
return 0;
}
static int myri10ge_change_mtu(struct net_device *dev, int new_mtu)
{
struct myri10ge_priv *mgp = netdev_priv(dev);
int error = 0;
if ((new_mtu < 68) || (ETH_HLEN + new_mtu > MYRI10GE_MAX_ETHER_MTU)) {
printk(KERN_ERR "myri10ge: %s: new mtu (%d) is not valid\n",
dev->name, new_mtu);
return -EINVAL;
}
printk(KERN_INFO "%s: changing mtu from %d to %d\n",
dev->name, dev->mtu, new_mtu);
if (mgp->running) {
/* if we change the mtu on an active device, we must
* reset the device so the firmware sees the change */
myri10ge_close(dev);
dev->mtu = new_mtu;
myri10ge_open(dev);
} else
dev->mtu = new_mtu;
return error;
}
/*
* Enable ECRC to align PCI-E Completion packets on an 8-byte boundary.
* Only do it if the bridge is a root port since we don't want to disturb
* any other device, except if forced with myri10ge_ecrc_enable > 1.
*/
static void myri10ge_enable_ecrc(struct myri10ge_priv *mgp)
{
struct pci_dev *bridge = mgp->pdev->bus->self;
struct device *dev = &mgp->pdev->dev;
unsigned cap;
unsigned err_cap;
u16 val;
u8 ext_type;
int ret;
if (!myri10ge_ecrc_enable || !bridge)
return;
/* check that the bridge is a root port */
cap = pci_find_capability(bridge, PCI_CAP_ID_EXP);
pci_read_config_word(bridge, cap + PCI_CAP_FLAGS, &val);
ext_type = (val & PCI_EXP_FLAGS_TYPE) >> 4;
if (ext_type != PCI_EXP_TYPE_ROOT_PORT) {
if (myri10ge_ecrc_enable > 1) {
struct pci_dev *old_bridge = bridge;
/* Walk the hierarchy up to the root port
* where ECRC has to be enabled */
do {
bridge = bridge->bus->self;
if (!bridge) {
dev_err(dev,
"Failed to find root port"
" to force ECRC\n");
return;
}
cap =
pci_find_capability(bridge, PCI_CAP_ID_EXP);
pci_read_config_word(bridge,
cap + PCI_CAP_FLAGS, &val);
ext_type = (val & PCI_EXP_FLAGS_TYPE) >> 4;
} while (ext_type != PCI_EXP_TYPE_ROOT_PORT);
dev_info(dev,
"Forcing ECRC on non-root port %s"
" (enabling on root port %s)\n",
pci_name(old_bridge), pci_name(bridge));
} else {
dev_err(dev,
"Not enabling ECRC on non-root port %s\n",
pci_name(bridge));
return;
}
}
cap = pci_find_ext_capability(bridge, PCI_EXT_CAP_ID_ERR);
if (!cap)
return;
ret = pci_read_config_dword(bridge, cap + PCI_ERR_CAP, &err_cap);
if (ret) {
dev_err(dev, "failed reading ext-conf-space of %s\n",
pci_name(bridge));
dev_err(dev, "\t pci=nommconf in use? "
"or buggy/incomplete/absent ACPI MCFG attr?\n");
return;
}
if (!(err_cap & PCI_ERR_CAP_ECRC_GENC))
return;
err_cap |= PCI_ERR_CAP_ECRC_GENE;
pci_write_config_dword(bridge, cap + PCI_ERR_CAP, err_cap);
dev_info(dev, "Enabled ECRC on upstream bridge %s\n", pci_name(bridge));
mgp->tx.boundary = 4096;
mgp->fw_name = myri10ge_fw_aligned;
}
/*
* The Lanai Z8E PCI-E interface achieves higher Read-DMA throughput
* when the PCI-E Completion packets are aligned on an 8-byte
* boundary. Some PCI-E chip sets always align Completion packets; on
* the ones that do not, the alignment can be enforced by enabling
* ECRC generation (if supported).
*
* When PCI-E Completion packets are not aligned, it is actually more
* efficient to limit Read-DMA transactions to 2KB, rather than 4KB.
