android_kernel_xiaomi_sm8350/drivers/block/ub.c

2216 lines
54 KiB
C
Raw Normal View History

/*
* The low performance USB storage driver (ub).
*
* Copyright (c) 1999, 2000 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
* Copyright (C) 2004 Pete Zaitcev (zaitcev@yahoo.com)
*
* This work is a part of Linux kernel, is derived from it,
* and is not licensed separately. See file COPYING for details.
*
* TODO (sorted by decreasing priority)
* -- Do resets with usb_device_reset (needs a thread context, use khubd)
* -- set readonly flag for CDs, set removable flag for CF readers
* -- do inquiry and verify we got a disk and not a tape (for LUN mismatch)
* -- support pphaneuf's SDDR-75 with two LUNs (also broken capacity...)
* -- special case some senses, e.g. 3a/0 -> no media present, reduce retries
* -- verify the 13 conditions and do bulk resets
* -- normal pool of commands instead of cmdv[]?
* -- kill last_pipe and simply do two-state clearing on both pipes
* -- verify protocol (bulk) from USB descriptors (maybe...)
* -- highmem and sg
* -- move top_sense and work_bcs into separate allocations (if they survive)
* for cache purists and esoteric architectures.
* -- prune comments, they are too volumnous
* -- Exterminate P3 printks
* -- Resove XXX's
* -- Redo "benh's retries", perhaps have spin-up code to handle them. V:D=?
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/usb.h>
#include <linux/blkdev.h>
#include <linux/devfs_fs_kernel.h>
#include <linux/timer.h>
#include <scsi/scsi.h>
#define DRV_NAME "ub"
#define DEVFS_NAME DRV_NAME
#define UB_MAJOR 180
/*
* Definitions which have to be scattered once we understand the layout better.
*/
/* Transport (despite PR in the name) */
#define US_PR_BULK 0x50 /* bulk only */
/* Protocol */
#define US_SC_SCSI 0x06 /* Transparent */
/*
*/
#define UB_MINORS_PER_MAJOR 8
#define UB_MAX_CDB_SIZE 16 /* Corresponds to Bulk */
#define UB_SENSE_SIZE 18
/*
*/
/* command block wrapper */
struct bulk_cb_wrap {
__le32 Signature; /* contains 'USBC' */
u32 Tag; /* unique per command id */
__le32 DataTransferLength; /* size of data */
u8 Flags; /* direction in bit 0 */
u8 Lun; /* LUN normally 0 */
u8 Length; /* of of the CDB */
u8 CDB[UB_MAX_CDB_SIZE]; /* max command */
};
#define US_BULK_CB_WRAP_LEN 31
#define US_BULK_CB_SIGN 0x43425355 /*spells out USBC */
#define US_BULK_FLAG_IN 1
#define US_BULK_FLAG_OUT 0
/* command status wrapper */
struct bulk_cs_wrap {
__le32 Signature; /* should = 'USBS' */
u32 Tag; /* same as original command */
__le32 Residue; /* amount not transferred */
u8 Status; /* see below */
};
#define US_BULK_CS_WRAP_LEN 13
#define US_BULK_CS_SIGN 0x53425355 /* spells out 'USBS' */
/* This is for Olympus Camedia digital cameras */
#define US_BULK_CS_OLYMPUS_SIGN 0x55425355 /* spells out 'USBU' */
#define US_BULK_STAT_OK 0
#define US_BULK_STAT_FAIL 1
#define US_BULK_STAT_PHASE 2
/* bulk-only class specific requests */
#define US_BULK_RESET_REQUEST 0xff
#define US_BULK_GET_MAX_LUN 0xfe
/*
*/
struct ub_dev;
#define UB_MAX_REQ_SG 1
#define UB_MAX_SECTORS 64
/*
* A second is more than enough for a 32K transfer (UB_MAX_SECTORS)
* even if a webcam hogs the bus, but some devices need time to spin up.
*/
#define UB_URB_TIMEOUT (HZ*2)
#define UB_DATA_TIMEOUT (HZ*5) /* ZIP does spin-ups in the data phase */
#define UB_STAT_TIMEOUT (HZ*5) /* Same spinups and eject for a dataless cmd. */
#define UB_CTRL_TIMEOUT (HZ/2) /* 500ms ought to be enough to clear a stall */
/*
* An instance of a SCSI command in transit.
*/
#define UB_DIR_NONE 0
#define UB_DIR_READ 1
#define UB_DIR_ILLEGAL2 2
#define UB_DIR_WRITE 3
#define UB_DIR_CHAR(c) (((c)==UB_DIR_WRITE)? 'w': \
(((c)==UB_DIR_READ)? 'r': 'n'))
enum ub_scsi_cmd_state {
UB_CMDST_INIT, /* Initial state */
UB_CMDST_CMD, /* Command submitted */
UB_CMDST_DATA, /* Data phase */
UB_CMDST_CLR2STS, /* Clearing before requesting status */
UB_CMDST_STAT, /* Status phase */
UB_CMDST_CLEAR, /* Clearing a stall (halt, actually) */
UB_CMDST_SENSE, /* Sending Request Sense */
UB_CMDST_DONE /* Final state */
};
static char *ub_scsi_cmd_stname[] = {
". ",
"Cmd",
"dat",
"c2s",
"sts",
"clr",
"Sen",
"fin"
};
struct ub_scsi_cmd {
unsigned char cdb[UB_MAX_CDB_SIZE];
unsigned char cdb_len;
unsigned char dir; /* 0 - none, 1 - read, 3 - write. */
unsigned char trace_index;
enum ub_scsi_cmd_state state;
unsigned int tag;
struct ub_scsi_cmd *next;
int error; /* Return code - valid upon done */
unsigned int act_len; /* Return size */
unsigned char key, asc, ascq; /* May be valid if error==-EIO */
int stat_count; /* Retries getting status. */
/*
* We do not support transfers from highmem pages
* because the underlying USB framework does not do what we need.
*/
char *data; /* Requested buffer */
unsigned int len; /* Requested length */
// struct scatterlist sgv[UB_MAX_REQ_SG];
void (*done)(struct ub_dev *, struct ub_scsi_cmd *);
void *back;
};
/*
*/
struct ub_capacity {
unsigned long nsec; /* Linux size - 512 byte sectors */
unsigned int bsize; /* Linux hardsect_size */
unsigned int bshift; /* Shift between 512 and hard sects */
};
/*
* The SCSI command tracing structure.
*/
#define SCMD_ST_HIST_SZ 8
#define SCMD_TRACE_SZ 63 /* Less than 4KB of 61-byte lines */
struct ub_scsi_cmd_trace {
int hcur;
unsigned int tag;
unsigned int req_size, act_size;
unsigned char op;
unsigned char dir;
unsigned char key, asc, ascq;
char st_hst[SCMD_ST_HIST_SZ];
};
struct ub_scsi_trace {
int cur;
struct ub_scsi_cmd_trace vec[SCMD_TRACE_SZ];
};
/*
* This is a direct take-off from linux/include/completion.h
* The difference is that I do not wait on this thing, just poll.
* When I want to wait (ub_probe), I just use the stock completion.
*
* Note that INIT_COMPLETION takes no lock. It is correct. But why
* in the bloody hell that thing takes struct instead of pointer to struct
* is quite beyond me. I just copied it from the stock completion.
*/
struct ub_completion {
unsigned int done;
spinlock_t lock;
};
static inline void ub_init_completion(struct ub_completion *x)
{
x->done = 0;
spin_lock_init(&x->lock);
}
#define UB_INIT_COMPLETION(x) ((x).done = 0)
static void ub_complete(struct ub_completion *x)
{
unsigned long flags;
spin_lock_irqsave(&x->lock, flags);
x->done++;
spin_unlock_irqrestore(&x->lock, flags);
}
static int ub_is_completed(struct ub_completion *x)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&x->lock, flags);
ret = x->done;
spin_unlock_irqrestore(&x->lock, flags);
return ret;
}
/*
*/
struct ub_scsi_cmd_queue {
int qlen, qmax;
struct ub_scsi_cmd *head, *tail;
};
/*
* The UB device instance.
