865 lines
21 KiB
C
865 lines
21 KiB
C
|
/* SCTP kernel reference Implementation
|
||
|
* (C) Copyright IBM Corp. 2001, 2004
|
||
|
* Copyright (c) 1999-2000 Cisco, Inc.
|
||
|
* Copyright (c) 1999-2001 Motorola, Inc.
|
||
|
* Copyright (c) 2001 Intel Corp.
|
||
|
* Copyright (c) 2001 Nokia, Inc.
|
||
|
* Copyright (c) 2001 La Monte H.P. Yarroll
|
||
|
*
|
||
|
* This abstraction carries sctp events to the ULP (sockets).
|
||
|
*
|
||
|
* The SCTP reference implementation is free software;
|
||
|
* you can redistribute it and/or modify it under the terms of
|
||
|
* the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2, or (at your option)
|
||
|
* any later version.
|
||
|
*
|
||
|
* The SCTP reference implementation is distributed in the hope that it
|
||
|
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
|
||
|
* ************************
|
||
|
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
* See the GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with GNU CC; see the file COPYING. If not, write to
|
||
|
* the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
|
* Boston, MA 02111-1307, USA.
|
||
|
*
|
||
|
* Please send any bug reports or fixes you make to the
|
||
|
* email address(es):
|
||
|
* lksctp developers <lksctp-developers@lists.sourceforge.net>
|
||
|
*
|
||
|
* Or submit a bug report through the following website:
|
||
|
* http://www.sf.net/projects/lksctp
|
||
|
*
|
||
|
* Written or modified by:
|
||
|
* Jon Grimm <jgrimm@us.ibm.com>
|
||
|
* La Monte H.P. Yarroll <piggy@acm.org>
|
||
|
* Sridhar Samudrala <sri@us.ibm.com>
|
||
|
*
|
||
|
* Any bugs reported given to us we will try to fix... any fixes shared will
|
||
|
* be incorporated into the next SCTP release.
|
||
|
*/
|
||
|
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/skbuff.h>
|
||
|
#include <net/sock.h>
|
||
|
#include <net/sctp/structs.h>
|
||
|
#include <net/sctp/sctp.h>
|
||
|
#include <net/sctp/sm.h>
|
||
|
|
||
|
/* Forward declarations for internal helpers. */
|
||
|
static struct sctp_ulpevent * sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
|
||
|
struct sctp_ulpevent *);
|
||
|
static struct sctp_ulpevent * sctp_ulpq_order(struct sctp_ulpq *,
|
||
|
struct sctp_ulpevent *);
|
||
|
|
||
|
/* 1st Level Abstractions */
|
||
|
|
||
|
/* Initialize a ULP queue from a block of memory. */
|
||
|
struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq,
|
||
|
struct sctp_association *asoc)
|
||
|
{
|
||
|
memset(ulpq, 0, sizeof(struct sctp_ulpq));
|
||
|
|
||
|
ulpq->asoc = asoc;
|
||
|
skb_queue_head_init(&ulpq->reasm);
|
||
|
skb_queue_head_init(&ulpq->lobby);
|
||
|
ulpq->pd_mode = 0;
|
||
|
ulpq->malloced = 0;
|
||
|
|
||
|
return ulpq;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Flush the reassembly and ordering queues. */
|
||
|
static void sctp_ulpq_flush(struct sctp_ulpq *ulpq)
|
||
|
{
|
||
|
struct sk_buff *skb;
|
||
|
struct sctp_ulpevent *event;
|
||
|
|
||
|
while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) {
|
||
|
event = sctp_skb2event(skb);
|
||
|
sctp_ulpevent_free(event);
|
||
|
}
|
||
|
|
||
|
while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) {
|
||
|
event = sctp_skb2event(skb);
|
||
|
sctp_ulpevent_free(event);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/* Dispose of a ulpqueue. */
|
||
|
void sctp_ulpq_free(struct sctp_ulpq *ulpq)
|
||
|
{
|
||
|
sctp_ulpq_flush(ulpq);
|
||
|
if (ulpq->malloced)
|
