android_kernel_xiaomi_sm8350/include/linux/mm.h

1170 lines
40 KiB
C
Raw Normal View History

#ifndef _LINUX_MM_H
#define _LINUX_MM_H
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/capability.h>
#ifdef __KERNEL__
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/mmzone.h>
#include <linux/rbtree.h>
#include <linux/prio_tree.h>
#include <linux/fs.h>
#include <linux/mutex.h>
#include <linux/debug_locks.h>
[PATCH] mm: tracking shared dirty pages Tracking of dirty pages in shared writeable mmap()s. The idea is simple: write protect clean shared writeable pages, catch the write-fault, make writeable and set dirty. On page write-back clean all the PTE dirty bits and write protect them once again. The implementation is a tad harder, mainly because the default backing_dev_info capabilities were too loosely maintained. Hence it is not enough to test the backing_dev_info for cap_account_dirty. The current heuristic is as follows, a VMA is eligible when: - its shared writeable (vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED) - it is not a 'special' mapping (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) == 0 - the backing_dev_info is cap_account_dirty mapping_cap_account_dirty(vma->vm_file->f_mapping) - f_op->mmap() didn't change the default page protection Page from remap_pfn_range() are explicitly excluded because their COW semantics are already horrid enough (see vm_normal_page() in do_wp_page()) and because they don't have a backing store anyway. mprotect() is taught about the new behaviour as well. However it overrides the last condition. Cleaning the pages on write-back is done with page_mkclean() a new rmap call. It can be called on any page, but is currently only implemented for mapped pages, if the page is found the be of a VMA that accounts dirty pages it will also wrprotect the PTE. Finally, in fs/buffers.c:try_to_free_buffers(); remove clear_page_dirty() from under ->private_lock. This seems to be safe, since ->private_lock is used to serialize access to the buffers, not the page itself. This is needed because clear_page_dirty() will call into page_mkclean() and would thereby violate locking order. [dhowells@redhat.com: Provide a page_mkclean() implementation for NOMMU] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 02:30:57 -04:00
#include <linux/backing-dev.h>
#include <linux/mm_types.h>
struct mempolicy;
struct anon_vma;
#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
extern unsigned long max_mapnr;
#endif
extern unsigned long num_physpages;
extern void * high_memory;
extern unsigned long vmalloc_earlyreserve;
extern int page_cluster;
#ifdef CONFIG_SYSCTL
extern int sysctl_legacy_va_layout;
#else
#define sysctl_legacy_va_layout 0
#endif
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
/*
* Linux kernel virtual memory manager primitives.
* The idea being to have a "virtual" mm in the same way
* we have a virtual fs - giving a cleaner interface to the
* mm details, and allowing different kinds of memory mappings
* (from shared memory to executable loading to arbitrary
* mmap() functions).
*/
/*
* This struct defines a memory VMM memory area. There is one of these
* per VM-area/task. A VM area is any part of the process virtual memory
* space that has a special rule for the page-fault handlers (ie a shared
* library, the executable area etc).
*/
struct vm_area_struct {
struct mm_struct * vm_mm; /* The address space we belong to. */
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address
within vm_mm. */
/* linked list of VM areas per task, sorted by address */
struct vm_area_struct *vm_next;
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, listed below. */
struct rb_node vm_rb;
/*
* For areas with an address space and backing store,
* linkage into the address_space->i_mmap prio tree, or
* linkage to the list of like vmas hanging off its node, or
* linkage of vma in the address_space->i_mmap_nonlinear list.
*/
union {
struct {
struct list_head list;
void *parent; /* aligns with prio_tree_node parent */
struct vm_area_struct *head;
} vm_set;
struct raw_prio_tree_node prio_tree_node;
} shared;
/*
* A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
* list, after a COW of one of the file pages. A MAP_SHARED vma
* can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
* or brk vma (with NULL file) can only be in an anon_vma list.
*/
struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
/* Function pointers to deal with this struct. */
struct vm_operations_struct * vm_ops;
/* Information about our backing store: */
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
units, *not* PAGE_CACHE_SIZE */
struct file * vm_file; /* File we map to (can be NULL). */
void * vm_private_data; /* was vm_pte (shared mem) */
unsigned long vm_truncate_count;/* truncate_count or restart_addr */
#ifndef CONFIG_MMU
atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
#endif
#ifdef CONFIG_NUMA
struct mempolicy *vm_policy; /* NUMA policy for the VMA */
#endif
};
extern struct kmem_cache *vm_area_cachep;
/*
* This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
* disabled, then there's a single shared list of VMAs maintained by the
* system, and mm's subscribe to these individually
*/
struct vm_list_struct {
struct vm_list_struct *next;
struct vm_area_struct *vma;
};
#ifndef CONFIG_MMU
extern struct rb_root nommu_vma_tree;
extern struct rw_semaphore nommu_vma_sem;
extern unsigned int kobjsize(const void *objp);
#endif
/*
* vm_flags..
*/
#define VM_READ 0x00000001 /* currently active flags */
#define VM_WRITE 0x00000002
#define VM_EXEC 0x00000004
#define VM_SHARED 0x00000008
/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
#define VM_MAYWRITE 0x00000020
#define VM_MAYEXEC 0x00000040
#define VM_MAYSHARE 0x00000080
#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
#define VM_GROWSUP 0x00000200
#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
#define VM_EXECUTABLE 0x00001000
#define VM_LOCKED 0x00002000
#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
/* Used by sys_madvise() */
#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
#endif
#ifdef CONFIG_STACK_GROWSUP
#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
#else
#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
#endif
#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
/*
* mapping from the currently active vm_flags protection bits (the
* low four bits) to a page protection mask..
*/
extern pgprot_t protection_map[16];
/*
* These are the virtual MM functions - opening of an area, closing and
* unmapping it (needed to keep files on disk up-to-date etc), pointer
* to the functions called when a no-page or a wp-page exception occurs.