*/
struct ub_dev {
spinlock_t lock;
int id; /* Number among ub's */
atomic_t poison; /* The USB device is disconnected */
int openc; /* protected by ub_lock! */
/* kref is too implicit for our taste */
unsigned int tagcnt;
int changed; /* Media was changed */
int removable;
int readonly;
int first_open; /* Kludge. See ub_bd_open. */
char name[8];
struct usb_device *dev;
struct usb_interface *intf;
struct ub_capacity capacity;
struct gendisk *disk;
unsigned int send_bulk_pipe; /* cached pipe values */
unsigned int recv_bulk_pipe;
unsigned int send_ctrl_pipe;
unsigned int recv_ctrl_pipe;
struct tasklet_struct tasklet;
/* XXX Use Ingo's mempool (once we have more than one) */
int cmda[1];
struct ub_scsi_cmd cmdv[1];
struct ub_scsi_cmd_queue cmd_queue;
struct ub_scsi_cmd top_rqs_cmd; /* REQUEST SENSE */
unsigned char top_sense[UB_SENSE_SIZE];
struct ub_completion work_done;
struct urb work_urb;
struct timer_list work_timer;
int last_pipe; /* What might need clearing */
struct bulk_cb_wrap work_bcb;
struct bulk_cs_wrap work_bcs;
struct usb_ctrlrequest work_cr;
struct ub_scsi_trace tr;
};
/*
*/
static void ub_cleanup(struct ub_dev *sc);
static int ub_bd_rq_fn_1(struct ub_dev *sc, struct request *rq);
static int ub_cmd_build_block(struct ub_dev *sc, struct ub_scsi_cmd *cmd,
struct request *rq);
static int ub_cmd_build_packet(struct ub_dev *sc, struct ub_scsi_cmd *cmd,
struct request *rq);
static void ub_rw_cmd_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
static void ub_end_rq(struct request *rq, int uptodate);
static int ub_submit_scsi(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
static void ub_urb_complete(struct urb *urb, struct pt_regs *pt);
static void ub_scsi_action(unsigned long _dev);
static void ub_scsi_dispatch(struct ub_dev *sc);
static void ub_scsi_urb_compl(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
static void ub_state_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd, int rc);
static void __ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
static void ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
static void ub_state_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
static int ub_submit_clear_stall(struct ub_dev *sc, struct ub_scsi_cmd *cmd,
int stalled_pipe);
static void ub_top_sense_done(struct ub_dev *sc, struct ub_scsi_cmd *scmd);
static int ub_sync_tur(struct ub_dev *sc);
static int ub_sync_read_cap(struct ub_dev *sc, struct ub_capacity *ret);
/*
*/
static struct usb_device_id ub_usb_ids[] = {
// { USB_DEVICE_VER(0x0781, 0x0002, 0x0009, 0x0009) }, /* SDDR-31 */
{ USB_INTERFACE_INFO(USB_CLASS_MASS_STORAGE, US_SC_SCSI, US_PR_BULK) },
{ }
};
MODULE_DEVICE_TABLE(usb, ub_usb_ids);
/*
* Find me a way to identify "next free minor" for add_disk(),
* and the array disappears the next day. However, the number of
* hosts has something to do with the naming and /proc/partitions.
* This has to be thought out in detail before changing.
* If UB_MAX_HOST was 1000, we'd use a bitmap. Or a better data structure.
*/
#define UB_MAX_HOSTS 26
static char ub_hostv[UB_MAX_HOSTS];
static DEFINE_SPINLOCK(ub_lock); /* Locks globals and ->openc */
/*
* The SCSI command tracing procedures.
*/
static void ub_cmdtr_new(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
{
int n;
struct ub_scsi_cmd_trace *t;
if ((n = sc->tr.cur + 1) == SCMD_TRACE_SZ) n = 0;
t = &sc->tr.vec[n];
memset(t, 0, sizeof(struct ub_scsi_cmd_trace));
t->tag = cmd->tag;
t->op = cmd->cdb[0];
t->dir = cmd->dir;
t->req_size = cmd->len;
t->st_hst[0] = cmd->state;
sc->tr.cur = n;
cmd->trace_index = n;
}
static void ub_cmdtr_state(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
{
int n;
struct ub_scsi_cmd_trace *t;
t = &sc->tr.vec[cmd->trace_index];
if (t->tag == cmd->tag) {
if ((n = t->hcur + 1) == SCMD_ST_HIST_SZ) n = 0;
t->st_hst[n] = cmd->state;
t->hcur = n;
}
}
static void ub_cmdtr_act_len(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
{
struct ub_scsi_cmd_trace *t;
t = &sc->tr.vec[cmd->trace_index];
if (t->tag == cmd->tag)
t->act_size = cmd->act_len;
}
static void ub_cmdtr_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd,
unsigned char *sense)
{
struct ub_scsi_cmd_trace *t;
t = &sc->tr.vec[cmd->trace_index];
if (t->tag == cmd->tag) {
t->key = sense[2] & 0x0F;
t->asc = sense[12];
t->ascq = sense[13];
}
}
static ssize_t ub_diag_show(struct device *dev, char *page)
{
struct usb_interface *intf;
struct ub_dev *sc;
int cnt;
unsigned long flags;
int nc, nh;
int i, j;
struct ub_scsi_cmd_trace *t;
intf = to_usb_interface(dev);
sc = usb_get_intfdata(intf);
if (sc == NULL)
return 0;
cnt = 0;
spin_lock_irqsave(&sc->lock, flags);
cnt += sprintf(page + cnt,
"qlen %d qmax %d changed %d removable %d readonly %d\n",
sc->cmd_queue.qlen, sc->cmd_queue.qmax,
sc->changed, sc->removable, sc->readonly);
if ((nc = sc->tr.cur + 1) == SCMD_TRACE_SZ) nc = 0;
for (j = 0; j < SCMD_TRACE_SZ; j++) {
t = &sc->tr.vec[nc];
cnt += sprintf(page + cnt, "%08x %02x", t->tag, t->op);
if (t->op == REQUEST_SENSE) {
cnt += sprintf(page + cnt, " [sense %x %02x %02x]",
t->key, t->asc, t->ascq);
} else {
cnt += sprintf(page + cnt, " %c", UB_DIR_CHAR(t->dir));
cnt += sprintf(page + cnt, " [%5d %5d]",
t->req_size, t->act_size);
}
if ((nh = t->hcur + 1) == SCMD_ST_HIST_SZ) nh = 0;
for (i = 0; i < SCMD_ST_HIST_SZ; i++) {
cnt += sprintf(page + cnt, " %s",
ub_scsi_cmd_stname[(int)t->st_hst[nh]]);
if (++nh == SCMD_ST_HIST_SZ) nh = 0;
}
cnt += sprintf(page + cnt, "\n");
if (++nc == SCMD_TRACE_SZ) nc = 0;
}
spin_unlock_irqrestore(&sc->lock, flags);
return cnt;
}
static DEVICE_ATTR(diag, S_IRUGO, ub_diag_show, NULL); /* N.B. World readable */
/*
* The id allocator.
*
* This also stores the host for indexing by minor, which is somewhat dirty.
*/
static int ub_id_get(void)
{
unsigned long flags;
int i;
spin_lock_irqsave(&ub_lock, flags);
for (i = 0; i < UB_MAX_HOSTS; i++) {
if (ub_hostv[i] == 0) {
ub_hostv[i] = 1;
spin_unlock_irqrestore(&ub_lock, flags);
return i;
}
}
spin_unlock_irqrestore(&ub_lock, flags);
return -1;
}
static void ub_id_put(int id)
{
unsigned long flags;
if (id < 0 || id >= UB_MAX_HOSTS) {
printk(KERN_ERR DRV_NAME ": bad host ID %d\n", id);
return;
}
spin_lock_irqsave(&ub_lock, flags);
if (ub_hostv[id] == 0) {
spin_unlock_irqrestore(&ub_lock, flags);
printk(KERN_ERR DRV_NAME ": freeing free host ID %d\n", id);
return;
}
ub_hostv[id] = 0;
spin_unlock_irqrestore(&ub_lock, flags);
}
/*
* Downcount for deallocation. This rides on two assumptions:
* - once something is poisoned, its refcount cannot grow
* - opens cannot happen at this time (del_gendisk was done)
* If the above is true, we can drop the lock, which we need for
* blk_cleanup_queue(): the silly thing may attempt to sleep.