||
|
kfree(ulpq);
|
||
|
}
|
||
|
|
||
|
/* Process an incoming DATA chunk. */
|
||
|
int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
|
||
|
int gfp)
|
||
|
{
|
||
|
struct sk_buff_head temp;
|
||
|
sctp_data_chunk_t *hdr;
|
||
|
struct sctp_ulpevent *event;
|
||
|
|
||
|
hdr = (sctp_data_chunk_t *) chunk->chunk_hdr;
|
||
|
|
||
|
/* Create an event from the incoming chunk. */
|
||
|
event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp);
|
||
|
if (!event)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/* Do reassembly if needed. */
|
||
|
event = sctp_ulpq_reasm(ulpq, event);
|
||
|
|
||
|
/* Do ordering if needed. */
|
||
|
if ((event) && (event->msg_flags & MSG_EOR)){
|
||
|
/* Create a temporary list to collect chunks on. */
|
||
|
skb_queue_head_init(&temp);
|
||
|
__skb_queue_tail(&temp, sctp_event2skb(event));
|
||
|
|
||
|
event = sctp_ulpq_order(ulpq, event);
|
||
|
}
|
||
|
|
||
|
/* Send event to the ULP. */
|
||
|
if (event)
|
||
|
sctp_ulpq_tail_event(ulpq, event);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Add a new event for propagation to the ULP. */
|
||
|
/* Clear the partial delivery mode for this socket. Note: This
|
||
|
* assumes that no association is currently in partial delivery mode.
|
||
|
*/
|
||
|
int sctp_clear_pd(struct sock *sk)
|
||
|
{
|
||
|
struct sctp_sock *sp = sctp_sk(sk);
|
||
|
|
||
|
sp->pd_mode = 0;
|
||
|
if (!skb_queue_empty(&sp->pd_lobby)) {
|
||
|
struct list_head *list;
|
||
|
sctp_skb_list_tail(&sp->pd_lobby, &sk->sk_receive_queue);
|
||
|
list = (struct list_head *)&sctp_sk(sk)->pd_lobby;
|
||
|
INIT_LIST_HEAD(list);
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Clear the pd_mode and restart any pending messages waiting for delivery. */
|
||
|
static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq)
|
||
|
{
|
||
|
ulpq->pd_mode = 0;
|
||
|
return sctp_clear_pd(ulpq->asoc->base.sk);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event)
|
||
|
{
|
||
|
struct sock *sk = ulpq->asoc->base.sk;
|
||
|
struct sk_buff_head *queue;
|
||
|
int clear_pd = 0;
|
||
|
|
||
|
/* If the socket is just going to throw this away, do not
|
||
|
* even try to deliver it.
|
||
|
*/
|
||
|
if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN))
|
||
|
goto out_free;
|
||
|
|
||
|
/* Check if the user wishes to receive this event. */
|
||
|
if (!sctp_ulpevent_is_enabled(event, &sctp_sk(sk)->subscribe))
|
||
|
goto out_free;
|
||
|
|
||
|
/* If we are in partial delivery mode, post to the lobby until
|
||
|
* partial delivery is cleared, unless, of course _this_ is
|
||
|
* the association the cause of the partial delivery.
|
||
|
*/
|
||
|
|
||
|
if (!sctp_sk(sk)->pd_mode) {
|
||
|
queue = &sk->sk_receive_queue;
|
||
|
} else if (ulpq->pd_mode) {
|
||
|
if (event->msg_flags & MSG_NOTIFICATION)
|
||
|
queue = &sctp_sk(sk)->pd_lobby;
|
||
|
else {
|
||
|
clear_pd = event->msg_flags & MSG_EOR;
|
||
|
queue = &sk->sk_receive_queue;
|
||
|
}
|
||
|
} else
|
||
|
queue = &sctp_sk(sk)->pd_lobby;
|
||
|
|
||
|
|
||
|
/* If we are harvesting multiple skbs they will be
|
||
|
* collected on a list.
|
||
|
*/
|
||
|
if (sctp_event2skb(event)->list)
|
||
|
sctp_skb_list_tail(sctp_event2skb(event)->list, queue);
|
||
|
else
|
||
|
__skb_queue_tail(queue, sctp_event2skb(event));
|
||
|
|
||
|
/* Did we just complete partial delivery and need to get
|
||
|
* rolling again? Move pending data to the receive
|
||
|
* queue.