*/
struct vm_operations_struct {
void (*open)(struct vm_area_struct * area);
void (*close)(struct vm_area_struct * area);
struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
unsigned long (*nopfn)(struct vm_area_struct * area, unsigned long address);
int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
[PATCH] add page_mkwrite() vm_operations method Add a new VMA operation to notify a filesystem or other driver about the MMU generating a fault because userspace attempted to write to a page mapped through a read-only PTE. This facility permits the filesystem or driver to: (*) Implement storage allocation/reservation on attempted write, and so to deal with problems such as ENOSPC more gracefully (perhaps by generating SIGBUS). (*) Delay making the page writable until the contents have been written to a backing cache. This is useful for NFS/AFS when using FS-Cache/CacheFS. It permits the filesystem to have some guarantee about the state of the cache. (*) Account and limit number of dirty pages. This is one piece of the puzzle needed to make shared writable mapping work safely in FUSE. Needed by cachefs (Or is it cachefiles? Or fscache? <head spins>). At least four other groups have stated an interest in it or a desire to use the functionality it provides: FUSE, OCFS2, NTFS and JFFS2. Also, things like EXT3 really ought to use it to deal with the case of shared-writable mmap encountering ENOSPC before we permit the page to be dirtied. From: Peter Zijlstra <a.p.zijlstra@chello.nl> get_user_pages(.write=1, .force=1) can generate COW hits on read-only shared mappings, this patch traps those as mkpage_write candidates and fails to handle them the old way. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Joel Becker <Joel.Becker@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 05:03:43 -04:00
/* notification that a previously read-only page is about to become
* writable, if an error is returned it will cause a SIGBUS */
int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
#ifdef CONFIG_NUMA
int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
unsigned long addr);
int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
const nodemask_t *to, unsigned long flags);
#endif
};
struct mmu_gather;
struct inode;
#define page_private(page) ((page)->private)
#define set_page_private(page, v) ((page)->private = (v))
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-29 21:16:40 -04:00
/*
* FIXME: take this include out, include page-flags.h in
* files which need it (119 of them)
*/
#include <linux/page-flags.h>
#ifdef CONFIG_DEBUG_VM
#define VM_BUG_ON(cond) BUG_ON(cond)
#else
#define VM_BUG_ON(condition) do { } while(0)
#endif
/*
* Methods to modify the page usage count.
*
* What counts for a page usage:
* - cache mapping (page->mapping)
* - private data (page->private)
* - page mapped in a task's page tables, each mapping
* is counted separately
*
* Also, many kernel routines increase the page count before a critical
* routine so they can be sure the page doesn't go away from under them.
*/
/*
* Drop a ref, return true if the refcount fell to zero (the page has no users)
*/
static inline int put_page_testzero(struct page *page)
{
VM_BUG_ON(atomic_read(&page->_count) == 0);
return atomic_dec_and_test(&page->_count);
}
/*
* Try to grab a ref unless the page has a refcount of zero, return false if
* that is the case.
*/
static inline int get_page_unless_zero(struct page *page)
{
VM_BUG_ON(PageCompound(page));
return atomic_inc_not_zero(&page->_count);
}
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-29 21:16:40 -04:00
static inline int page_count(struct page *page)
{
if (unlikely(PageCompound(page)))
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-29 21:16:40 -04:00
page = (struct page *)page_private(page);
return atomic_read(&page->_count);
}
static inline void get_page(struct page *page)
{
if (unlikely(PageCompound(page)))
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-29 21:16:40 -04:00
page = (struct page *)page_private(page);
VM_BUG_ON(atomic_read(&page->_count) == 0);
atomic_inc(&page->_count);
}
/*
* Setup the page count before being freed into the page allocator for
* the first time (boot or memory hotplug)
*/
static inline void init_page_count(struct page *page)
{
atomic_set(&page->_count, 1);
}
void put_page(struct page *page);
void put_pages_list(struct list_head *pages);
void split_page(struct page *page, unsigned int order);
/*
* Compound pages have a destructor function. Provide a
* prototype for that function and accessor functions.
* These are _only_ valid on the head of a PG_compound page.
*/
typedef void compound_page_dtor(struct page *);
static inline void set_compound_page_dtor(struct page *page,
compound_page_dtor *dtor)
{
page[1].lru.next = (void *)dtor;
}
static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
{
return (compound_page_dtor *)page[1].lru.next;
}
/*
* Multiple processes may "see" the same page. E.g. for untouched
* mappings of /dev/null, all processes see the same page full of
* zeroes, and text pages of executables and shared libraries have
* only one copy in memory, at most, normally.
*
* For the non-reserved pages, page_count(page) denotes a reference count.
* page_count() == 0 means the page is free. page->lru is then used for
* freelist management in the buddy allocator.
* page_count() > 0 means the page has been allocated.
*
* Pages are allocated by the slab allocator in order to provide memory
* to kmalloc and kmem_cache_alloc. In this case, the management of the
* page, and the fields in 'struct page' are the responsibility of mm/slab.c
* unless a particular usage is carefully commented. (the responsibility of
* freeing the kmalloc memory is the caller's, of course).
*
* A page may be used by anyone else who does a __get_free_page().
* In this case, page_count still tracks the references, and should only
* be used through the normal accessor functions. The top bits of page->flags
* and page->virtual store page management information, but all other fields
* are unused and could be used privately, carefully. The management of this
* page is the responsibility of the one who allocated it, and those who have
* subsequently been given references to it.
*
* The other pages (we may call them "pagecache pages") are completely
* managed by the Linux memory manager: I/O, buffers, swapping etc.
* The following discussion applies only to them.
*
* A pagecache page contains an opaque `private' member, which belongs to the
* page's address_space. Usually, this is the address of a circular list of
* the page's disk buffers. PG_private must be set to tell the VM to call
* into the filesystem to release these pages.
*
* A page may belong to an inode's memory mapping. In this case, page->mapping
* is the pointer to the inode, and page->index is the file offset of the page,
* in units of PAGE_CACHE_SIZE.
*
* If pagecache pages are not associated with an inode, they are said to be
* anonymous pages. These may become associated with the swapcache, and in that
* case PG_swapcache is set, and page->private is an offset into the swapcache.
*
* In either case (swapcache or inode backed), the pagecache itself holds one
* reference to the page. Setting PG_private should also increment the
* refcount. The each user mapping also has a reference to the page.
*
* The pagecache pages are stored in a per-mapping radix tree, which is
* rooted at mapping->page_tree, and indexed by offset.
* Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
* lists, we instead now tag pages as dirty/writeback in the radix tree.
*
* All pagecache pages may be subject to I/O:
* - inode pages may need to be read from disk,
* - inode pages which have been modified and are MAP_SHARED may need
* to be written back to the inode on disk,
* - anonymous pages (including MAP_PRIVATE file mappings) which have been
* modified may need to be swapped out to swap space and (later) to be read
* back into memory.
*/
/*
* The zone field is never updated after free_area_init_core()
* sets it, so none of the operations on it need to be atomic.
*/
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 03:07:54 -04:00
/*
* page->flags layout:
*
* There are three possibilities for how page->flags get
* laid out. The first is for the normal case, without
* sparsemem. The second is for sparsemem when there is
* plenty of space for node and section. The last is when
* we have run out of space and have to fall back to an
* alternate (slower) way of determining the node.