* [Actually, it never needs to sleep for us, but it calls might_sleep()]
*/
static void ub_put(struct ub_dev *sc)
{
unsigned long flags;
spin_lock_irqsave(&ub_lock, flags);
--sc->openc;
if (sc->openc == 0 && atomic_read(&sc->poison)) {
spin_unlock_irqrestore(&ub_lock, flags);
ub_cleanup(sc);
} else {
spin_unlock_irqrestore(&ub_lock, flags);
}
}
/*
* Final cleanup and deallocation.
*/
static void ub_cleanup(struct ub_dev *sc)
{
request_queue_t *q;
/* I don't think queue can be NULL. But... Stolen from sx8.c */
if ((q = sc->disk->queue) != NULL)
blk_cleanup_queue(q);
/*
* If we zero disk->private_data BEFORE put_disk, we have to check
* for NULL all over the place in open, release, check_media and
* revalidate, because the block level semaphore is well inside the
* put_disk. But we cannot zero after the call, because *disk is gone.
* The sd.c is blatantly racy in this area.
*/
/* disk->private_data = NULL; */
put_disk(sc->disk);
sc->disk = NULL;
ub_id_put(sc->id);
kfree(sc);
}
/*
* The "command allocator".
*/
static struct ub_scsi_cmd *ub_get_cmd(struct ub_dev *sc)
{
struct ub_scsi_cmd *ret;
if (sc->cmda[0])
return NULL;
ret = &sc->cmdv[0];
sc->cmda[0] = 1;
return ret;
}
static void ub_put_cmd(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
{
if (cmd != &sc->cmdv[0]) {
printk(KERN_WARNING "%s: releasing a foreign cmd %p\n",
sc->name, cmd);
return;
}
if (!sc->cmda[0]) {
printk(KERN_WARNING "%s: releasing a free cmd\n", sc->name);
return;
}
sc->cmda[0] = 0;
}
/*
* The command queue.
*/
static void ub_cmdq_add(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
{
struct ub_scsi_cmd_queue *t = &sc->cmd_queue;
if (t->qlen++ == 0) {
t->head = cmd;
t->tail = cmd;
} else {
t->tail->next = cmd;
t->tail = cmd;
}
if (t->qlen > t->qmax)
t->qmax = t->qlen;
}
static void ub_cmdq_insert(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
{
struct ub_scsi_cmd_queue *t = &sc->cmd_queue;
if (t->qlen++ == 0) {
t->head = cmd;
t->tail = cmd;
} else {
cmd->next = t->head;
t->head = cmd;
}
if (t->qlen > t->qmax)
t->qmax = t->qlen;
}
static struct ub_scsi_cmd *ub_cmdq_pop(struct ub_dev *sc)
{
struct ub_scsi_cmd_queue *t = &sc->cmd_queue;
struct ub_scsi_cmd *cmd;
if (t->qlen == 0)
return NULL;
if (--t->qlen == 0)
t->tail = NULL;
cmd = t->head;
t->head = cmd->next;
cmd->next = NULL;
return cmd;
}
#define ub_cmdq_peek(sc) ((sc)->cmd_queue.head)
/*
* The request function is our main entry point
*/
static void ub_bd_rq_fn(request_queue_t *q)
{
struct ub_dev *sc = q->queuedata;
struct request *rq;
while ((rq = elv_next_request(q)) != NULL) {
if (ub_bd_rq_fn_1(sc, rq) != 0) {
blk_stop_queue(q);
break;
}
}
}
static int ub_bd_rq_fn_1(struct ub_dev *sc, struct request *rq)
{
struct ub_scsi_cmd *cmd;
int rc;
if (atomic_read(&sc->poison) || sc->changed) {
blkdev_dequeue_request(rq);
ub_end_rq(rq, 0);
return 0;
}
if ((cmd = ub_get_cmd(sc)) == NULL)
return -1;
memset(cmd, 0, sizeof(struct ub_scsi_cmd));
blkdev_dequeue_request(rq);
if (blk_pc_request(rq)) {
rc = ub_cmd_build_packet(sc, cmd, rq);
} else {
rc = ub_cmd_build_block(sc, cmd, rq);
}
if (rc != 0) {
ub_put_cmd(sc, cmd);
ub_end_rq(rq, 0);
blk_start_queue(sc->disk->queue);
return 0;
}
cmd->state = UB_CMDST_INIT;
cmd->done = ub_rw_cmd_done;
cmd->back = rq;
cmd->tag = sc->tagcnt++;
if ((rc = ub_submit_scsi(sc, cmd)) != 0) {
ub_put_cmd(sc, cmd);
ub_end_rq(rq, 0);
blk_start_queue(sc->disk->queue);
return 0;
}
return 0;
}
static int ub_cmd_build_block(struct ub_dev *sc, struct ub_scsi_cmd *cmd,
struct request *rq)
{
int ub_dir;
#if 0 /* We use rq->buffer for now */
struct scatterlist *sg;
int n_elem;
#endif
unsigned int block, nblks;
if (rq_data_dir(rq) == WRITE)
ub_dir = UB_DIR_WRITE;
else
ub_dir = UB_DIR_READ;
/*
* get scatterlist from block layer
*/
#if 0 /* We use rq->buffer for now */
sg = &cmd->sgv[0];
n_elem = blk_rq_map_sg(q, rq, sg);
if (n_elem <= 0) {
ub_put_cmd(sc, cmd);
ub_end_rq(rq, 0);
blk_start_queue(q);
return 0; /* request with no s/g entries? */
}
if (n_elem != 1) { /* Paranoia */
printk(KERN_WARNING "%s: request with %d segments\n",
sc->name, n_elem);
ub_put_cmd(sc, cmd);
ub_end_rq(rq, 0);
blk_start_queue(q);
return 0;
}
#endif
/*
* XXX Unfortunately, this check does not work. It is quite possible
* to get bogus non-null rq->buffer if you allow sg by mistake.
*/
if (rq->buffer == NULL) {
/*
* This must not happen if we set the queue right.
* The block level must create bounce buffers for us.
*/
static int do_print = 1;
if (do_print) {
printk(KERN_WARNING "%s: unmapped block request"
" flags 0x%lx sectors %lu\n",
sc->name, rq->flags, rq->nr_sectors);
do_print = 0;
}
return -1;
}
/*
* build the command
*
* The call to blk_queue_hardsect_size() guarantees that request
* is aligned, but it is given in terms of 512 byte units, always.
*/
block = rq->sector >> sc->capacity.bshift;
nblks = rq->nr_sectors >> sc->capacity.bshift;
cmd->cdb[0] = (ub_dir == UB_DIR_READ)? READ_10: WRITE_10;
/* 10-byte uses 4 bytes of LBA: 2147483648KB, 2097152MB, 2048GB */
cmd->cdb[2] = block >> 24;
cmd->cdb[3] = block >> 16;
cmd->cdb[4] = block >> 8;
cmd->cdb[5] = block;
cmd->cdb[7] = nblks >> 8;
cmd->cdb[8] = nblks;
cmd->cdb_len = 10;
cmd->dir = ub_dir;
cmd->data = rq->buffer;
cmd->len = rq->nr_sectors * 512;
return 0;
}
static int ub_cmd_build_packet(struct ub_dev *sc, struct ub_scsi_cmd *cmd,
struct request *rq)
{
if (rq->data_len != 0 && rq->data == NULL) {
static int do_print = 1;
if (do_print) {
printk(KERN_WARNING "%s: unmapped packet request"
" flags 0x%lx length %d\n",
sc->name, rq->flags, rq->data_len);
do_print = 0;
}
return -1;
}
memcpy(&cmd->cdb, rq->cmd, rq->cmd_len);
cmd->cdb_len = rq->cmd_len;
if (rq->data_len == 0) {
cmd->dir = UB_DIR_NONE;
} else {
if (rq_data_dir(rq) == WRITE)
cmd->dir = UB_DIR_WRITE;
else
cmd->dir = UB_DIR_READ;
}
cmd->data = rq->data;
cmd->len = rq->data_len;
return 0;
}
static void ub_rw_cmd_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
{
struct request *rq = cmd->back;
struct gendisk *disk = sc->disk;
request_queue_t *q = disk->queue;
int uptodate;
if (blk_pc_request(rq)) {
/* UB_SENSE_SIZE is smaller than SCSI_SENSE_BUFFERSIZE */
memcpy(rq->sense, sc->top_sense, UB_SENSE_SIZE);
rq->sense_len = UB_SENSE_SIZE;
}
if (cmd->error == 0)
uptodate = 1;
else
uptodate = 0;
ub_put_cmd(sc, cmd);
ub_end_rq(rq, uptodate);
blk_start_queue(q);
}
static void ub_end_rq(struct request *rq, int uptodate)
{
int rc;
rc = end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
// assert(rc == 0);
end_that_request_last(rq);
}
/*
* Submit a regular SCSI operation (not an auto-sense).