|
||
|
*/
|
||
|
if (clear_pd)
|
||
|
sctp_ulpq_clear_pd(ulpq);
|
||
|
|
||
|
if (queue == &sk->sk_receive_queue)
|
||
|
sk->sk_data_ready(sk, 0);
|
||
|
return 1;
|
||
|
|
||
|
out_free:
|
||
|
if (sctp_event2skb(event)->list)
|
||
|
sctp_queue_purge_ulpevents(sctp_event2skb(event)->list);
|
||
|
else
|
||
|
sctp_ulpevent_free(event);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* 2nd Level Abstractions */
|
||
|
|
||
|
/* Helper function to store chunks that need to be reassembled. */
|
||
|
static inline void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq,
|
||
|
struct sctp_ulpevent *event)
|
||
|
{
|
||
|
struct sk_buff *pos;
|
||
|
struct sctp_ulpevent *cevent;
|
||
|
__u32 tsn, ctsn;
|
||
|
|
||
|
tsn = event->tsn;
|
||
|
|
||
|
/* See if it belongs at the end. */
|
||
|
pos = skb_peek_tail(&ulpq->reasm);
|
||
|
if (!pos) {
|
||
|
__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Short circuit just dropping it at the end. */
|
||
|
cevent = sctp_skb2event(pos);
|
||
|
ctsn = cevent->tsn;
|
||
|
if (TSN_lt(ctsn, tsn)) {
|
||
|
__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Find the right place in this list. We store them by TSN. */
|
||
|
skb_queue_walk(&ulpq->reasm, pos) {
|
||
|
cevent = sctp_skb2event(pos);
|
||
|
ctsn = cevent->tsn;
|
||
|
|
||
|
if (TSN_lt(tsn, ctsn))
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Insert before pos. */
|
||
|
__skb_insert(sctp_event2skb(event), pos->prev, pos, &ulpq->reasm);
|
||
|
|
||
|
}
|
||
|
|
||
|
/* Helper function to return an event corresponding to the reassembled
|
||
|
* datagram.
|
||
|
* This routine creates a re-assembled skb given the first and last skb's
|
||
|
* as stored in the reassembly queue. The skb's may be non-linear if the sctp
|
||
|
* payload was fragmented on the way and ip had to reassemble them.
|
||
|
* We add the rest of skb's to the first skb's fraglist.
|
||
|
*/
|
||
|
static struct sctp_ulpevent *sctp_make_reassembled_event(struct sk_buff *f_frag, struct sk_buff *l_frag)
|
||
|
{
|
||
|
struct sk_buff *pos;
|
||
|
struct sctp_ulpevent *event;
|
||
|
struct sk_buff *pnext, *last;
|
||
|
struct sk_buff *list = skb_shinfo(f_frag)->frag_list;
|
||
|
|
||
|
/* Store the pointer to the 2nd skb */
|
||
|
if (f_frag == l_frag)
|
||
|
pos = NULL;
|
||
|
else
|
||
|
pos = f_frag->next;
|
||
|
|
||
|
/* Get the last skb in the f_frag's frag_list if present. */
|
||
|
for (last = list; list; last = list, list = list->next);
|
||
|
|
||
|
/* Add the list of remaining fragments to the first fragments
|
||
|
* frag_list.
|
||
|
*/
|
||
|
if (last)
|
||
|
last->next = pos;
|
||
|
else
|
||
|
skb_shinfo(f_frag)->frag_list = pos;
|
||
|
|
||
|
/* Remove the first fragment from the reassembly queue. */
|
||
|
__skb_unlink(f_frag, f_frag->list);
|
||
|
while (pos) {
|
||
|
|
||
|
pnext = pos->next;
|
||
|
|
||
|
/* Update the len and data_len fields of the first fragment. */
|
||
|
f_frag->len += pos->len;
|
||
|
f_frag->data_len += pos->len;
|
||
|
|
||
|
/* Remove the fragment from the reassembly queue. */
|
||
|
__skb_unlink(pos, pos->list);
|
||
|
|
||
|
/* Break if we have reached the last fragment. */
|
||
|
if (pos == l_frag)
|
||
|
break;
|
||
|
pos->next = pnext;
|
||
|
pos = pnext;
|
||
|
};
|
||
|
|
||
|
event = sctp_skb2event(f_frag);
|
||
|
SCTP_INC_STATS(SCTP_MIB_REASMUSRMSGS);
|
||
|
|
||
|
return event;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Helper function to check if an incoming chunk has filled up the last
|
||
|
* missing fragment in a SCTP datagram and return the corresponding event.