*
* No sparsemem: | NODE | ZONE | ... | FLAGS |
* with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
* no space for node: | SECTION | ZONE | ... | FLAGS |
*/
#ifdef CONFIG_SPARSEMEM
#define SECTIONS_WIDTH SECTIONS_SHIFT
#else
#define SECTIONS_WIDTH 0
#endif
#define ZONES_WIDTH ZONES_SHIFT
#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
#define NODES_WIDTH NODES_SHIFT
#else
#define NODES_WIDTH 0
#endif
/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 03:07:54 -04:00
#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
/*
* We are going to use the flags for the page to node mapping if its in
* there. This includes the case where there is no node, so it is implicit.
*/
#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
#define NODE_NOT_IN_PAGE_FLAGS
#endif
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 03:07:54 -04:00
#ifndef PFN_SECTION_SHIFT
#define PFN_SECTION_SHIFT 0
#endif
/*
* Define the bit shifts to access each section. For non-existant
* sections we define the shift as 0; that plus a 0 mask ensures
* the compiler will optimise away reference to them.
*/
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 03:07:54 -04:00
#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
#ifdef NODE_NOT_IN_PAGEFLAGS
#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 03:07:54 -04:00
#else
#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
#endif
#if ZONES_WIDTH > 0
#define ZONEID_PGSHIFT ZONES_PGSHIFT
#else
#define ZONEID_PGSHIFT NODES_PGOFF
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 03:07:54 -04:00
#endif
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 03:07:54 -04:00
#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
#endif
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 03:07:54 -04:00
#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
static inline enum zone_type page_zonenum(struct page *page)
{
return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
}
/*
* The identification function is only used by the buddy allocator for
* determining if two pages could be buddies. We are not really
* identifying a zone since we could be using a the section number
* id if we have not node id available in page flags.
* We guarantee only that it will return the same value for two
* combinable pages in a zone.
*/
static inline int page_zone_id(struct page *page)
{
BUILD_BUG_ON(ZONEID_PGSHIFT == 0 && ZONEID_MASK);
return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
}
static inline int zone_to_nid(struct zone *zone)
{
#ifdef CONFIG_NUMA
return zone->node;
#else
return 0;
#endif
}
#ifdef NODE_NOT_IN_PAGE_FLAGS
extern int page_to_nid(struct page *page);
#else
static inline int page_to_nid(struct page *page)
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 03:07:54 -04:00
{
return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 03:07:54 -04:00
}
#endif
static inline struct zone *page_zone(struct page *page)
{
return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
}
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 03:07:54 -04:00
static inline unsigned long page_to_section(struct page *page)
{
return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
}
static inline void set_page_zone(struct page *page, enum zone_type zone)
{
page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
}
static inline void set_page_node(struct page *page, unsigned long node)
{
page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
}
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 03:07:54 -04:00
static inline void set_page_section(struct page *page, unsigned long section)
{
page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
}
static inline void set_page_links(struct page *page, enum zone_type zone,
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 03:07:54 -04:00
unsigned long node, unsigned long pfn)
{
set_page_zone(page, zone);
set_page_node(page, node);
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 03:07:54 -04:00
set_page_section(page, pfn_to_section_nr(pfn));
}
[PATCH] zoned vm counters: create vmstat.c/.h from page_alloc.c/.h NOTE: ZVC are *not* the lightweight event counters. ZVCs are reliable whereas event counters do not need to be. Zone based VM statistics are necessary to be able to determine what the state of memory in one zone is. In a NUMA system this can be helpful for local reclaim and other memory optimizations that may be able to shift VM load in order to get more balanced memory use. It is also useful to know how the computing load affects the memory allocations on various zones. This patchset allows the retrieval of that data from userspace. The patchset introduces a framework for counters that is a cross between the existing page_stats --which are simply global counters split per cpu-- and the approach of deferred incremental updates implemented for nr_pagecache. Small per cpu 8 bit counters are added to struct zone. If the counter exceeds certain thresholds then the counters are accumulated in an array of atomic_long in the zone and in a global array that sums up all zone values. The small 8 bit counters are next to the per cpu page pointers and so they will be in high in the cpu cache when pages are allocated and freed. Access to VM counter information for a zone and for the whole machine is then possible by simply indexing an array (Thanks to Nick Piggin for pointing out that approach). The access to the total number of pages of various types does no longer require the summing up of all per cpu counters. Benefits of this patchset right now: - Ability for UP and SMP configuration to determine how memory is balanced between the DMA, NORMAL and HIGHMEM zones. - loops over all processors are avoided in writeback and reclaim paths. We can avoid caching the writeback information because the needed information is directly accessible. - Special handling for nr_pagecache removed. - zone_reclaim_interval vanishes since VM stats can now determine when it is worth to do local reclaim. - Fast inline per node page state determination. - Accurate counters in /sys/devices/system/node/node*/meminfo. Current counters are counting simply which processor allocated a page somewhere and guestimate based on that. So the counters were not useful to show the actual distribution of page use on a specific zone. - The swap_prefetch patch requires per node statistics in order to figure out when processors of a node can prefetch. This patch provides some of the needed numbers. - Detailed VM counters available in more /proc and /sys status files. References to earlier discussions: V1 http://marc.theaimsgroup.com/?l=linux-kernel&m=113511649910826&w=2 V2 http://marc.theaimsgroup.com/?l=linux-kernel&m=114980851924230&w=2 V3 http://marc.theaimsgroup.com/?l=linux-kernel&m=115014697910351&w=2 V4 http://marc.theaimsgroup.com/?l=linux-kernel&m=115024767318740&w=2 Performance tests with AIM7 did not show any regressions. Seems to be a tad faster even. Tested on ia64/NUMA. Builds fine on i386, SMP / UP. Includes fixes for s390/arm/uml arch code. This patch: Move counter code from page_alloc.c/page-flags.h to vmstat.c/h. Create vmstat.c/vmstat.h by separating the counter code and the proc functions. Move the vm_stat_text array before zoneinfo_show. [akpm@osdl.org: s390 build fix] [akpm@osdl.org: HOTPLUG_CPU build fix] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 04:55:32 -04:00
/*
* Some inline functions in vmstat.h depend on page_zone()
*/
#include <linux/vmstat.h>
static __always_inline void *lowmem_page_address(struct page *page)
{
return __va(page_to_pfn(page) << PAGE_SHIFT);
}
#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
#define HASHED_PAGE_VIRTUAL
#endif
#if defined(WANT_PAGE_VIRTUAL)
#define page_address(page) ((page)->virtual)
#define set_page_address(page, address) \
do { \
(page)->virtual = (address); \
} while(0)
#define page_address_init() do { } while(0)
#endif
#if defined(HASHED_PAGE_VIRTUAL)
void *page_address(struct page *page);
void set_page_address(struct page *page, void *virtual);
void page_address_init(void);
#endif
#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
#define page_address(page) lowmem_page_address(page)
#define set_page_address(page, address) do { } while(0)
#define page_address_init() do { } while(0)
#endif
/*
* On an anonymous page mapped into a user virtual memory area,
* page->mapping points to its anon_vma, not to a struct address_space;
* with the PAGE_MAPPING_ANON bit set to distinguish it.