*
* If the driver can neither enable ECRC nor verify that it has
* already been enabled, then it must use a firmware image which works
* around unaligned completion packets (myri10ge_ethp_z8e.dat), and it
* should also ensure that it never gives the device a Read-DMA which is
* larger than 2KB by setting the tx.boundary to 2KB. If ECRC is
* enabled, then the driver should use the aligned (myri10ge_eth_z8e.dat)
* firmware image, and set tx.boundary to 4KB.
*/
#define PCI_DEVICE_ID_SERVERWORKS_HT2000_PCIE 0x0132
static void myri10ge_select_firmware(struct myri10ge_priv *mgp)
{
struct pci_dev *bridge = mgp->pdev->bus->self;
mgp->tx.boundary = 2048;
mgp->fw_name = myri10ge_fw_unaligned;
if (myri10ge_force_firmware == 0) {
myri10ge_enable_ecrc(mgp);
/* Check to see if the upstream bridge is known to
* provide aligned completions */
if (bridge
/* ServerWorks HT2000/HT1000 */
&& bridge->vendor == PCI_VENDOR_ID_SERVERWORKS
&& bridge->device ==
PCI_DEVICE_ID_SERVERWORKS_HT2000_PCIE) {
dev_info(&mgp->pdev->dev,
"Assuming aligned completions (0x%x:0x%x)\n",
bridge->vendor, bridge->device);
mgp->tx.boundary = 4096;
mgp->fw_name = myri10ge_fw_aligned;
}
} else {
if (myri10ge_force_firmware == 1) {
dev_info(&mgp->pdev->dev,
"Assuming aligned completions (forced)\n");
mgp->tx.boundary = 4096;
mgp->fw_name = myri10ge_fw_aligned;
} else {
dev_info(&mgp->pdev->dev,
"Assuming unaligned completions (forced)\n");
mgp->tx.boundary = 2048;
mgp->fw_name = myri10ge_fw_unaligned;
}
}
if (myri10ge_fw_name != NULL) {
dev_info(&mgp->pdev->dev, "overriding firmware to %s\n",
myri10ge_fw_name);
mgp->fw_name = myri10ge_fw_name;
}
}
static void myri10ge_save_state(struct myri10ge_priv *mgp)
{
struct pci_dev *pdev = mgp->pdev;
int cap;
pci_save_state(pdev);
/* now save PCIe and MSI state that Linux will not
* save for us */
cap = pci_find_capability(pdev, PCI_CAP_ID_EXP);
pci_read_config_dword(pdev, cap + PCI_EXP_DEVCTL, &mgp->devctl);
cap = pci_find_capability(pdev, PCI_CAP_ID_MSI);
pci_read_config_word(pdev, cap + PCI_MSI_FLAGS, &mgp->msi_flags);
}
static void myri10ge_restore_state(struct myri10ge_priv *mgp)
{
struct pci_dev *pdev = mgp->pdev;
int cap;
/* restore PCIe and MSI state that linux will not */
cap = pci_find_capability(pdev, PCI_CAP_ID_EXP);
pci_write_config_dword(pdev, cap + PCI_CAP_ID_EXP, mgp->devctl);
cap = pci_find_capability(pdev, PCI_CAP_ID_MSI);
pci_write_config_word(pdev, cap + PCI_MSI_FLAGS, mgp->msi_flags);
pci_restore_state(pdev);
}
#ifdef CONFIG_PM
static int myri10ge_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct myri10ge_priv *mgp;
struct net_device *netdev;
mgp = pci_get_drvdata(pdev);
if (mgp == NULL)
return -EINVAL;
netdev = mgp->dev;
netif_device_detach(netdev);
if (netif_running(netdev)) {
printk(KERN_INFO "myri10ge: closing %s\n", netdev->name);
rtnl_lock();
myri10ge_close(netdev);
rtnl_unlock();
}
myri10ge_dummy_rdma(mgp, 0);
free_irq(pdev->irq, mgp);
myri10ge_save_state(mgp);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int myri10ge_resume(struct pci_dev *pdev)
{
struct myri10ge_priv *mgp;
struct net_device *netdev;
int status;
u16 vendor;
mgp = pci_get_drvdata(pdev);
if (mgp == NULL)
return -EINVAL;
netdev = mgp->dev;
pci_set_power_state(pdev, 0); /* zeros conf space as a side effect */
msleep(5); /* give card time to respond */