|
||
|
*/
|
||
|
static inline struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq)
|
||
|
{
|
||
|
struct sk_buff *pos;
|
||
|
struct sctp_ulpevent *cevent;
|
||
|
struct sk_buff *first_frag = NULL;
|
||
|
__u32 ctsn, next_tsn;
|
||
|
struct sctp_ulpevent *retval = NULL;
|
||
|
|
||
|
/* Initialized to 0 just to avoid compiler warning message. Will
|
||
|
* never be used with this value. It is referenced only after it
|
||
|
* is set when we find the first fragment of a message.
|
||
|
*/
|
||
|
next_tsn = 0;
|
||
|
|
||
|
/* The chunks are held in the reasm queue sorted by TSN.
|
||
|
* Walk through the queue sequentially and look for a sequence of
|
||
|
* fragmented chunks that complete a datagram.
|
||
|
* 'first_frag' and next_tsn are reset when we find a chunk which
|
||
|
* is the first fragment of a datagram. Once these 2 fields are set
|
||
|
* we expect to find the remaining middle fragments and the last
|
||
|
* fragment in order. If not, first_frag is reset to NULL and we
|
||
|
* start the next pass when we find another first fragment.
|
||
|
*/
|
||
|
skb_queue_walk(&ulpq->reasm, pos) {
|
||
|
cevent = sctp_skb2event(pos);
|
||
|
ctsn = cevent->tsn;
|
||
|
|
||
|
switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
|
||
|
case SCTP_DATA_FIRST_FRAG:
|
||
|
first_frag = pos;
|
||
|
next_tsn = ctsn + 1;
|
||
|
break;
|
||
|
|
||
|
case SCTP_DATA_MIDDLE_FRAG:
|
||
|
if ((first_frag) && (ctsn == next_tsn))
|
||
|
next_tsn++;
|
||
|
else
|
||
|
first_frag = NULL;
|
||
|
break;
|
||
|
|
||
|
case SCTP_DATA_LAST_FRAG:
|
||
|
if (first_frag && (ctsn == next_tsn))
|
||
|
goto found;
|
||
|
else
|
||
|
first_frag = NULL;
|
||
|
break;
|
||
|
};
|
||
|
|
||
|
}
|
||
|
done:
|
||
|
return retval;
|
||
|
found:
|
||
|
retval = sctp_make_reassembled_event(first_frag, pos);
|
||
|
if (retval)
|
||
|
retval->msg_flags |= MSG_EOR;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/* Retrieve the next set of fragments of a partial message. */
|
||
|
static inline struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq)
|
||
|
{
|
||
|
struct sk_buff *pos, *last_frag, *first_frag;
|
||
|
struct sctp_ulpevent *cevent;
|
||
|
__u32 ctsn, next_tsn;
|
||
|
int is_last;
|
||
|
struct sctp_ulpevent *retval;
|
||
|
|
||
|
/* The chunks are held in the reasm queue sorted by TSN.
|
||
|
* Walk through the queue sequentially and look for the first
|
||
|
* sequence of fragmented chunks.
|
||
|
*/
|
||
|
|
||
|
if (skb_queue_empty(&ulpq->reasm))
|
||
|
return NULL;
|
||
|
|
||
|
last_frag = first_frag = NULL;
|
||
|
retval = NULL;
|
||
|
next_tsn = 0;
|
||
|
is_last = 0;
|
||
|
|
||
|
skb_queue_walk(&ulpq->reasm, pos) {
|
||
|
cevent = sctp_skb2event(pos);
|
||
|
ctsn = cevent->tsn;
|
||
|
|
||
|
switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
|
||
|
case SCTP_DATA_MIDDLE_FRAG:
|
||
|
if (!first_frag) {
|
||
|
first_frag = pos;
|
||
|
next_tsn = ctsn + 1;
|
||
|
last_frag = pos;
|
||
|
} else if (next_tsn == ctsn)
|
||
|
next_tsn++;
|
||
|
else
|
||
|
goto done;
|
||
|
break;
|
||
|
case SCTP_DATA_LAST_FRAG:
|
||
|
if (!first_frag)
|
||
|
first_frag = pos;
|
||
|
else if (ctsn != next_tsn)
|
||
|
goto done;
|
||
|
last_frag = pos;
|
||
|
is_last = 1;
|
||
|
goto done;
|
||
|
default:
|
||
|
return NULL;
|
||
|
};
|
||
|
}
|
||
|
|
||
|
/* We have the reassembled event. There is no need to look
|
||
|
* further.