*
* Please note that, confusingly, "page_mapping" refers to the inode
* address_space which maps the page from disk; whereas "page_mapped"
* refers to user virtual address space into which the page is mapped.
*/
#define PAGE_MAPPING_ANON 1
extern struct address_space swapper_space;
static inline struct address_space *page_mapping(struct page *page)
{
struct address_space *mapping = page->mapping;
if (unlikely(PageSwapCache(page)))
mapping = &swapper_space;
else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
mapping = NULL;
return mapping;
}
static inline int PageAnon(struct page *page)
{
return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
}
/*
* Return the pagecache index of the passed page. Regular pagecache pages
* use ->index whereas swapcache pages use ->private
*/
static inline pgoff_t page_index(struct page *page)
{
if (unlikely(PageSwapCache(page)))
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-29 21:16:40 -04:00
return page_private(page);
return page->index;
}
/*
* The atomic page->_mapcount, like _count, starts from -1:
* so that transitions both from it and to it can be tracked,
* using atomic_inc_and_test and atomic_add_negative(-1).
*/
static inline void reset_page_mapcount(struct page *page)
{
atomic_set(&(page)->_mapcount, -1);
}
static inline int page_mapcount(struct page *page)
{
return atomic_read(&(page)->_mapcount) + 1;
}
/*
* Return true if this page is mapped into pagetables.
*/
static inline int page_mapped(struct page *page)
{
return atomic_read(&(page)->_mapcount) >= 0;
}
/*
* Error return values for the *_nopage functions
*/
#define NOPAGE_SIGBUS (NULL)
#define NOPAGE_OOM ((struct page *) (-1))
[PATCH] page fault retry with NOPAGE_REFAULT Add a way for a no_page() handler to request a retry of the faulting instruction. It goes back to userland on page faults and just tries again in get_user_pages(). I added a cond_resched() in the loop in that later case. The problem I have with signal and spufs is an actual bug affecting apps and I don't see other ways of fixing it. In addition, we are having issues with infiniband and 64k pages (related to the way the hypervisor deals with some HV cards) that will require us to muck around with the MMU from within the IB driver's no_page() (it's a pSeries specific driver) and return to the caller the same way using NOPAGE_REFAULT. And to add to this, the graphics folks have been following a new approach of memory management that involves transparently swapping objects between video ram and main meory. To do that, they need installing PTEs from a no_page() handler as well and that also requires returning with NOPAGE_REFAULT. (For the later, they are currently using io_remap_pfn_range to install one PTE from no_page() which is a bit racy, we need to add a check for the PTE having already been installed afer taking the lock, but that's ok, they are only at the proof-of-concept stage. I'll send a patch adding a "clean" function to do that, we can use that from spufs too and get rid of the sparsemem hacks we do to create struct page for SPEs. Basically, that provides a generic solution for being able to have no_page() map hardware devices, which is something that I think sound driver folks have been asking for some time too). All of these things depend on having the NOPAGE_REFAULT exit path from no_page() handlers. Signed-off-by: Benjamin Herrenchmidt <benh@kernel.crashing.org> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-06 03:43:53 -04:00
#define NOPAGE_REFAULT ((struct page *) (-2)) /* Return to userspace, rerun */
/*
* Error return values for the *_nopfn functions
*/
#define NOPFN_SIGBUS ((unsigned long) -1)
#define NOPFN_OOM ((unsigned long) -2)
/*
* Different kinds of faults, as returned by handle_mm_fault().
* Used to decide whether a process gets delivered SIGBUS or
* just gets major/minor fault counters bumped up.
*/
#define VM_FAULT_OOM 0x00
#define VM_FAULT_SIGBUS 0x01
#define VM_FAULT_MINOR 0x02
#define VM_FAULT_MAJOR 0x03
/*
* Special case for get_user_pages.
* Must be in a distinct bit from the above VM_FAULT_ flags.
*/
#define VM_FAULT_WRITE 0x10
#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
extern void show_free_areas(void);
#ifdef CONFIG_SHMEM
struct page *shmem_nopage(struct vm_area_struct *vma,
unsigned long address, int *type);
int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
unsigned long addr);
int shmem_lock(struct file *file, int lock, struct user_struct *user);
#else
#define shmem_nopage filemap_nopage
static inline int shmem_lock(struct file *file, int lock,
struct user_struct *user)
{
return 0;
}
static inline int shmem_set_policy(struct vm_area_struct *vma,
struct mempolicy *new)
{
return 0;
}
static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
unsigned long addr)
{
return NULL;
}
#endif
struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
extern int shmem_mmap(struct file *file, struct vm_area_struct *vma);
int shmem_zero_setup(struct vm_area_struct *);
#ifndef CONFIG_MMU
extern unsigned long shmem_get_unmapped_area(struct file *file,
unsigned long addr,
unsigned long len,
unsigned long pgoff,
unsigned long flags);
#endif
static inline int can_do_mlock(void)
{
if (capable(CAP_IPC_LOCK))
return 1;
if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
return 1;
return 0;
}
extern int user_shm_lock(size_t, struct user_struct *);
extern void user_shm_unlock(size_t, struct user_struct *);
/*
* Parameter block passed down to zap_pte_range in exceptional cases.