*
* The Iron Law of Good Submit Routine is:
* Zero return - callback is done, Nonzero return - callback is not done.
* No exceptions.
*
* Host is assumed locked.
*
* XXX We only support Bulk for the moment.
*/
static int ub_submit_scsi(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
{
if (cmd->state != UB_CMDST_INIT ||
(cmd->dir != UB_DIR_NONE && cmd->len == 0)) {
return -EINVAL;
}
ub_cmdq_add(sc, cmd);
/*
* We can call ub_scsi_dispatch(sc) right away here, but it's a little
* safer to jump to a tasklet, in case upper layers do something silly.
*/
tasklet_schedule(&sc->tasklet);
return 0;
}
/*
* Submit the first URB for the queued command.
* This function does not deal with queueing in any way.
*/
static int ub_scsi_cmd_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
{
struct bulk_cb_wrap *bcb;
int rc;
bcb = &sc->work_bcb;
/*
* ``If the allocation length is eighteen or greater, and a device
* server returns less than eithteen bytes of data, the application
* client should assume that the bytes not transferred would have been
* zeroes had the device server returned those bytes.''
*
* We zero sense for all commands so that when a packet request
* fails it does not return a stale sense.
*/
memset(&sc->top_sense, 0, UB_SENSE_SIZE);
/* set up the command wrapper */
bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN);
bcb->Tag = cmd->tag; /* Endianness is not important */
bcb->DataTransferLength = cpu_to_le32(cmd->len);
bcb->Flags = (cmd->dir == UB_DIR_READ) ? 0x80 : 0;
bcb->Lun = 0; /* No multi-LUN yet */
bcb->Length = cmd->cdb_len;
/* copy the command payload */
memcpy(bcb->CDB, cmd->cdb, UB_MAX_CDB_SIZE);
UB_INIT_COMPLETION(sc->work_done);
sc->last_pipe = sc->send_bulk_pipe;
usb_fill_bulk_urb(&sc->work_urb, sc->dev, sc->send_bulk_pipe,
bcb, US_BULK_CB_WRAP_LEN, ub_urb_complete, sc);
sc->work_urb.transfer_flags = URB_ASYNC_UNLINK;
/* Fill what we shouldn't be filling, because usb-storage did so. */
sc->work_urb.actual_length = 0;
sc->work_urb.error_count = 0;
sc->work_urb.status = 0;
if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) {
/* XXX Clear stalls */
printk("ub: cmd #%d start failed (%d)\n", cmd->tag, rc); /* P3 */
ub_complete(&sc->work_done);
return rc;
}
sc->work_timer.expires = jiffies + UB_URB_TIMEOUT;
add_timer(&sc->work_timer);
cmd->state = UB_CMDST_CMD;
ub_cmdtr_state(sc, cmd);
return 0;
}
/*
* Timeout handler.
*/
static void ub_urb_timeout(unsigned long arg)
{
struct ub_dev *sc = (struct ub_dev *) arg;
unsigned long flags;
spin_lock_irqsave(&sc->lock, flags);
usb_unlink_urb(&sc->work_urb);
spin_unlock_irqrestore(&sc->lock, flags);
}
/*
* Completion routine for the work URB.
*
* This can be called directly from usb_submit_urb (while we have
* the sc->lock taken) and from an interrupt (while we do NOT have
* the sc->lock taken). Therefore, bounce this off to a tasklet.
*/
static void ub_urb_complete(struct urb *urb, struct pt_regs *pt)
{
struct ub_dev *sc = urb->context;
ub_complete(&sc->work_done);
tasklet_schedule(&sc->tasklet);
}
static void ub_scsi_action(unsigned long _dev)
{
struct ub_dev *sc = (struct ub_dev *) _dev;
unsigned long flags;
spin_lock_irqsave(&sc->lock, flags);
del_timer(&sc->work_timer);
ub_scsi_dispatch(sc);
spin_unlock_irqrestore(&sc->lock, flags);
}
static void ub_scsi_dispatch(struct ub_dev *sc)
{
struct ub_scsi_cmd *cmd;
int rc;
while ((cmd = ub_cmdq_peek(sc)) != NULL) {
if (cmd->state == UB_CMDST_DONE) {
ub_cmdq_pop(sc);
(*cmd->done)(sc, cmd);
} else if (cmd->state == UB_CMDST_INIT) {
ub_cmdtr_new(sc, cmd);
if ((rc = ub_scsi_cmd_start(sc, cmd)) == 0)
break;
cmd->error = rc;
cmd->state = UB_CMDST_DONE;
ub_cmdtr_state(sc, cmd);
} else {
if (!ub_is_completed(&sc->work_done))
break;
ub_scsi_urb_compl(sc, cmd);
}
}
}
static void ub_scsi_urb_compl(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
{
struct urb *urb = &sc->work_urb;
struct bulk_cs_wrap *bcs;
int pipe;
int rc;
if (atomic_read(&sc->poison)) {
/* A little too simplistic, I feel... */
goto Bad_End;
}
if (cmd->state == UB_CMDST_CLEAR) {
if (urb->status == -EPIPE) {
/*
* STALL while clearning STALL.
* The control pipe clears itself - nothing to do.
* XXX Might try to reset the device here and retry.
*/
printk(KERN_NOTICE "%s: "
"stall on control pipe for device %u\n",
sc->name, sc->dev->devnum);
goto Bad_End;
}
/*
* We ignore the result for the halt clear.
*/
/* reset the endpoint toggle */
usb_settoggle(sc->dev, usb_pipeendpoint(sc->last_pipe),
usb_pipeout(sc->last_pipe), 0);
ub_state_sense(sc, cmd);
} else if (cmd->state == UB_CMDST_CLR2STS) {
if (urb->status == -EPIPE) {
/*
* STALL while clearning STALL.
* The control pipe clears itself - nothing to do.
* XXX Might try to reset the device here and retry.
*/
printk(KERN_NOTICE "%s: "
"stall on control pipe for device %u\n",
sc->name, sc->dev->devnum);
goto Bad_End;
}
/*
* We ignore the result for the halt clear.
*/
/* reset the endpoint toggle */
usb_settoggle(sc->dev, usb_pipeendpoint(sc->last_pipe),
usb_pipeout(sc->last_pipe), 0);
ub_state_stat(sc, cmd);
} else if (cmd->state == UB_CMDST_CMD) {
if (urb->status == -EPIPE) {
rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe);
if (rc != 0) {
printk(KERN_NOTICE "%s: "
"unable to submit clear for device %u"
" (code %d)\n",
sc->name, sc->dev->devnum, rc);
/*
* This is typically ENOMEM or some other such shit.
* Retrying is pointless. Just do Bad End on it...
*/
goto Bad_End;
}
cmd->state = UB_CMDST_CLEAR;
ub_cmdtr_state(sc, cmd);
return;
}
if (urb->status != 0) {
printk("ub: cmd #%d cmd status (%d)\n", cmd->tag, urb->status); /* P3 */
goto Bad_End;
}
if (urb->actual_length != US_BULK_CB_WRAP_LEN) {
printk("ub: cmd #%d xferred %d\n", cmd->tag, urb->actual_length); /* P3 */
/* XXX Must do reset here to unconfuse the device */
goto Bad_End;
}
if (cmd->dir == UB_DIR_NONE) {
ub_state_stat(sc, cmd);
return;
}
UB_INIT_COMPLETION(sc->work_done);
if (cmd->dir == UB_DIR_READ)
pipe = sc->recv_bulk_pipe;
else
pipe = sc->send_bulk_pipe;
sc->last_pipe = pipe;
usb_fill_bulk_urb(&sc->work_urb, sc->dev, pipe,
cmd->data, cmd->len, ub_urb_complete, sc);
sc->work_urb.transfer_flags = URB_ASYNC_UNLINK;
sc->work_urb.actual_length = 0;
sc->work_urb.error_count = 0;
sc->work_urb.status = 0;
if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) {
/* XXX Clear stalls */
printk("ub: data #%d submit failed (%d)\n", cmd->tag, rc); /* P3 */
ub_complete(&sc->work_done);
ub_state_done(sc, cmd, rc);
return;
}
sc->work_timer.expires = jiffies + UB_DATA_TIMEOUT;
add_timer(&sc->work_timer);
cmd->state = UB_CMDST_DATA;
ub_cmdtr_state(sc, cmd);
} else if (cmd->state == UB_CMDST_DATA) {
if (urb->status == -EPIPE) {
rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe);
if (rc != 0) {
printk(KERN_NOTICE "%s: "
"unable to submit clear for device %u"
" (code %d)\n",
sc->name, sc->dev->devnum, rc);
/*
* This is typically ENOMEM or some other such shit.