|
||
|
*/
|
||
|
done:
|
||
|
retval = sctp_make_reassembled_event(first_frag, last_frag);
|
||
|
if (retval && is_last)
|
||
|
retval->msg_flags |= MSG_EOR;
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Helper function to reassemble chunks. Hold chunks on the reasm queue that
|
||
|
* need reassembling.
|
||
|
*/
|
||
|
static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
|
||
|
struct sctp_ulpevent *event)
|
||
|
{
|
||
|
struct sctp_ulpevent *retval = NULL;
|
||
|
|
||
|
/* Check if this is part of a fragmented message. */
|
||
|
if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) {
|
||
|
event->msg_flags |= MSG_EOR;
|
||
|
return event;
|
||
|
}
|
||
|
|
||
|
sctp_ulpq_store_reasm(ulpq, event);
|
||
|
if (!ulpq->pd_mode)
|
||
|
retval = sctp_ulpq_retrieve_reassembled(ulpq);
|
||
|
else {
|
||
|
__u32 ctsn, ctsnap;
|
||
|
|
||
|
/* Do not even bother unless this is the next tsn to
|
||
|
* be delivered.
|
||
|
*/
|
||
|
ctsn = event->tsn;
|
||
|
ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map);
|
||
|
if (TSN_lte(ctsn, ctsnap))
|
||
|
retval = sctp_ulpq_retrieve_partial(ulpq);
|
||
|
}
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/* Retrieve the first part (sequential fragments) for partial delivery. */
|
||
|
static inline struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq)
|
||
|
{
|
||
|
struct sk_buff *pos, *last_frag, *first_frag;
|
||
|
struct sctp_ulpevent *cevent;
|
||
|
__u32 ctsn, next_tsn;
|
||
|
struct sctp_ulpevent *retval;
|
||
|
|
||
|
/* The chunks are held in the reasm queue sorted by TSN.
|
||
|
* Walk through the queue sequentially and look for a sequence of
|
||
|
* fragmented chunks that start a datagram.
|
||
|
*/
|
||
|
|
||
|
if (skb_queue_empty(&ulpq->reasm))
|
||
|
return NULL;
|
||
|
|
||
|
last_frag = first_frag = NULL;
|
||
|
retval = NULL;
|
||
|
next_tsn = 0;
|
||
|
|
||
|
skb_queue_walk(&ulpq->reasm, pos) {
|
||
|
cevent = sctp_skb2event(pos);
|
||
|
ctsn = cevent->tsn;
|
||
|
|
||
|
switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
|
||
|
case SCTP_DATA_FIRST_FRAG:
|
||
|
if (!first_frag) {
|
||
|
first_frag = pos;
|
||
|
next_tsn = ctsn + 1;
|
||
|
last_frag = pos;
|
||
|
} else
|
||
|
goto done;
|
||
|
break;
|
||
|
|
||
|
case SCTP_DATA_MIDDLE_FRAG:
|
||
|
if (!first_frag)
|
||
|
return NULL;
|
||
|
if (ctsn == next_tsn) {
|
||
|
next_tsn++;
|
||
|
last_frag = pos;
|
||
|
} else
|
||
|
goto done;
|
||
|
break;
|
||
|
default:
|
||
|
return NULL;
|
||
|
};
|
||
|
}
|
||
|
|
||
|
/* We have the reassembled event. There is no need to look
|
||
|
* further.
|
||
|
*/
|
||
|
done:
|
||
|
retval = sctp_make_reassembled_event(first_frag, last_frag);
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/* Helper function to gather skbs that have possibly become
|
||
|
* ordered by an an incoming chunk.