*/
struct zap_details {
struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
struct address_space *check_mapping; /* Check page->mapping if set */
pgoff_t first_index; /* Lowest page->index to unmap */
pgoff_t last_index; /* Highest page->index to unmap */
spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
unsigned long truncate_count; /* Compare vm_truncate_count */
};
struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
unsigned long size, struct zap_details *);
unsigned long unmap_vmas(struct mmu_gather **tlb,
struct vm_area_struct *start_vma, unsigned long start_addr,
unsigned long end_addr, unsigned long *nr_accounted,
struct zap_details *);
void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
unsigned long end, unsigned long floor, unsigned long ceiling);
void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
[PATCH] freepgt: free_pgtables use vma list Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19 16:29:15 -04:00
unsigned long floor, unsigned long ceiling);
int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
struct vm_area_struct *vma);
int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
unsigned long size, pgprot_t prot);
void unmap_mapping_range(struct address_space *mapping,
loff_t const holebegin, loff_t const holelen, int even_cows);
static inline void unmap_shared_mapping_range(struct address_space *mapping,
loff_t const holebegin, loff_t const holelen)
{
unmap_mapping_range(mapping, holebegin, holelen, 0);
}
extern int vmtruncate(struct inode * inode, loff_t offset);
[PATCH] madvise(MADV_REMOVE): remove pages from tmpfs shm backing store Here is the patch to implement madvise(MADV_REMOVE) - which frees up a given range of pages & its associated backing store. Current implementation supports only shmfs/tmpfs and other filesystems return -ENOSYS. "Some app allocates large tmpfs files, then when some task quits and some client disconnect, some memory can be released. However the only way to release tmpfs-swap is to MADV_REMOVE". - Andrea Arcangeli Databases want to use this feature to drop a section of their bufferpool (shared memory segments) - without writing back to disk/swap space. This feature is also useful for supporting hot-plug memory on UML. Concerns raised by Andrew Morton: - "We have no plan for holepunching! If we _do_ have such a plan (or might in the future) then what would the API look like? I think sys_holepunch(fd, start, len), so we should start out with that." - Using madvise is very weird, because people will ask "why do I need to mmap my file before I can stick a hole in it?" - None of the other madvise operations call into the filesystem in this manner. A broad question is: is this capability an MM operation or a filesytem operation? truncate, for example, is a filesystem operation which sometimes has MM side-effects. madvise is an mm operation and with this patch, it gains FS side-effects, only they're really, really significant ones." Comments: - Andrea suggested the fs operation too but then it's more efficient to have it as a mm operation with fs side effects, because they don't immediatly know fd and physical offset of the range. It's possible to fixup in userland and to use the fs operation but it's more expensive, the vmas are already in the kernel and we can use them. Short term plan & Future Direction: - We seem to need this interface only for shmfs/tmpfs files in the short term. We have to add hooks into the filesystem for correctness and completeness. This is what this patch does. - In the future, plan is to support both fs and mmap apis also. This also involves (other) filesystem specific functions to be implemented. - Current patch doesn't support VM_NONLINEAR - which can be addressed in the future. Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Andrea Arcangeli <andrea@suse.de> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Cc: Ulrich Drepper <drepper@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-06 03:10:38 -05:00
extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
#ifdef CONFIG_MMU
extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
unsigned long address, int write_access);
static inline int handle_mm_fault(struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long address,
int write_access)
{
return __handle_mm_fault(mm, vma, address, write_access) &
(~VM_FAULT_WRITE);
}
#else
static inline int handle_mm_fault(struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long address,
int write_access)
{
/* should never happen if there's no MMU */
BUG();
return VM_FAULT_SIGBUS;
}
#endif
extern int make_pages_present(unsigned long addr, unsigned long end);
extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
2005-10-29 21:16:12 -04:00
void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
extern void do_invalidatepage(struct page *page, unsigned long offset);
int __set_page_dirty_nobuffers(struct page *page);
int redirty_page_for_writepage(struct writeback_control *wbc,
struct page *page);
int FASTCALL(set_page_dirty(struct page *page));
int set_page_dirty_lock(struct page *page);
int clear_page_dirty_for_io(struct page *page);
extern unsigned long do_mremap(unsigned long addr,
unsigned long old_len, unsigned long new_len,
unsigned long flags, unsigned long new_addr);
/*
* Prototype to add a shrinker callback for ageable caches.
*
* These functions are passed a count `nr_to_scan' and a gfpmask. They should
* scan `nr_to_scan' objects, attempting to free them.
*
* The callback must return the number of objects which remain in the cache.
*
* The callback will be passed nr_to_scan == 0 when the VM is querying the
* cache size, so a fastpath for that case is appropriate.
*/
typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
/*
* Add an aging callback. The int is the number of 'seeks' it takes
* to recreate one of the objects that these functions age.
*/
#define DEFAULT_SEEKS 2
struct shrinker;
extern struct shrinker *set_shrinker(int, shrinker_t);
extern void remove_shrinker(struct shrinker *shrinker);
[PATCH] mm: tracking shared dirty pages Tracking of dirty pages in shared writeable mmap()s. The idea is simple: write protect clean shared writeable pages, catch the write-fault, make writeable and set dirty. On page write-back clean all the PTE dirty bits and write protect them once again. The implementation is a tad harder, mainly because the default backing_dev_info capabilities were too loosely maintained. Hence it is not enough to test the backing_dev_info for cap_account_dirty. The current heuristic is as follows, a VMA is eligible when: - its shared writeable (vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED) - it is not a 'special' mapping (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) == 0 - the backing_dev_info is cap_account_dirty mapping_cap_account_dirty(vma->vm_file->f_mapping) - f_op->mmap() didn't change the default page protection Page from remap_pfn_range() are explicitly excluded because their COW semantics are already horrid enough (see vm_normal_page() in do_wp_page()) and because they don't have a backing store anyway. mprotect() is taught about the new behaviour as well. However it overrides the last condition. Cleaning the pages on write-back is done with page_mkclean() a new rmap call. It can be called on any page, but is currently only implemented for mapped pages, if the page is found the be of a VMA that accounts dirty pages it will also wrprotect the PTE. Finally, in fs/buffers.c:try_to_free_buffers(); remove clear_page_dirty() from under ->private_lock. This seems to be safe, since ->private_lock is used to serialize access to the buffers, not the page itself. This is needed because clear_page_dirty() will call into page_mkclean() and would thereby violate locking order. [dhowells@redhat.com: Provide a page_mkclean() implementation for NOMMU] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26 02:30:57 -04:00
/*
* Some shared mappigns will want the pages marked read-only
* to track write events. If so, we'll downgrade vm_page_prot
* to the private version (using protection_map[] without the
* VM_SHARED bit).
*/
static inline int vma_wants_writenotify(struct vm_area_struct *vma)
{
unsigned int vm_flags = vma->vm_flags;
/* If it was private or non-writable, the write bit is already clear */
if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
return 0;
/* The backer wishes to know when pages are first written to? */
if (vma->vm_ops && vma->vm_ops->page_mkwrite)
return 1;
/* The open routine did something to the protections already? */
if (pgprot_val(vma->vm_page_prot) !=
pgprot_val(protection_map[vm_flags &
(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
return 0;
/* Specialty mapping? */
if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
return 0;
/* Can the mapping track the dirty pages? */
return vma->vm_file && vma->vm_file->f_mapping &&
mapping_cap_account_dirty(vma->vm_file->f_mapping);
}
extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
/*
* The following ifdef needed to get the 4level-fixup.h header to work.