* Retrying is pointless. Just do Bad End on it...
*/
goto Bad_End;
}
cmd->state = UB_CMDST_CLR2STS;
ub_cmdtr_state(sc, cmd);
return;
}
if (urb->status == -EOVERFLOW) {
/*
* A babble? Failure, but we must transfer CSW now.
*/
cmd->error = -EOVERFLOW; /* A cheap trick... */
} else {
if (urb->status != 0)
goto Bad_End;
}
cmd->act_len = urb->actual_length;
ub_cmdtr_act_len(sc, cmd);
ub_state_stat(sc, cmd);
} else if (cmd->state == UB_CMDST_STAT) {
if (urb->status == -EPIPE) {
rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe);
if (rc != 0) {
printk(KERN_NOTICE "%s: "
"unable to submit clear for device %u"
" (code %d)\n",
sc->name, sc->dev->devnum, rc);
/*
* This is typically ENOMEM or some other such shit.
* Retrying is pointless. Just do Bad End on it...
*/
goto Bad_End;
}
cmd->state = UB_CMDST_CLEAR;
ub_cmdtr_state(sc, cmd);
return;
}
if (urb->status != 0)
goto Bad_End;
if (urb->actual_length == 0) {
/*
* Some broken devices add unnecessary zero-length
* packets to the end of their data transfers.
* Such packets show up as 0-length CSWs. If we
* encounter such a thing, try to read the CSW again.
*/
if (++cmd->stat_count >= 4) {
printk(KERN_NOTICE "%s: "
"unable to get CSW on device %u\n",
sc->name, sc->dev->devnum);
goto Bad_End;
}
__ub_state_stat(sc, cmd);
return;
}
/*
* Check the returned Bulk protocol status.
*/
bcs = &sc->work_bcs;
rc = le32_to_cpu(bcs->Residue);
if (rc != cmd->len - cmd->act_len) {
/*
* It is all right to transfer less, the caller has
* to check. But it's not all right if the device
* counts disagree with our counts.
*/
/* P3 */ printk("%s: resid %d len %d act %d\n",
sc->name, rc, cmd->len, cmd->act_len);
goto Bad_End;
}
#if 0
if (bcs->Signature != cpu_to_le32(US_BULK_CS_SIGN) &&
bcs->Signature != cpu_to_le32(US_BULK_CS_OLYMPUS_SIGN)) {
/* Windows ignores signatures, so do we. */
}
#endif
if (bcs->Tag != cmd->tag) {
/*
* This usually happens when we disagree with the
* device's microcode about something. For instance,
* a few of them throw this after timeouts. They buffer
* commands and reply at commands we timed out before.
* Without flushing these replies we loop forever.
*/
if (++cmd->stat_count >= 4) {
printk(KERN_NOTICE "%s: "
"tag mismatch orig 0x%x reply 0x%x "
"on device %u\n",
sc->name, cmd->tag, bcs->Tag,
sc->dev->devnum);
goto Bad_End;
}
__ub_state_stat(sc, cmd);
return;
}
switch (bcs->Status) {
case US_BULK_STAT_OK:
break;
case US_BULK_STAT_FAIL:
ub_state_sense(sc, cmd);
return;
case US_BULK_STAT_PHASE:
/* XXX We must reset the transport here */
/* P3 */ printk("%s: status PHASE\n", sc->name);
goto Bad_End;
default:
printk(KERN_INFO "%s: unknown CSW status 0x%x\n",
sc->name, bcs->Status);
goto Bad_End;
}
/* Not zeroing error to preserve a babble indicator */
cmd->state = UB_CMDST_DONE;
ub_cmdtr_state(sc, cmd);
ub_cmdq_pop(sc);
(*cmd->done)(sc, cmd);
} else if (cmd->state == UB_CMDST_SENSE) {
ub_state_done(sc, cmd, -EIO);
} else {
printk(KERN_WARNING "%s: "
"wrong command state %d on device %u\n",
sc->name, cmd->state, sc->dev->devnum);
goto Bad_End;
}
return;
Bad_End: /* Little Excel is dead */
ub_state_done(sc, cmd, -EIO);
}
/*
* Factorization helper for the command state machine:
* Finish the command.
*/
static void ub_state_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd, int rc)
{
cmd->error = rc;
cmd->state = UB_CMDST_DONE;
ub_cmdtr_state(sc, cmd);
ub_cmdq_pop(sc);
(*cmd->done)(sc, cmd);
}
/*
* Factorization helper for the command state machine:
* Submit a CSW read.
*/
static void __ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
{
int rc;
UB_INIT_COMPLETION(sc->work_done);
sc->last_pipe = sc->recv_bulk_pipe;
usb_fill_bulk_urb(&sc->work_urb, sc->dev, sc->recv_bulk_pipe,
&sc->work_bcs, US_BULK_CS_WRAP_LEN, ub_urb_complete, sc);
sc->work_urb.transfer_flags = URB_ASYNC_UNLINK;
sc->work_urb.actual_length = 0;
sc->work_urb.error_count = 0;
sc->work_urb.status = 0;
if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) {
/* XXX Clear stalls */
printk("%s: CSW #%d submit failed (%d)\n", sc->name, cmd->tag, rc); /* P3 */
ub_complete(&sc->work_done);
ub_state_done(sc, cmd, rc);
return;
}
sc->work_timer.expires = jiffies + UB_STAT_TIMEOUT;
add_timer(&sc->work_timer);
}
/*
* Factorization helper for the command state machine:
* Submit a CSW read and go to STAT state.
*/
static void ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
{
__ub_state_stat(sc, cmd);
cmd->stat_count = 0;
cmd->state = UB_CMDST_STAT;
ub_cmdtr_state(sc, cmd);
}
/*
* Factorization helper for the command state machine:
* Submit a REQUEST SENSE and go to SENSE state.
*/
static void ub_state_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
{
struct ub_scsi_cmd *scmd;
int rc;
if (cmd->cdb[0] == REQUEST_SENSE) {
rc = -EPIPE;
goto error;
}
scmd = &sc->top_rqs_cmd;
scmd->cdb[0] = REQUEST_SENSE;
scmd->cdb[4] = UB_SENSE_SIZE;
scmd->cdb_len = 6;
scmd->dir = UB_DIR_READ;
scmd->state = UB_CMDST_INIT;
scmd->data = sc->top_sense;
scmd->len = UB_SENSE_SIZE;
scmd->done = ub_top_sense_done;
scmd->back = cmd;
scmd->tag = sc->tagcnt++;
cmd->state = UB_CMDST_SENSE;
ub_cmdtr_state(sc, cmd);
ub_cmdq_insert(sc, scmd);
return;
error:
ub_state_done(sc, cmd, rc);
}
/*
* A helper for the command's state machine:
* Submit a stall clear.
*/
static int ub_submit_clear_stall(struct ub_dev *sc, struct ub_scsi_cmd *cmd,
int stalled_pipe)
{
int endp;
struct usb_ctrlrequest *cr;
int rc;
endp = usb_pipeendpoint(stalled_pipe);
if (usb_pipein (stalled_pipe))
endp |= USB_DIR_IN;
cr = &sc->work_cr;
cr->bRequestType = USB_RECIP_ENDPOINT;
cr->bRequest = USB_REQ_CLEAR_FEATURE;
cr->wValue = cpu_to_le16(USB_ENDPOINT_HALT);
cr->wIndex = cpu_to_le16(endp);
cr->wLength = cpu_to_le16(0);
UB_INIT_COMPLETION(sc->work_done);
usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe,
(unsigned char*) cr, NULL, 0, ub_urb_complete, sc);
sc->work_urb.transfer_flags = URB_ASYNC_UNLINK;
sc->work_urb.actual_length = 0;
sc->work_urb.error_count = 0;
sc->work_urb.status = 0;
if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) {
ub_complete(&sc->work_done);
return rc;
}
sc->work_timer.expires = jiffies + UB_CTRL_TIMEOUT;
add_timer(&sc->work_timer);
return 0;
}
/*
*/
static void ub_top_sense_done(struct ub_dev *sc, struct ub_scsi_cmd *scmd)
{
unsigned char *sense = scmd->data;
struct ub_scsi_cmd *cmd;
/*
* Ignoring scmd->act_len, because the buffer was pre-zeroed.