pci_read_config_word(mgp->pdev, PCI_VENDOR_ID, &vendor);
if (vendor == 0xffff) {
printk(KERN_ERR "myri10ge: %s: device disappeared!\n",
mgp->dev->name);
return -EIO;
}
myri10ge_restore_state(mgp);
pci_enable_device(pdev);
pci_set_master(pdev);
status = request_irq(pdev->irq, myri10ge_intr, IRQF_SHARED,
netdev->name, mgp);
if (status != 0) {
dev_err(&pdev->dev, "failed to allocate IRQ\n");
goto abort_with_msi;
}
myri10ge_reset(mgp);
myri10ge_dummy_rdma(mgp, mgp->tx.boundary != 4096);
/* Save configuration space to be restored if the
* nic resets due to a parity error */
myri10ge_save_state(mgp);
if (netif_running(netdev)) {
rtnl_lock();
myri10ge_open(netdev);
rtnl_unlock();
}
netif_device_attach(netdev);
return 0;
abort_with_msi:
return -EIO;
}
#endif /* CONFIG_PM */
static u32 myri10ge_read_reboot(struct myri10ge_priv *mgp)
{
struct pci_dev *pdev = mgp->pdev;
int vs = mgp->vendor_specific_offset;
u32 reboot;
/*enter read32 mode */
pci_write_config_byte(pdev, vs + 0x10, 0x3);
/*read REBOOT_STATUS (0xfffffff0) */
pci_write_config_dword(pdev, vs + 0x18, 0xfffffff0);
pci_read_config_dword(pdev, vs + 0x14, &reboot);
return reboot;
}
/*
* This watchdog is used to check whether the board has suffered
* from a parity error and needs to be recovered.
*/
static void myri10ge_watchdog(void *arg)
{
struct myri10ge_priv *mgp = arg;
u32 reboot;
int status;
u16 cmd, vendor;
mgp->watchdog_resets++;
pci_read_config_word(mgp->pdev, PCI_COMMAND, &cmd);
if ((cmd & PCI_COMMAND_MASTER) == 0) {
/* Bus master DMA disabled? Check to see
* if the card rebooted due to a parity error
* For now, just report it */
reboot = myri10ge_read_reboot(mgp);
printk(KERN_ERR
"myri10ge: %s: NIC rebooted (0x%x), resetting\n",
mgp->dev->name, reboot);
/*
* A rebooted nic will come back with config space as
* it was after power was applied to PCIe bus.
* Attempt to restore config space which was saved
* when the driver was loaded, or the last time the
* nic was resumed from power saving mode.
*/
myri10ge_restore_state(mgp);
} else {
/* if we get back -1's from our slot, perhaps somebody
* powered off our card. Don't try to reset it in
* this case */
if (cmd == 0xffff) {
pci_read_config_word(mgp->pdev, PCI_VENDOR_ID, &vendor);
if (vendor == 0xffff) {
printk(KERN_ERR
"myri10ge: %s: device disappeared!\n",
mgp->dev->name);
return;
}
}
/* Perhaps it is a software error. Try to reset */
printk(KERN_ERR "myri10ge: %s: device timeout, resetting\n",
mgp->dev->name);
printk(KERN_INFO "myri10ge: %s: %d %d %d %d %d\n",
mgp->dev->name, mgp->tx.req, mgp->tx.done,
mgp->tx.pkt_start, mgp->tx.pkt_done,
(int)ntohl(mgp->fw_stats->send_done_count));
msleep(2000);
printk(KERN_INFO "myri10ge: %s: %d %d %d %d %d\n",
mgp->dev->name, mgp->tx.req, mgp->tx.done,
mgp->tx.pkt_start, mgp->tx.pkt_done,
(int)ntohl(mgp->fw_stats->send_done_count));
}
rtnl_lock();
myri10ge_close(mgp->dev);
status = myri10ge_load_firmware(mgp);
if (status != 0)
printk(KERN_ERR "myri10ge: %s: failed to load firmware\n",
mgp->dev->name);
else
myri10ge_open(mgp->dev);
rtnl_unlock();
}
/*
* We use our own timer routine rather than relying upon
* netdev->tx_timeout because we have a very large hardware transmit
* queue. Due to the large queue, the netdev->tx_timeout function
* cannot detect a NIC with a parity error in a timely fashion if the
* NIC is lightly loaded.