* Remove it when 4level-fixup.h has been removed.
*/
#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
{
return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
NULL: pud_offset(pgd, address);
}
static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
{
return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
NULL: pmd_offset(pud, address);
}
#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-29 21:16:40 -04:00
#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
/*
* We tuck a spinlock to guard each pagetable page into its struct page,
* at page->private, with BUILD_BUG_ON to make sure that this will not
* overflow into the next struct page (as it might with DEBUG_SPINLOCK).
* When freeing, reset page->mapping so free_pages_check won't complain.
*/
#define __pte_lockptr(page) &((page)->ptl)
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-29 21:16:40 -04:00
#define pte_lock_init(_page) do { \
spin_lock_init(__pte_lockptr(_page)); \
} while (0)
#define pte_lock_deinit(page) ((page)->mapping = NULL)
#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
#else
/*
* We use mm->page_table_lock to guard all pagetable pages of the mm.
*/
#define pte_lock_init(page) do {} while (0)
#define pte_lock_deinit(page) do {} while (0)
#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
#define pte_offset_map_lock(mm, pmd, address, ptlp) \
({ \
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-29 21:16:40 -04:00
spinlock_t *__ptl = pte_lockptr(mm, pmd); \
pte_t *__pte = pte_offset_map(pmd, address); \
*(ptlp) = __ptl; \
spin_lock(__ptl); \
__pte; \
})
#define pte_unmap_unlock(pte, ptl) do { \
spin_unlock(ptl); \
pte_unmap(pte); \
} while (0)
#define pte_alloc_map(mm, pmd, address) \
((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
NULL: pte_offset_map(pmd, address))
#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
#define pte_alloc_kernel(pmd, address) \
((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
NULL: pte_offset_kernel(pmd, address))
extern void free_area_init(unsigned long * zones_size);
extern void free_area_init_node(int nid, pg_data_t *pgdat,
unsigned long * zones_size, unsigned long zone_start_pfn,
unsigned long *zholes_size);
[PATCH] Introduce mechanism for registering active regions of memory At a basic level, architectures define structures to record where active ranges of page frames are located. Once located, the code to calculate zone sizes and holes in each architecture is very similar. Some of this zone and hole sizing code is difficult to read for no good reason. This set of patches eliminates the similar-looking architecture-specific code. The patches introduce a mechanism where architectures register where the active ranges of page frames are with add_active_range(). When all areas have been discovered, free_area_init_nodes() is called to initialise the pgdat and zones. The zone sizes and holes are then calculated in an architecture independent manner. Patch 1 introduces the mechanism for registering and initialising PFN ranges Patch 2 changes ppc to use the mechanism - 139 arch-specific LOC removed Patch 3 changes x86 to use the mechanism - 136 arch-specific LOC removed Patch 4 changes x86_64 to use the mechanism - 74 arch-specific LOC removed Patch 5 changes ia64 to use the mechanism - 52 arch-specific LOC removed Patch 6 accounts for mem_map as a memory hole as the pages are not reclaimable. It adjusts the watermarks slightly Tony Luck has successfully tested for ia64 on Itanium with tiger_defconfig, gensparse_defconfig and defconfig. Bob Picco has also tested and debugged on IA64. Jack Steiner successfully boot tested on a mammoth SGI IA64-based machine. These were on patches against 2.6.17-rc1 and release 3 of these patches but there have been no ia64-changes since release 3. There are differences in the zone sizes for x86_64 as the arch-specific code for x86_64 accounts the kernel image and the starting mem_maps as memory holes but the architecture-independent code accounts the memory as present. The big benefit of this set of patches is a sizable reduction of architecture-specific code, some of which is very hairy. There should be a greater reduction when other architectures use the same mechanisms for zone and hole sizing but I lack the hardware to test on. Additional credit; Dave Hansen for the initial suggestion and comments on early patches Andy Whitcroft for reviewing early versions and catching numerous errors Tony Luck for testing and debugging on IA64 Bob Picco for fixing bugs related to pfn registration, reviewing a number of patch revisions, providing a number of suggestions on future direction and testing heavily Jack Steiner and Robin Holt for testing on IA64 and clarifying issues related to memory holes Yasunori for testing on IA64 Andi Kleen for reviewing and feeding back about x86_64 Christian Kujau for providing valuable information related to ACPI problems on x86_64 and testing potential fixes This patch: Define the structure to represent an active range of page frames within a node in an architecture independent manner. Architectures are expected to register active ranges of PFNs using add_active_range(nid, start_pfn, end_pfn) and call free_area_init_nodes() passing the PFNs of the end of each zone. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Bob Picco <bob.picco@hp.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Andi Kleen <ak@muc.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Keith Mannthey" <kmannth@gmail.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 04:49:43 -04:00
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
/*
* With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
* zones, allocate the backing mem_map and account for memory holes in a more
* architecture independent manner. This is a substitute for creating the
* zone_sizes[] and zholes_size[] arrays and passing them to
* free_area_init_node()
*
* An architecture is expected to register range of page frames backed by
* physical memory with add_active_range() before calling
* free_area_init_nodes() passing in the PFN each zone ends at. At a basic
* usage, an architecture is expected to do something like
*
* unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
* max_highmem_pfn};
* for_each_valid_physical_page_range()
* add_active_range(node_id, start_pfn, end_pfn)
* free_area_init_nodes(max_zone_pfns);
*
* If the architecture guarantees that there are no holes in the ranges
* registered with add_active_range(), free_bootmem_active_regions()
* will call free_bootmem_node() for each registered physical page range.
* Similarly sparse_memory_present_with_active_regions() calls
* memory_present() for each range when SPARSEMEM is enabled.