|
||
|
*/
|
||
|
static inline void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq,
|
||
|
struct sctp_ulpevent *event)
|
||
|
{
|
||
|
struct sk_buff *pos, *tmp;
|
||
|
struct sctp_ulpevent *cevent;
|
||
|
struct sctp_stream *in;
|
||
|
__u16 sid, csid;
|
||
|
__u16 ssn, cssn;
|
||
|
|
||
|
sid = event->stream;
|
||
|
ssn = event->ssn;
|
||
|
in = &ulpq->asoc->ssnmap->in;
|
||
|
|
||
|
/* We are holding the chunks by stream, by SSN. */
|
||
|
sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
|
||
|
cevent = (struct sctp_ulpevent *) pos->cb;
|
||
|
csid = cevent->stream;
|
||
|
cssn = cevent->ssn;
|
||
|
|
||
|
/* Have we gone too far? */
|
||
|
if (csid > sid)
|
||
|
break;
|
||
|
|
||
|
/* Have we not gone far enough? */
|
||
|
if (csid < sid)
|
||
|
continue;
|
||
|
|
||
|
if (cssn != sctp_ssn_peek(in, sid))
|
||
|
break;
|
||
|
|
||
|
/* Found it, so mark in the ssnmap. */
|
||
|
sctp_ssn_next(in, sid);
|
||
|
|
||
|
__skb_unlink(pos, pos->list);
|
||
|
|
||
|
/* Attach all gathered skbs to the event. */
|
||
|
__skb_queue_tail(sctp_event2skb(event)->list, pos);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Helper function to store chunks needing ordering. */
|
||
|
static inline void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq,
|
||
|
struct sctp_ulpevent *event)
|
||
|
{
|
||
|
struct sk_buff *pos;
|
||
|
struct sctp_ulpevent *cevent;
|
||
|
__u16 sid, csid;
|
||
|
__u16 ssn, cssn;
|
||
|
|
||
|
pos = skb_peek_tail(&ulpq->lobby);
|
||
|
if (!pos) {
|
||
|
__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
sid = event->stream;
|
||
|
ssn = event->ssn;
|
||
|
|
||
|
cevent = (struct sctp_ulpevent *) pos->cb;
|
||
|
csid = cevent->stream;
|
||
|
cssn = cevent->ssn;
|
||
|
if (sid > csid) {
|
||
|
__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if ((sid == csid) && SSN_lt(cssn, ssn)) {
|
||
|
__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Find the right place in this list. We store them by
|
||
|
* stream ID and then by SSN.
|
||
|
*/
|
||
|
skb_queue_walk(&ulpq->lobby, pos) {
|
||
|
cevent = (struct sctp_ulpevent *) pos->cb;
|
||
|
csid = cevent->stream;
|
||
|
cssn = cevent->ssn;
|
||
|
|
||
|
if (csid > sid)
|
||
|
break;
|
||
|
if (csid == sid && SSN_lt(ssn, cssn))
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Insert before pos. */
|
||
|
__skb_insert(sctp_event2skb(event), pos->prev, pos, &ulpq->lobby);
|
||
|
|
||
|
}
|
||
|
|
||
|
static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq,
|
||
|
struct sctp_ulpevent *event)
|
||
|
{
|
||
|
__u16 sid, ssn;
|
||
|
struct sctp_stream *in;
|
||
|
|
||
|
/* Check if this message needs ordering. */
|
||
|
if (SCTP_DATA_UNORDERED & event->msg_flags)
|
||
|
return event;
|
||
|
|
||
|
/* Note: The stream ID must be verified before this routine. */
|
||
|
sid = event->stream;
|
||
|
ssn = event->ssn;
|
||
|
in = &ulpq->asoc->ssnmap->in;
|
||
|
|
||
|
/* Is this the expected SSN for this stream ID? */
|
||
|
if (ssn != sctp_ssn_peek(in, sid)) {
|
||
|
/* We've received something out of order, so find where it
|
||
|
* needs to be placed. We order by stream and then by SSN.
|
||
|
*/
|
||
|
sctp_ulpq_store_ordered(ulpq, event);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* Mark that the next chunk has been found. */
|
||
|
sctp_ssn_next(in, sid);
|
||
|
|
||
|
/* Go find any other chunks that were waiting for
|
||
|
* ordering.