*/
ub_cmdtr_sense(sc, scmd, sense);
/*
* Find the command which triggered the unit attention or a check,
* save the sense into it, and advance its state machine.
*/
if ((cmd = ub_cmdq_peek(sc)) == NULL) {
printk(KERN_WARNING "%s: sense done while idle\n", sc->name);
return;
}
if (cmd != scmd->back) {
printk(KERN_WARNING "%s: "
"sense done for wrong command 0x%x on device %u\n",
sc->name, cmd->tag, sc->dev->devnum);
return;
}
if (cmd->state != UB_CMDST_SENSE) {
printk(KERN_WARNING "%s: "
"sense done with bad cmd state %d on device %u\n",
sc->name, cmd->state, sc->dev->devnum);
return;
}
cmd->key = sense[2] & 0x0F;
cmd->asc = sense[12];
cmd->ascq = sense[13];
ub_scsi_urb_compl(sc, cmd);
}
#if 0
/* Determine what the maximum LUN supported is */
int usb_stor_Bulk_max_lun(struct us_data *us)
{
int result;
/* issue the command */
result = usb_stor_control_msg(us, us->recv_ctrl_pipe,
US_BULK_GET_MAX_LUN,
USB_DIR_IN | USB_TYPE_CLASS |
USB_RECIP_INTERFACE,
0, us->ifnum, us->iobuf, 1, HZ);
/*
* Some devices (i.e. Iomega Zip100) need this -- apparently
* the bulk pipes get STALLed when the GetMaxLUN request is
* processed. This is, in theory, harmless to all other devices
* (regardless of if they stall or not).
*/
if (result < 0) {
usb_stor_clear_halt(us, us->recv_bulk_pipe);
usb_stor_clear_halt(us, us->send_bulk_pipe);
}
US_DEBUGP("GetMaxLUN command result is %d, data is %d\n",
result, us->iobuf[0]);
/* if we have a successful request, return the result */
if (result == 1)
return us->iobuf[0];
/* return the default -- no LUNs */
return 0;
}
#endif
/*
* This is called from a process context.
*/
static void ub_revalidate(struct ub_dev *sc)
{
sc->readonly = 0; /* XXX Query this from the device */
sc->capacity.nsec = 0;
sc->capacity.bsize = 512;
sc->capacity.bshift = 0;
if (ub_sync_tur(sc) != 0)
return; /* Not ready */
sc->changed = 0;
if (ub_sync_read_cap(sc, &sc->capacity) != 0) {
/*
* The retry here means something is wrong, either with the
* device, with the transport, or with our code.
* We keep this because sd.c has retries for capacity.
*/
if (ub_sync_read_cap(sc, &sc->capacity) != 0) {
sc->capacity.nsec = 0;
sc->capacity.bsize = 512;
sc->capacity.bshift = 0;
}
}
}
/*
* The open funcion.
* This is mostly needed to keep refcounting, but also to support
* media checks on removable media drives.
*/
static int ub_bd_open(struct inode *inode, struct file *filp)
{
struct gendisk *disk = inode->i_bdev->bd_disk;
struct ub_dev *sc;
unsigned long flags;
int rc;
if ((sc = disk->private_data) == NULL)
return -ENXIO;
spin_lock_irqsave(&ub_lock, flags);
if (atomic_read(&sc->poison)) {
spin_unlock_irqrestore(&ub_lock, flags);
return -ENXIO;
}
sc->openc++;
spin_unlock_irqrestore(&ub_lock, flags);
/*
* This is a workaround for a specific problem in our block layer.
* In 2.6.9, register_disk duplicates the code from rescan_partitions.
* However, if we do add_disk with a device which persistently reports
* a changed media, add_disk calls register_disk, which does do_open,
* which will call rescan_paritions for changed media. After that,
* register_disk attempts to do it all again and causes double kobject
* registration and a eventually an oops on module removal.
*
* The bottom line is, Al Viro says that we should not allow
* bdev->bd_invalidated to be set when doing add_disk no matter what.
*/
if (sc->first_open) {
if (sc->changed) {
sc->first_open = 0;
rc = -ENOMEDIUM;
goto err_open;
}
}
if (sc->removable || sc->readonly)
check_disk_change(inode->i_bdev);
/*
* The sd.c considers ->media_present and ->changed not equivalent,
* under some pretty murky conditions (a failure of READ CAPACITY).
* We may need it one day.
*/
if (sc->removable && sc->changed && !(filp->f_flags & O_NDELAY)) {
rc = -ENOMEDIUM;
goto err_open;
}
if (sc->readonly && (filp->f_mode & FMODE_WRITE)) {
rc = -EROFS;
goto err_open;
}
return 0;
err_open:
ub_put(sc);
return rc;
}
/*
*/
static int ub_bd_release(struct inode *inode, struct file *filp)
{
struct gendisk *disk = inode->i_bdev->bd_disk;
struct ub_dev *sc = disk->private_data;
ub_put(sc);
return 0;
}
/*
* The ioctl interface.
*/
static int ub_bd_ioctl(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
struct gendisk *disk = inode->i_bdev->bd_disk;
void __user *usermem = (void __user *) arg;
return scsi_cmd_ioctl(filp, disk, cmd, usermem);
}
/*
* This is called once a new disk was seen by the block layer or by ub_probe().
* The main onjective here is to discover the features of the media such as
* the capacity, read-only status, etc. USB storage generally does not
* need to be spun up, but if we needed it, this would be the place.
*
* This call can sleep.
*
* The return code is not used.
*/
static int ub_bd_revalidate(struct gendisk *disk)
{
struct ub_dev *sc = disk->private_data;
ub_revalidate(sc);
/* This is pretty much a long term P3 */
if (!atomic_read(&sc->poison)) { /* Cover sc->dev */
printk(KERN_INFO "%s: device %u capacity nsec %ld bsize %u\n",
sc->name, sc->dev->devnum,
sc->capacity.nsec, sc->capacity.bsize);
}
/* XXX Support sector size switching like in sr.c */
blk_queue_hardsect_size(disk->queue, sc->capacity.bsize);
set_capacity(disk, sc->capacity.nsec);
// set_disk_ro(sdkp->disk, sc->readonly);
return 0;
}
/*
* The check is called by the block layer to verify if the media
* is still available. It is supposed to be harmless, lightweight and
* non-intrusive in case the media was not changed.
*
* This call can sleep.
*
* The return code is bool!
*/
static int ub_bd_media_changed(struct gendisk *disk)
{
struct ub_dev *sc = disk->private_data;
if (!sc->removable)
return 0;
/*
* We clean checks always after every command, so this is not
* as dangerous as it looks. If the TEST_UNIT_READY fails here,
* the device is actually not ready with operator or software
* intervention required. One dangerous item might be a drive which
* spins itself down, and come the time to write dirty pages, this
* will fail, then block layer discards the data. Since we never
* spin drives up, such devices simply cannot be used with ub anyway.
*/
if (ub_sync_tur(sc) != 0) {
sc->changed = 1;
return 1;
}
return sc->changed;
}
static struct block_device_operations ub_bd_fops = {
.owner = THIS_MODULE,
.open = ub_bd_open,
.release = ub_bd_release,
.ioctl = ub_bd_ioctl,
.media_changed = ub_bd_media_changed,
.revalidate_disk = ub_bd_revalidate,
};
/*
* Common ->done routine for commands executed synchronously.
*/
static void ub_probe_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
{
struct completion *cop = cmd->back;
complete(cop);
}
/*
* Test if the device has a check condition on it, synchronously.