*
* See mm/page_alloc.c for more information on each function exposed by
* CONFIG_ARCH_POPULATES_NODE_MAP
*/
extern void free_area_init_nodes(unsigned long *max_zone_pfn);
extern void add_active_range(unsigned int nid, unsigned long start_pfn,
unsigned long end_pfn);
extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
unsigned long new_end_pfn);
extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
unsigned long end_pfn);
[PATCH] Introduce mechanism for registering active regions of memory At a basic level, architectures define structures to record where active ranges of page frames are located. Once located, the code to calculate zone sizes and holes in each architecture is very similar. Some of this zone and hole sizing code is difficult to read for no good reason. This set of patches eliminates the similar-looking architecture-specific code. The patches introduce a mechanism where architectures register where the active ranges of page frames are with add_active_range(). When all areas have been discovered, free_area_init_nodes() is called to initialise the pgdat and zones. The zone sizes and holes are then calculated in an architecture independent manner. Patch 1 introduces the mechanism for registering and initialising PFN ranges Patch 2 changes ppc to use the mechanism - 139 arch-specific LOC removed Patch 3 changes x86 to use the mechanism - 136 arch-specific LOC removed Patch 4 changes x86_64 to use the mechanism - 74 arch-specific LOC removed Patch 5 changes ia64 to use the mechanism - 52 arch-specific LOC removed Patch 6 accounts for mem_map as a memory hole as the pages are not reclaimable. It adjusts the watermarks slightly Tony Luck has successfully tested for ia64 on Itanium with tiger_defconfig, gensparse_defconfig and defconfig. Bob Picco has also tested and debugged on IA64. Jack Steiner successfully boot tested on a mammoth SGI IA64-based machine. These were on patches against 2.6.17-rc1 and release 3 of these patches but there have been no ia64-changes since release 3. There are differences in the zone sizes for x86_64 as the arch-specific code for x86_64 accounts the kernel image and the starting mem_maps as memory holes but the architecture-independent code accounts the memory as present. The big benefit of this set of patches is a sizable reduction of architecture-specific code, some of which is very hairy. There should be a greater reduction when other architectures use the same mechanisms for zone and hole sizing but I lack the hardware to test on. Additional credit; Dave Hansen for the initial suggestion and comments on early patches Andy Whitcroft for reviewing early versions and catching numerous errors Tony Luck for testing and debugging on IA64 Bob Picco for fixing bugs related to pfn registration, reviewing a number of patch revisions, providing a number of suggestions on future direction and testing heavily Jack Steiner and Robin Holt for testing on IA64 and clarifying issues related to memory holes Yasunori for testing on IA64 Andi Kleen for reviewing and feeding back about x86_64 Christian Kujau for providing valuable information related to ACPI problems on x86_64 and testing potential fixes This patch: Define the structure to represent an active range of page frames within a node in an architecture independent manner. Architectures are expected to register active ranges of PFNs using add_active_range(nid, start_pfn, end_pfn) and call free_area_init_nodes() passing the PFNs of the end of each zone. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Bob Picco <bob.picco@hp.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Andi Kleen <ak@muc.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Keith Mannthey" <kmannth@gmail.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 04:49:43 -04:00
extern void remove_all_active_ranges(void);
extern unsigned long absent_pages_in_range(unsigned long start_pfn,
unsigned long end_pfn);
extern void get_pfn_range_for_nid(unsigned int nid,
unsigned long *start_pfn, unsigned long *end_pfn);
extern unsigned long find_min_pfn_with_active_regions(void);
extern unsigned long find_max_pfn_with_active_regions(void);
extern void free_bootmem_with_active_regions(int nid,
unsigned long max_low_pfn);
extern void sparse_memory_present_with_active_regions(int nid);
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
extern int early_pfn_to_nid(unsigned long pfn);
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
extern void set_dma_reserve(unsigned long new_dma_reserve);
extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long);
extern void setup_per_zone_pages_min(void);
extern void mem_init(void);
extern void show_mem(void);
extern void si_meminfo(struct sysinfo * val);
extern void si_meminfo_node(struct sysinfo *val, int nid);
[PATCH] node local per-cpu-pages This patch modifies the way pagesets in struct zone are managed. Each zone has a per-cpu array of pagesets. So any particular CPU has some memory in each zone structure which belongs to itself. Even if that CPU is not local to that zone. So the patch relocates the pagesets for each cpu to the node that is nearest to the cpu instead of allocating the pagesets in the (possibly remote) target zone. This means that the operations to manage pages on remote zone can be done with information available locally. We play a macro trick so that non-NUMA pmachines avoid the additional pointer chase on the page allocator fastpath. AIM7 benchmark on a 32 CPU SGI Altix w/o patches: Tasks jobs/min jti jobs/min/task real cpu 1 484.68 100 484.6769 12.01 1.97 Fri Mar 25 11:01:42 2005 100 27140.46 89 271.4046 21.44 148.71 Fri Mar 25 11:02:04 2005 200 30792.02 82 153.9601 37.80 296.72 Fri Mar 25 11:02:42 2005 300 32209.27 81 107.3642 54.21 451.34 Fri Mar 25 11:03:37 2005 400 34962.83 78 87.4071 66.59 588.97 Fri Mar 25 11:04:44 2005 500 31676.92 75 63.3538 91.87 742.71 Fri Mar 25 11:06:16 2005 600 36032.69 73 60.0545 96.91 885.44 Fri Mar 25 11:07:54 2005 700 35540.43 77 50.7720 114.63 1024.28 Fri Mar 25 11:09:49 2005 800 33906.70 74 42.3834 137.32 1181.65 Fri Mar 25 11:12:06 2005 900 34120.67 73 37.9119 153.51 1325.26 Fri Mar 25 11:14:41 2005 1000 34802.37 74 34.8024 167.23 1465.26 Fri Mar 25 11:17:28 2005 with slab API changes and pageset patch: Tasks jobs/min jti jobs/min/task real cpu 1 485.00 100 485.0000 12.00 1.96 Fri Mar 25 11:46:18 2005 100 28000.96 89 280.0096 20.79 150.45 Fri Mar 25 11:46:39 2005 200 32285.80 79 161.4290 36.05 293.37 Fri Mar 25 11:47:16 2005 300 40424.15 84 134.7472 43.19 438.42 Fri Mar 25 11:47:59 2005 400 39155.01 79 97.8875 59.46 590.05 Fri Mar 25 11:48:59 2005 500 37881.25 82 75.7625 76.82 730.19 Fri Mar 25 11:50:16 2005 600 39083.14 78 65.1386 89.35 872.79 Fri Mar 25 11:51:46 2005 700 38627.83 77 55.1826 105.47 1022.46 Fri Mar 25 11:53:32 2005 800 39631.94 78 49.5399 117.48 1169.94 Fri Mar 25 11:55:30 2005 900 36903.70 79 41.0041 141.94 1310.78 Fri Mar 25 11:57:53 2005 1000 36201.23 77 36.2012 160.77 1458.31 Fri Mar 25 12:00:34 2005 Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Shobhit Dayal <shobhit@calsoftinc.com> Signed-off-by: Shai Fultheim <Shai@Scalex86.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-21 20:14:47 -04:00
#ifdef CONFIG_NUMA
extern void setup_per_cpu_pageset(void);
#else