|
||
|
*/
|
||
|
sctp_ulpq_retrieve_ordered(ulpq, event);
|
||
|
|
||
|
return event;
|
||
|
}
|
||
|
|
||
|
/* Helper function to gather skbs that have possibly become
|
||
|
* ordered by forward tsn skipping their dependencies.
|
||
|
*/
|
||
|
static inline void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq)
|
||
|
{
|
||
|
struct sk_buff *pos, *tmp;
|
||
|
struct sctp_ulpevent *cevent;
|
||
|
struct sctp_ulpevent *event = NULL;
|
||
|
struct sctp_stream *in;
|
||
|
struct sk_buff_head temp;
|
||
|
__u16 csid, cssn;
|
||
|
|
||
|
in = &ulpq->asoc->ssnmap->in;
|
||
|
|
||
|
/* We are holding the chunks by stream, by SSN. */
|
||
|
sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
|
||
|
cevent = (struct sctp_ulpevent *) pos->cb;
|
||
|
csid = cevent->stream;
|
||
|
cssn = cevent->ssn;
|
||
|
|
||
|
if (cssn != sctp_ssn_peek(in, csid))
|
||
|
break;
|
||
|
|
||
|
/* Found it, so mark in the ssnmap. */
|
||
|
sctp_ssn_next(in, csid);
|
||
|
|
||
|
__skb_unlink(pos, pos->list);
|
||
|
if (!event) {
|
||
|
/* Create a temporary list to collect chunks on. */
|
||
|
event = sctp_skb2event(pos);
|
||
|
skb_queue_head_init(&temp);
|
||
|
__skb_queue_tail(&temp, sctp_event2skb(event));
|
||
|
} else {
|
||
|
/* Attach all gathered skbs to the event. */
|
||
|
__skb_queue_tail(sctp_event2skb(event)->list, pos);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Send event to the ULP. */
|
||
|
if (event)
|
||
|
sctp_ulpq_tail_event(ulpq, event);
|
||
|
}
|
||
|
|
||
|
/* Skip over an SSN. */
|
||
|
void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn)
|
||
|
{
|
||
|
struct sctp_stream *in;
|
||
|
|
||
|
/* Note: The stream ID must be verified before this routine. */
|
||
|
in = &ulpq->asoc->ssnmap->in;
|
||
|
|
||
|
/* Is this an old SSN? If so ignore. */
|
||
|
if (SSN_lt(ssn, sctp_ssn_peek(in, sid)))
|
||
|
return;
|
||
|
|
||
|
/* Mark that we are no longer expecting this SSN or lower. */
|
||
|
sctp_ssn_skip(in, sid, ssn);
|
||
|
|
||
|
/* Go find any other chunks that were waiting for
|
||
|
* ordering and deliver them if needed.
|
||
|
*/
|
||
|
sctp_ulpq_reap_ordered(ulpq);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Renege 'needed' bytes from the ordering queue. */
|
||
|
static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed)
|
||
|
{
|
||
|
__u16 freed = 0;
|
||
|
__u32 tsn;
|
||
|
struct sk_buff *skb;
|
||
|
struct sctp_ulpevent *event;
|
||
|
struct sctp_tsnmap *tsnmap;
|
||
|
|
||
|
tsnmap = &ulpq->asoc->peer.tsn_map;
|
||
|
|
||
|
while ((skb = __skb_dequeue_tail(&ulpq->lobby)) != NULL) {
|
||
|
freed += skb_headlen(skb);
|
||
|
event = sctp_skb2event(skb);
|
||
|
tsn = event->tsn;
|
||
|
|
||
|
sctp_ulpevent_free(event);
|
||
|
sctp_tsnmap_renege(tsnmap, tsn);
|
||
|
if (freed >= needed)
|
||
|
return freed;
|
||
|
}
|
||
|
|
||
|
return freed;
|
||
|
}
|
||
|
|
||
|
/* Renege 'needed' bytes from the reassembly queue. */
|
||
|
static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed)
|
||
|
{
|
||
|
__u16 freed = 0;
|
||
|
__u32 tsn;
|
||
|
struct sk_buff *skb;
|
||
|
struct sctp_ulpevent *event;
|
||
|