*/
static void myri10ge_watchdog_timer(unsigned long arg)
{
struct myri10ge_priv *mgp;
mgp = (struct myri10ge_priv *)arg;
if (mgp->tx.req != mgp->tx.done &&
mgp->tx.done == mgp->watchdog_tx_done)
/* nic seems like it might be stuck.. */
schedule_work(&mgp->watchdog_work);
else
/* rearm timer */
mod_timer(&mgp->watchdog_timer,
jiffies + myri10ge_watchdog_timeout * HZ);
mgp->watchdog_tx_done = mgp->tx.done;
}
static int myri10ge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *netdev;
struct myri10ge_priv *mgp;
struct device *dev = &pdev->dev;
size_t bytes;
int i;
int status = -ENXIO;
int cap;
int dac_enabled;
u16 val;
netdev = alloc_etherdev(sizeof(*mgp));
if (netdev == NULL) {
dev_err(dev, "Could not allocate ethernet device\n");
return -ENOMEM;
}
mgp = netdev_priv(netdev);
memset(mgp, 0, sizeof(*mgp));
mgp->dev = netdev;
mgp->pdev = pdev;
mgp->csum_flag = MXGEFW_FLAGS_CKSUM;
mgp->pause = myri10ge_flow_control;
mgp->intr_coal_delay = myri10ge_intr_coal_delay;
init_waitqueue_head(&mgp->down_wq);
if (pci_enable_device(pdev)) {
dev_err(&pdev->dev, "pci_enable_device call failed\n");
status = -ENODEV;
goto abort_with_netdev;
}
myri10ge_select_firmware(mgp);
/* Find the vendor-specific cap so we can check
* the reboot register later on */
mgp->vendor_specific_offset
= pci_find_capability(pdev, PCI_CAP_ID_VNDR);
/* Set our max read request to 4KB */
cap = pci_find_capability(pdev, PCI_CAP_ID_EXP);
if (cap < 64) {
dev_err(&pdev->dev, "Bad PCI_CAP_ID_EXP location %d\n", cap);
goto abort_with_netdev;
}
status = pci_read_config_word(pdev, cap + PCI_EXP_DEVCTL, &val);
if (status != 0) {
dev_err(&pdev->dev, "Error %d reading PCI_EXP_DEVCTL\n",
status);
goto abort_with_netdev;
}
val = (val & ~PCI_EXP_DEVCTL_READRQ) | (5 << 12);
status = pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, val);
if (status != 0) {
dev_err(&pdev->dev, "Error %d writing PCI_EXP_DEVCTL\n",
status);
goto abort_with_netdev;
}
pci_set_master(pdev);
dac_enabled = 1;
status = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
if (status != 0) {
dac_enabled = 0;
dev_err(&pdev->dev,
"64-bit pci address mask was refused, trying 32-bit");
status = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
}
if (status != 0) {
dev_err(&pdev->dev, "Error %d setting DMA mask\n", status);
goto abort_with_netdev;
}
mgp->cmd = dma_alloc_coherent(&pdev->dev, sizeof(*mgp->cmd),
&mgp->cmd_bus, GFP_KERNEL);
if (mgp->cmd == NULL)
goto abort_with_netdev;
mgp->fw_stats = dma_alloc_coherent(&pdev->dev, sizeof(*mgp->fw_stats),
&mgp->fw_stats_bus, GFP_KERNEL);
if (mgp->fw_stats == NULL)
goto abort_with_cmd;
mgp->board_span = pci_resource_len(pdev, 0);
mgp->iomem_base = pci_resource_start(pdev, 0);
mgp->mtrr = -1;
#ifdef CONFIG_MTRR
mgp->mtrr = mtrr_add(mgp->iomem_base, mgp->board_span,
MTRR_TYPE_WRCOMB, 1);