static inline void setup_per_cpu_pageset(void) {}
#endif
/* prio_tree.c */
void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
struct prio_tree_iter *iter);
#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
(vma = vma_prio_tree_next(vma, iter)); )
static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
struct list_head *list)
{
vma->shared.vm_set.parent = NULL;
list_add_tail(&vma->shared.vm_set.list, list);
}
/* mmap.c */
extern int __vm_enough_memory(long pages, int cap_sys_admin);
extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
extern struct vm_area_struct *vma_merge(struct mm_struct *,
struct vm_area_struct *prev, unsigned long addr, unsigned long end,
unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
struct mempolicy *);
extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
extern int split_vma(struct mm_struct *,
struct vm_area_struct *, unsigned long addr, int new_below);
extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
struct rb_node **, struct rb_node *);
extern void unlink_file_vma(struct vm_area_struct *);
extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
unsigned long addr, unsigned long len, pgoff_t pgoff);
extern void exit_mmap(struct mm_struct *);
extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot,
unsigned long flag, unsigned long pgoff);
static inline unsigned long do_mmap(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot,
unsigned long flag, unsigned long offset)
{
unsigned long ret = -EINVAL;
if ((offset + PAGE_ALIGN(len)) < offset)
goto out;
if (!(offset & ~PAGE_MASK))
ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
out:
return ret;
}
extern int do_munmap(struct mm_struct *, unsigned long, size_t);
extern unsigned long do_brk(unsigned long, unsigned long);
/* filemap.c */
extern unsigned long page_unuse(struct page *);
extern void truncate_inode_pages(struct address_space *, loff_t);
extern void truncate_inode_pages_range(struct address_space *,
loff_t lstart, loff_t lend);
/* generic vm_area_ops exported for stackable file systems */
extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
extern int filemap_populate(struct vm_area_struct *, unsigned long,
unsigned long, pgprot_t, unsigned long, int);
/* mm/page-writeback.c */
int write_one_page(struct page *page, int wait);
/* readahead.c */
#define VM_MAX_READAHEAD 128 /* kbytes */
#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
* turning readahead off */
int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
pgoff_t offset, unsigned long nr_to_read);
int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
pgoff_t offset, unsigned long nr_to_read);
unsigned long page_cache_readahead(struct address_space *mapping,
struct file_ra_state *ra,
struct file *filp,
pgoff_t offset,
unsigned long size);
void handle_ra_miss(struct address_space *mapping,
struct file_ra_state *ra, pgoff_t offset);
unsigned long max_sane_readahead(unsigned long nr);
/* Do stack extension */
extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
#ifdef CONFIG_IA64
extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
#endif
/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
struct vm_area_struct **pprev);
/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
NULL if none. Assume start_addr < end_addr. */
static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
{
struct vm_area_struct * vma = find_vma(mm,start_addr);
if (vma && end_addr <= vma->vm_start)
vma = NULL;
return vma;
}
static inline unsigned long vma_pages(struct vm_area_struct *vma)
{
return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
}
pgprot_t vm_get_page_prot(unsigned long vm_flags);
struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
struct page *vmalloc_to_page(void *addr);
unsigned long vmalloc_to_pfn(void *addr);
int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
unsigned long pfn, unsigned long size, pgprot_t);
int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
struct page *follow_page(struct vm_area_struct *, unsigned long address,
unsigned int foll_flags);
#define FOLL_WRITE 0x01 /* check pte is writable */
#define FOLL_TOUCH 0x02 /* mark page accessed */
#define FOLL_GET 0x04 /* do get_page on page */
#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
#ifdef CONFIG_PROC_FS
void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
#else
static inline void vm_stat_account(struct mm_struct *mm,
unsigned long flags, struct file *file, long pages)
{
}
#endif /* CONFIG_PROC_FS */
#ifndef CONFIG_DEBUG_PAGEALLOC
static inline void
kernel_map_pages(struct page *page, int numpages, int enable) {}
#endif
extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
#ifdef __HAVE_ARCH_GATE_AREA
int in_gate_area_no_task(unsigned long addr);
int in_gate_area(struct task_struct *task, unsigned long addr);
#else
int in_gate_area_no_task(unsigned long addr);
#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
#endif /* __HAVE_ARCH_GATE_AREA */
int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
void __user *, size_t *, loff_t *);
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
unsigned long lru_pages);
void drop_pagecache(void);
void drop_slab(void);
#ifndef CONFIG_MMU
#define randomize_va_space 0
#else
extern int randomize_va_space;
#endif
__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma);
[PATCH] vdso: randomize the i386 vDSO by moving it into a vma Move the i386 VDSO down into a vma and thus randomize it. Besides the security implications, this feature also helps debuggers, which can COW a vma-backed VDSO just like a normal DSO and can thus do single-stepping and other debugging features. It's good for hypervisors (Xen, VMWare) too, which typically live in the same high-mapped address space as the VDSO, hence whenever the VDSO is used, they get lots of guest pagefaults and have to fix such guest accesses up - which slows things down instead of speeding things up (the primary purpose of the VDSO). There's a new CONFIG_COMPAT_VDSO (default=y) option, which provides support for older glibcs that still rely on a prelinked high-mapped VDSO. Newer distributions (using glibc 2.3.3 or later) can turn this option off. Turning it off is also recommended for security reasons: attackers cannot use the predictable high-mapped VDSO page as syscall trampoline anymore. There is a new vdso=[0|1] boot option as well, and a runtime /proc/sys/vm/vdso_enabled sysctl switch, that allows the VDSO to be turned on/off. (This version of the VDSO-randomization patch also has working ELF coredumping, the previous patch crashed in the coredumping code.) This code is a combined work of the exec-shield VDSO randomization code and Gerd Hoffmann's hypervisor-centric VDSO patch. Rusty Russell started this patch and i completed it. [akpm@osdl.org: cleanups] [akpm@osdl.org: compile fix] [akpm@osdl.org: compile fix 2] [akpm@osdl.org: compile fix 3] [akpm@osdl.org: revernt MAXMEM change] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@infradead.org> Cc: Gerd Hoffmann <kraxel@suse.de> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Zachary Amsden <zach@vmware.com> Cc: Andi Kleen <ak@muc.de> Cc: Jan Beulich <jbeulich@novell.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 05:53:50 -04:00
#endif /* __KERNEL__ */
#endif /* _LINUX_MM_H */