struct sctp_tsnmap *tsnmap;
|
||
|
|
||
|
tsnmap = &ulpq->asoc->peer.tsn_map;
|
||
|
|
||
|
/* Walk backwards through the list, reneges the newest tsns. */
|
||
|
while ((skb = __skb_dequeue_tail(&ulpq->reasm)) != NULL) {
|
||
|
freed += skb_headlen(skb);
|
||
|
event = sctp_skb2event(skb);
|
||
|
tsn = event->tsn;
|
||
|
|
||
|
sctp_ulpevent_free(event);
|
||
|
sctp_tsnmap_renege(tsnmap, tsn);
|
||
|
if (freed >= needed)
|
||
|
return freed;
|
||
|
}
|
||
|
|
||
|
return freed;
|
||
|
}
|
||
|
|
||
|
/* Partial deliver the first message as there is pressure on rwnd. */
|
||
|
void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq,
|
||
|
struct sctp_chunk *chunk, int gfp)
|
||
|
{
|
||
|
struct sctp_ulpevent *event;
|
||
|
struct sctp_association *asoc;
|
||
|
|
||
|
asoc = ulpq->asoc;
|
||
|
|
||
|
/* Are we already in partial delivery mode? */
|
||
|
if (!sctp_sk(asoc->base.sk)->pd_mode) {
|
||
|
|
||
|
/* Is partial delivery possible? */
|
||
|
event = sctp_ulpq_retrieve_first(ulpq);
|
||
|
/* Send event to the ULP. */
|
||
|
if (event) {
|
||
|
sctp_ulpq_tail_event(ulpq, event);
|
||
|
sctp_sk(asoc->base.sk)->pd_mode = 1;
|
||
|
ulpq->pd_mode = 1;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Renege some packets to make room for an incoming chunk. */
|
||
|
void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
|
||
|
int gfp)
|
||
|
{
|
||
|
struct sctp_association *asoc;
|
||
|
__u16 needed, freed;
|
||
|
|
||
|
asoc = ulpq->asoc;
|
||
|
|
||
|
if (chunk) {
|
||
|
needed = ntohs(chunk->chunk_hdr->length);
|
||
|
needed -= sizeof(sctp_data_chunk_t);
|
||
|
} else
|
||
|
needed = SCTP_DEFAULT_MAXWINDOW;
|
||
|
|
||
|
freed = 0;
|
||
|
|
||
|
if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) {
|
||
|
freed = sctp_ulpq_renege_order(ulpq, needed);
|
||
|
if (freed < needed) {
|
||
|
freed += sctp_ulpq_renege_frags(ulpq, needed - freed);
|
||
|
}
|
||
|
}
|
||
|
/* If able to free enough room, accept this chunk. */
|
||
|
if (chunk && (freed >= needed)) {
|
||
|
__u32 tsn;
|
||
|
tsn = ntohl(chunk->subh.data_hdr->tsn);
|
||
|
sctp_tsnmap_mark(&asoc->peer.tsn_map, tsn);
|
||
|
sctp_ulpq_tail_data(ulpq, chunk, gfp);
|
||
|
|
||
|
sctp_ulpq_partial_delivery(ulpq, chunk, gfp);
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/* Notify the application if an association is aborted and in
|
||
|
* partial delivery mode. Send up any pending received messages.
|
||
|
*/
|
||
|
void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, int gfp)
|
||
|
{
|
||
|
struct sctp_ulpevent *ev = NULL;
|
||
|
struct sock *sk;
|
||
|
|
||
|
if (!ulpq->pd_mode)
|
||
|
return;
|
||
|
|
||
|
sk = ulpq->asoc->base.sk;
|
||
|
if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT,
|
||
|
&sctp_sk(sk)->subscribe))
|
||
|
ev = sctp_ulpevent_make_pdapi(ulpq->asoc,
|
||
|
SCTP_PARTIAL_DELIVERY_ABORTED,
|
||
|
gfp);
|
||
|
if (ev)
|
||
|
__skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev));
|
||
|
|
||
|
/* If there is data waiting, send it up the socket now. */
|
||
|
if (sctp_ulpq_clear_pd(ulpq) || ev)
|
||
|
sk->sk_data_ready(sk, 0);
|
||
|
}
|