#endif
/* Hack. need to get rid of these magic numbers */
mgp->sram_size =
2 * 1024 * 1024 - (2 * (48 * 1024) + (32 * 1024)) - 0x100;
if (mgp->sram_size > mgp->board_span) {
dev_err(&pdev->dev, "board span %ld bytes too small\n",
mgp->board_span);
goto abort_with_wc;
}
mgp->sram = ioremap(mgp->iomem_base, mgp->board_span);
if (mgp->sram == NULL) {
dev_err(&pdev->dev, "ioremap failed for %ld bytes at 0x%lx\n",
mgp->board_span, mgp->iomem_base);
status = -ENXIO;
goto abort_with_wc;
}
memcpy_fromio(mgp->eeprom_strings,
mgp->sram + mgp->sram_size - MYRI10GE_EEPROM_STRINGS_SIZE,
MYRI10GE_EEPROM_STRINGS_SIZE);
memset(mgp->eeprom_strings + MYRI10GE_EEPROM_STRINGS_SIZE - 2, 0, 2);
status = myri10ge_read_mac_addr(mgp);
if (status)
goto abort_with_ioremap;
for (i = 0; i < ETH_ALEN; i++)
netdev->dev_addr[i] = mgp->mac_addr[i];
/* allocate rx done ring */
bytes = myri10ge_max_intr_slots * sizeof(*mgp->rx_done.entry);
mgp->rx_done.entry = dma_alloc_coherent(&pdev->dev, bytes,
&mgp->rx_done.bus, GFP_KERNEL);
if (mgp->rx_done.entry == NULL)
goto abort_with_ioremap;
memset(mgp->rx_done.entry, 0, bytes);
status = myri10ge_load_firmware(mgp);
if (status != 0) {
dev_err(&pdev->dev, "failed to load firmware\n");
goto abort_with_rx_done;
}
status = myri10ge_reset(mgp);
if (status != 0) {
dev_err(&pdev->dev, "failed reset\n");
goto abort_with_firmware;
}
if (myri10ge_msi) {
status = pci_enable_msi(pdev);
if (status != 0)
dev_err(&pdev->dev,
"Error %d setting up MSI; falling back to xPIC\n",
status);
else
mgp->msi_enabled = 1;
}
status = request_irq(pdev->irq, myri10ge_intr, IRQF_SHARED,
netdev->name, mgp);
if (status != 0) {
dev_err(&pdev->dev, "failed to allocate IRQ\n");
goto abort_with_firmware;
}
pci_set_drvdata(pdev, mgp);
if ((myri10ge_initial_mtu + ETH_HLEN) > MYRI10GE_MAX_ETHER_MTU)
myri10ge_initial_mtu = MYRI10GE_MAX_ETHER_MTU - ETH_HLEN;
if ((myri10ge_initial_mtu + ETH_HLEN) < 68)
myri10ge_initial_mtu = 68;
netdev->mtu = myri10ge_initial_mtu;
netdev->open = myri10ge_open;
netdev->stop = myri10ge_close;
netdev->hard_start_xmit = myri10ge_xmit;
netdev->get_stats = myri10ge_get_stats;
netdev->base_addr = mgp->iomem_base;
netdev->irq = pdev->irq;
netdev->change_mtu = myri10ge_change_mtu;
netdev->set_multicast_list = myri10ge_set_multicast_list;
netdev->set_mac_address = myri10ge_set_mac_address;
netdev->features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_TSO;
if (dac_enabled)
netdev->features |= NETIF_F_HIGHDMA;
netdev->poll = myri10ge_poll;
netdev->weight = myri10ge_napi_weight;
/* Save configuration space to be restored if the
* nic resets due to a parity error */
myri10ge_save_state(mgp);
/* Setup the watchdog timer */
setup_timer(&mgp->watchdog_timer, myri10ge_watchdog_timer,
(unsigned long)mgp);
SET_ETHTOOL_OPS(netdev, &myri10ge_ethtool_ops);