*/
static int ub_sync_tur(struct ub_dev *sc)
{
struct ub_scsi_cmd *cmd;
enum { ALLOC_SIZE = sizeof(struct ub_scsi_cmd) };
unsigned long flags;
struct completion compl;
int rc;
init_completion(&compl);
rc = -ENOMEM;
if ((cmd = kmalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL)
goto err_alloc;
memset(cmd, 0, ALLOC_SIZE);
cmd->cdb[0] = TEST_UNIT_READY;
cmd->cdb_len = 6;
cmd->dir = UB_DIR_NONE;
cmd->state = UB_CMDST_INIT;
cmd->done = ub_probe_done;
cmd->back = &compl;
spin_lock_irqsave(&sc->lock, flags);
cmd->tag = sc->tagcnt++;
rc = ub_submit_scsi(sc, cmd);
spin_unlock_irqrestore(&sc->lock, flags);
if (rc != 0) {
printk("ub: testing ready: submit error (%d)\n", rc); /* P3 */
goto err_submit;
}
wait_for_completion(&compl);
rc = cmd->error;
if (rc == -EIO && cmd->key != 0) /* Retries for benh's key */
rc = cmd->key;
err_submit:
kfree(cmd);
err_alloc:
return rc;
}
/*
* Read the SCSI capacity synchronously (for probing).
*/
static int ub_sync_read_cap(struct ub_dev *sc, struct ub_capacity *ret)
{
struct ub_scsi_cmd *cmd;
char *p;
enum { ALLOC_SIZE = sizeof(struct ub_scsi_cmd) + 8 };
unsigned long flags;
unsigned int bsize, shift;
unsigned long nsec;
struct completion compl;
int rc;
init_completion(&compl);
rc = -ENOMEM;
if ((cmd = kmalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL)
goto err_alloc;
memset(cmd, 0, ALLOC_SIZE);
p = (char *)cmd + sizeof(struct ub_scsi_cmd);
cmd->cdb[0] = 0x25;
cmd->cdb_len = 10;
cmd->dir = UB_DIR_READ;
cmd->state = UB_CMDST_INIT;
cmd->data = p;
cmd->len = 8;
cmd->done = ub_probe_done;
cmd->back = &compl;
spin_lock_irqsave(&sc->lock, flags);
cmd->tag = sc->tagcnt++;
rc = ub_submit_scsi(sc, cmd);
spin_unlock_irqrestore(&sc->lock, flags);
if (rc != 0) {
printk("ub: reading capacity: submit error (%d)\n", rc); /* P3 */
goto err_submit;
}
wait_for_completion(&compl);
if (cmd->error != 0) {
printk("ub: reading capacity: error %d\n", cmd->error); /* P3 */
rc = -EIO;
goto err_read;
}
if (cmd->act_len != 8) {
printk("ub: reading capacity: size %d\n", cmd->act_len); /* P3 */
rc = -EIO;
goto err_read;
}
/* sd.c special-cases sector size of 0 to mean 512. Needed? Safe? */
nsec = be32_to_cpu(*(__be32 *)p) + 1;
bsize = be32_to_cpu(*(__be32 *)(p + 4));
switch (bsize) {
case 512: shift = 0; break;
case 1024: shift = 1; break;
case 2048: shift = 2; break;
case 4096: shift = 3; break;
default:
printk("ub: Bad sector size %u\n", bsize); /* P3 */
rc = -EDOM;
goto err_inv_bsize;
}
ret->bsize = bsize;
ret->bshift = shift;
ret->nsec = nsec << shift;
rc = 0;
err_inv_bsize:
err_read:
err_submit:
kfree(cmd);
err_alloc:
return rc;
}
/*
*/
static void ub_probe_urb_complete(struct urb *urb, struct pt_regs *pt)
{
struct completion *cop = urb->context;
complete(cop);
}
static void ub_probe_timeout(unsigned long arg)
{
struct completion *cop = (struct completion *) arg;
complete(cop);
}
/*
* Clear initial stalls.
*/
static int ub_probe_clear_stall(struct ub_dev *sc, int stalled_pipe)
{
int endp;
struct usb_ctrlrequest *cr;
struct completion compl;
struct timer_list timer;
int rc;
init_completion(&compl);
endp = usb_pipeendpoint(stalled_pipe);
if (usb_pipein (stalled_pipe))
endp |= USB_DIR_IN;
cr = &sc->work_cr;
cr->bRequestType = USB_RECIP_ENDPOINT;
cr->bRequest = USB_REQ_CLEAR_FEATURE;
cr->wValue = cpu_to_le16(USB_ENDPOINT_HALT);
cr->wIndex = cpu_to_le16(endp);
cr->wLength = cpu_to_le16(0);
usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe,
(unsigned char*) cr, NULL, 0, ub_probe_urb_complete, &compl);
sc->work_urb.transfer_flags = 0;
sc->work_urb.actual_length = 0;
sc->work_urb.error_count = 0;
sc->work_urb.status = 0;
if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) {
printk(KERN_WARNING
"%s: Unable to submit a probe clear (%d)\n", sc->name, rc);
return rc;
}
init_timer(&timer);
timer.function = ub_probe_timeout;
timer.data = (unsigned long) &compl;
timer.expires = jiffies + UB_CTRL_TIMEOUT;
add_timer(&timer);
wait_for_completion(&compl);
del_timer_sync(&timer);
usb_kill_urb(&sc->work_urb);
/* reset the endpoint toggle */
usb_settoggle(sc->dev, endp, usb_pipeout(sc->last_pipe), 0);
return 0;
}
/*
* Get the pipe settings.
*/
static int ub_get_pipes(struct ub_dev *sc, struct usb_device *dev,
struct usb_interface *intf)
{
struct usb_host_interface *altsetting = intf->cur_altsetting;
struct usb_endpoint_descriptor *ep_in = NULL;
struct usb_endpoint_descriptor *ep_out = NULL;
struct usb_endpoint_descriptor *ep;
int i;
/*
* Find the endpoints we need.
* We are expecting a minimum of 2 endpoints - in and out (bulk).
* We will ignore any others.
*/
for (i = 0; i < altsetting->desc.bNumEndpoints; i++) {
ep = &altsetting->endpoint[i].desc;
/* Is it a BULK endpoint? */
if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
== USB_ENDPOINT_XFER_BULK) {
/* BULK in or out? */
if (ep->bEndpointAddress & USB_DIR_IN)
ep_in = ep;
else
ep_out = ep;
}
}
if (ep_in == NULL || ep_out == NULL) {
printk(KERN_NOTICE "%s: device %u failed endpoint check\n",
sc->name, sc->dev->devnum);
return -EIO;
}
/* Calculate and store the pipe values */
sc->send_ctrl_pipe = usb_sndctrlpipe(dev, 0);
sc->recv_ctrl_pipe = usb_rcvctrlpipe(dev, 0);
sc->send_bulk_pipe = usb_sndbulkpipe(dev,
ep_out->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
sc->recv_bulk_pipe = usb_rcvbulkpipe(dev,
ep_in->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
return 0;
}
/*
* Probing is done in the process context, which allows us to cheat
* and not to build a state machine for the discovery.
*/
static int ub_probe(struct usb_interface *intf,
const struct usb_device_id *dev_id)
{
struct ub_dev *sc;
request_queue_t *q;
struct gendisk *disk;
int rc;
int i;
rc = -ENOMEM;
if ((sc = kmalloc(sizeof(struct ub_dev), GFP_KERNEL)) == NULL)
goto err_core;
memset(sc, 0, sizeof(struct ub_dev));
spin_lock_init(&sc->lock);
usb_init_urb(&sc->work_urb);
tasklet_init(&sc->tasklet, ub_scsi_action, (unsigned long)sc);
atomic_set(&sc->poison, 0);
init_timer(&sc->work_timer);
sc->work_timer.data = (unsigned long) sc;
sc->work_timer.function = ub_urb_timeout;
ub_init_completion(&sc->work_done);
sc->work_done.done = 1; /* A little yuk, but oh well... */
rc = -ENOSR;
if ((sc->id = ub_id_get()) == -1)
goto err_id;
snprintf(sc->name, 8, DRV_NAME "%c", sc->id + 'a');
sc->dev = interface_to_usbdev(intf);
sc->intf = intf;
// sc->ifnum = intf->cur_altsetting->desc.bInterfaceNumber;
usb_set_intfdata(intf, sc);
usb_get_dev(sc->dev);
// usb_get_intf(sc->intf); /* Do we need this? */
/* XXX Verify that we can handle the device (from descriptors) */
ub_get_pipes(sc, sc->dev, intf);
if (device_create_file(&sc->intf->dev, &dev_attr_diag) != 0)
goto err_diag;
/*
* At this point, all USB initialization is done, do upper layer.