INIT_WORK(&mgp->watchdog_work, myri10ge_watchdog, mgp);
status = register_netdev(netdev);
if (status != 0) {
dev_err(&pdev->dev, "register_netdev failed: %d\n", status);
goto abort_with_irq;
}
dev_info(dev, "%s IRQ %d, tx bndry %d, fw %s, WC %s\n",
(mgp->msi_enabled ? "MSI" : "xPIC"),
pdev->irq, mgp->tx.boundary, mgp->fw_name,
(mgp->mtrr >= 0 ? "Enabled" : "Disabled"));
return 0;
abort_with_irq:
free_irq(pdev->irq, mgp);
if (mgp->msi_enabled)
pci_disable_msi(pdev);
abort_with_firmware:
myri10ge_dummy_rdma(mgp, 0);
abort_with_rx_done:
bytes = myri10ge_max_intr_slots * sizeof(*mgp->rx_done.entry);
dma_free_coherent(&pdev->dev, bytes,
mgp->rx_done.entry, mgp->rx_done.bus);
abort_with_ioremap:
iounmap(mgp->sram);
abort_with_wc:
#ifdef CONFIG_MTRR
if (mgp->mtrr >= 0)
mtrr_del(mgp->mtrr, mgp->iomem_base, mgp->board_span);
#endif
dma_free_coherent(&pdev->dev, sizeof(*mgp->fw_stats),
mgp->fw_stats, mgp->fw_stats_bus);
abort_with_cmd:
dma_free_coherent(&pdev->dev, sizeof(*mgp->cmd),
mgp->cmd, mgp->cmd_bus);
abort_with_netdev:
free_netdev(netdev);
return status;
}
/*
* myri10ge_remove
*
* Does what is necessary to shutdown one Myrinet device. Called
* once for each Myrinet card by the kernel when a module is
* unloaded.
*/
static void myri10ge_remove(struct pci_dev *pdev)
{
struct myri10ge_priv *mgp;
struct net_device *netdev;
size_t bytes;
mgp = pci_get_drvdata(pdev);
if (mgp == NULL)
return;
flush_scheduled_work();
netdev = mgp->dev;
unregister_netdev(netdev);
free_irq(pdev->irq, mgp);
if (mgp->msi_enabled)
pci_disable_msi(pdev);
myri10ge_dummy_rdma(mgp, 0);
bytes = myri10ge_max_intr_slots * sizeof(*mgp->rx_done.entry);
dma_free_coherent(&pdev->dev, bytes,
mgp->rx_done.entry, mgp->rx_done.bus);
iounmap(mgp->sram);
#ifdef CONFIG_MTRR
if (mgp->mtrr >= 0)
mtrr_del(mgp->mtrr, mgp->iomem_base, mgp->board_span);
#endif
dma_free_coherent(&pdev->dev, sizeof(*mgp->fw_stats),
mgp->fw_stats, mgp->fw_stats_bus);
dma_free_coherent(&pdev->dev, sizeof(*mgp->cmd),
mgp->cmd, mgp->cmd_bus);
free_netdev(netdev);
pci_set_drvdata(pdev, NULL);
}
#define PCI_DEVICE_ID_MYRICOM_MYRI10GE_Z8E 0x0008
static struct pci_device_id myri10ge_pci_tbl[] = {
{PCI_DEVICE(PCI_VENDOR_ID_MYRICOM, PCI_DEVICE_ID_MYRICOM_MYRI10GE_Z8E)},
{0},
};
static struct pci_driver myri10ge_driver = {
.name = "myri10ge",
.probe = myri10ge_probe,
.remove = myri10ge_remove,
.id_table = myri10ge_pci_tbl,
#ifdef CONFIG_PM
.suspend = myri10ge_suspend,
.resume = myri10ge_resume,
#endif
};
static __init int myri10ge_init_module(void)
{
printk(KERN_INFO "%s: Version %s\n", myri10ge_driver.name,
MYRI10GE_VERSION_STR);
return pci_register_driver(&myri10ge_driver);
}
module_init(myri10ge_init_module);
static __exit void myri10ge_cleanup_module(void)
{
pci_unregister_driver(&myri10ge_driver);
}
module_exit(myri10ge_cleanup_module);