* We really hate halfway initialized structures, so from the
* invariants perspective, this ub_dev is fully constructed at
* this point.
*/
/*
* This is needed to clear toggles. It is a problem only if we do
* `rmmod ub && modprobe ub` without disconnects, but we like that.
*/
ub_probe_clear_stall(sc, sc->recv_bulk_pipe);
ub_probe_clear_stall(sc, sc->send_bulk_pipe);
/*
* The way this is used by the startup code is a little specific.
* A SCSI check causes a USB stall. Our common case code sees it
* and clears the check, after which the device is ready for use.
* But if a check was not present, any command other than
* TEST_UNIT_READY ends with a lockup (including REQUEST_SENSE).
*
* If we neglect to clear the SCSI check, the first real command fails
* (which is the capacity readout). We clear that and retry, but why
* causing spurious retries for no reason.
*
* Revalidation may start with its own TEST_UNIT_READY, but that one
* has to succeed, so we clear checks with an additional one here.
* In any case it's not our business how revaliadation is implemented.
*/
for (i = 0; i < 3; i++) { /* Retries for benh's key */
if ((rc = ub_sync_tur(sc)) <= 0) break;
if (rc != 0x6) break;
msleep(10);
}
sc->removable = 1; /* XXX Query this from the device */
sc->changed = 1; /* ub_revalidate clears only */
sc->first_open = 1;
ub_revalidate(sc);
/* This is pretty much a long term P3 */
printk(KERN_INFO "%s: device %u capacity nsec %ld bsize %u\n",
sc->name, sc->dev->devnum, sc->capacity.nsec, sc->capacity.bsize);
/*
* Just one disk per sc currently, but maybe more.
*/
rc = -ENOMEM;
if ((disk = alloc_disk(UB_MINORS_PER_MAJOR)) == NULL)
goto err_diskalloc;
sc->disk = disk;
sprintf(disk->disk_name, DRV_NAME "%c", sc->id + 'a');
sprintf(disk->devfs_name, DEVFS_NAME "/%c", sc->id + 'a');
disk->major = UB_MAJOR;
disk->first_minor = sc->id * UB_MINORS_PER_MAJOR;
disk->fops = &ub_bd_fops;
disk->private_data = sc;
disk->driverfs_dev = &intf->dev;
rc = -ENOMEM;
if ((q = blk_init_queue(ub_bd_rq_fn, &sc->lock)) == NULL)
goto err_blkqinit;
disk->queue = q;
// blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask);
blk_queue_max_hw_segments(q, UB_MAX_REQ_SG);
blk_queue_max_phys_segments(q, UB_MAX_REQ_SG);
// blk_queue_segment_boundary(q, CARM_SG_BOUNDARY);
blk_queue_max_sectors(q, UB_MAX_SECTORS);
blk_queue_hardsect_size(q, sc->capacity.bsize);
/*
* This is a serious infraction, caused by a deficiency in the
* USB sg interface (usb_sg_wait()). We plan to remove this once
* we get mileage on the driver and can justify a change to USB API.
* See blk_queue_bounce_limit() to understand this part.
*
* XXX And I still need to be aware of the DMA mask in the HC.
*/
q->bounce_pfn = blk_max_low_pfn;
q->bounce_gfp = GFP_NOIO;
q->queuedata = sc;
set_capacity(disk, sc->capacity.nsec);
if (sc->removable)
disk->flags |= GENHD_FL_REMOVABLE;
add_disk(disk);
return 0;
err_blkqinit:
put_disk(disk);
err_diskalloc:
device_remove_file(&sc->intf->dev, &dev_attr_diag);
err_diag:
usb_set_intfdata(intf, NULL);
// usb_put_intf(sc->intf);
usb_put_dev(sc->dev);
ub_id_put(sc->id);
err_id:
kfree(sc);
err_core:
return rc;
}
static void ub_disconnect(struct usb_interface *intf)
{
struct ub_dev *sc = usb_get_intfdata(intf);
struct gendisk *disk = sc->disk;
unsigned long flags;
/*
* Prevent ub_bd_release from pulling the rug from under us.
* XXX This is starting to look like a kref.
* XXX Why not to take this ref at probe time?
*/
spin_lock_irqsave(&ub_lock, flags);
sc->openc++;
spin_unlock_irqrestore(&ub_lock, flags);
/*
* Fence stall clearnings, operations triggered by unlinkings and so on.
* We do not attempt to unlink any URBs, because we do not trust the
* unlink paths in HC drivers. Also, we get -84 upon disconnect anyway.
*/
atomic_set(&sc->poison, 1);
/*
* Blow away queued commands.
*
* Actually, this never works, because before we get here
* the HCD terminates outstanding URB(s). It causes our
* SCSI command queue to advance, commands fail to submit,
* and the whole queue drains. So, we just use this code to
* print warnings.
*/
spin_lock_irqsave(&sc->lock, flags);
{
struct ub_scsi_cmd *cmd;
int cnt = 0;
while ((cmd = ub_cmdq_pop(sc)) != NULL) {
cmd->error = -ENOTCONN;
cmd->state = UB_CMDST_DONE;
ub_cmdtr_state(sc, cmd);
ub_cmdq_pop(sc);
(*cmd->done)(sc, cmd);
cnt++;
}
if (cnt != 0) {
printk(KERN_WARNING "%s: "
"%d was queued after shutdown\n", sc->name, cnt);
}
}
spin_unlock_irqrestore(&sc->lock, flags);
/*
* Unregister the upper layer.
*/
if (disk->flags & GENHD_FL_UP)
del_gendisk(disk);
/*
* I wish I could do:
* set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
* As it is, we rely on our internal poisoning and let
* the upper levels to spin furiously failing all the I/O.
*/
/*
* Taking a lock on a structure which is about to be freed
* is very nonsensual. Here it is largely a way to do a debug freeze,
* and a bracket which shows where the nonsensual code segment ends.
*
* Testing for -EINPROGRESS is always a bug, so we are bending
* the rules a little.
*/
spin_lock_irqsave(&sc->lock, flags);
if (sc->work_urb.status == -EINPROGRESS) { /* janitors: ignore */
printk(KERN_WARNING "%s: "
"URB is active after disconnect\n", sc->name);
}
spin_unlock_irqrestore(&sc->lock, flags);
/*
* There is virtually no chance that other CPU runs times so long
* after ub_urb_complete should have called del_timer, but only if HCD
* didn't forget to deliver a callback on unlink.
*/
del_timer_sync(&sc->work_timer);
/*
* At this point there must be no commands coming from anyone
* and no URBs left in transit.
*/
device_remove_file(&sc->intf->dev, &dev_attr_diag);
usb_set_intfdata(intf, NULL);
// usb_put_intf(sc->intf);
sc->intf = NULL;
usb_put_dev(sc->dev);
sc->dev = NULL;
ub_put(sc);
}
static struct usb_driver ub_driver = {
.owner = THIS_MODULE,
.name = "ub",
.probe = ub_probe,
.disconnect = ub_disconnect,
.id_table = ub_usb_ids,
};
static int __init ub_init(void)
{
int rc;
/* P3 */ printk("ub: sizeof ub_scsi_cmd %zu ub_dev %zu\n",
sizeof(struct ub_scsi_cmd), sizeof(struct ub_dev));
if ((rc = register_blkdev(UB_MAJOR, DRV_NAME)) != 0)
goto err_regblkdev;
devfs_mk_dir(DEVFS_NAME);
if ((rc = usb_register(&ub_driver)) != 0)
goto err_register;
return 0;
err_register:
devfs_remove(DEVFS_NAME);
unregister_blkdev(UB_MAJOR, DRV_NAME);
err_regblkdev:
return rc;
}
static void __exit ub_exit(void)
{
usb_deregister(&ub_driver);
devfs_remove(DEVFS_NAME);
unregister_blkdev(UB_MAJOR, DRV_NAME);
}
module_init(ub_init);
module_exit(ub_exit);
MODULE_LICENSE("GPL");