android_kernel_xiaomi_sm8350/drivers/isdn/hisax/ipacx.c

914 lines
27 KiB
C
Raw Normal View History

/*
*
* IPACX specific routines
*
* Author Joerg Petersohn
* Derived from hisax_isac.c, isac.c, hscx.c and others
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include "hisax_if.h"
#include "hisax.h"
#include "isdnl1.h"
#include "ipacx.h"
#define DBUSY_TIMER_VALUE 80
#define TIMER3_VALUE 7000
#define MAX_DFRAME_LEN_L1 300
#define B_FIFO_SIZE 64
#define D_FIFO_SIZE 32
// ipacx interrupt mask values
#define _MASK_IMASK 0x2E // global mask
#define _MASKB_IMASK 0x0B
#define _MASKD_IMASK 0x03 // all on
//----------------------------------------------------------
// local function declarations
//----------------------------------------------------------
static void ph_command(struct IsdnCardState *cs, unsigned int command);
static inline void cic_int(struct IsdnCardState *cs);
static void dch_l2l1(struct PStack *st, int pr, void *arg);
static void dbusy_timer_handler(struct IsdnCardState *cs);
static void dch_empty_fifo(struct IsdnCardState *cs, int count);
static void dch_fill_fifo(struct IsdnCardState *cs);
static inline void dch_int(struct IsdnCardState *cs);
static void dch_setstack(struct PStack *st, struct IsdnCardState *cs);
static void dch_init(struct IsdnCardState *cs);
static void bch_l2l1(struct PStack *st, int pr, void *arg);
static void bch_empty_fifo(struct BCState *bcs, int count);
static void bch_fill_fifo(struct BCState *bcs);
static void bch_int(struct IsdnCardState *cs, u_char hscx);
static void bch_mode(struct BCState *bcs, int mode, int bc);
static void bch_close_state(struct BCState *bcs);
static int bch_open_state(struct IsdnCardState *cs, struct BCState *bcs);
static int bch_setstack(struct PStack *st, struct BCState *bcs);
static void bch_init(struct IsdnCardState *cs, int hscx);
static void clear_pending_ints(struct IsdnCardState *cs);
//----------------------------------------------------------
// Issue Layer 1 command to chip
//----------------------------------------------------------
static void
ph_command(struct IsdnCardState *cs, unsigned int command)
{
if (cs->debug &L1_DEB_ISAC)
debugl1(cs, "ph_command (%#x) in (%#x)", command,
cs->dc.isac.ph_state);
//###################################
// printk(KERN_INFO "ph_command (%#x)\n", command);
//###################################
cs->writeisac(cs, IPACX_CIX0, (command << 4) | 0x0E);
}
//----------------------------------------------------------
// Transceiver interrupt handler
//----------------------------------------------------------
static inline void
cic_int(struct IsdnCardState *cs)
{
u_char event;
event = cs->readisac(cs, IPACX_CIR0) >> 4;
if (cs->debug &L1_DEB_ISAC) debugl1(cs, "cic_int(event=%#x)", event);
//#########################################
// printk(KERN_INFO "cic_int(%x)\n", event);
//#########################################
cs->dc.isac.ph_state = event;
schedule_event(cs, D_L1STATECHANGE);
}
//==========================================================
// D channel functions
//==========================================================
//----------------------------------------------------------
// Command entry point
//----------------------------------------------------------
static void
dch_l2l1(struct PStack *st, int pr, void *arg)
{
struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
struct sk_buff *skb = arg;
u_char cda1_cr, cda2_cr;
switch (pr) {
case (PH_DATA |REQUEST):
if (cs->debug &DEB_DLOG_HEX) LogFrame(cs, skb->data, skb->len);
if (cs->debug &DEB_DLOG_VERBOSE) dlogframe(cs, skb, 0);
if (cs->tx_skb) {
skb_queue_tail(&cs->sq, skb);
#ifdef L2FRAME_DEBUG
if (cs->debug &L1_DEB_LAPD) Logl2Frame(cs, skb, "PH_DATA Queued", 0);
#endif
} else {
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG
if (cs->debug &L1_DEB_LAPD) Logl2Frame(cs, skb, "PH_DATA", 0);
#endif
dch_fill_fifo(cs);
}
break;
case (PH_PULL |INDICATION):
if (cs->tx_skb) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
skb_queue_tail(&cs->sq, skb);
break;
}
if (cs->debug & DEB_DLOG_HEX) LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE) dlogframe(cs, skb, 0);
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG
if (cs->debug & L1_DEB_LAPD) Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
#endif
dch_fill_fifo(cs);
break;
case (PH_PULL | REQUEST):
#ifdef L2FRAME_DEBUG
if (cs->debug & L1_DEB_LAPD) debugl1(cs, "-> PH_REQUEST_PULL");
#endif
if (!cs->tx_skb) {
clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (HW_RESET | REQUEST):
case (HW_ENABLE | REQUEST):
if ((cs->dc.isac.ph_state == IPACX_IND_RES) ||
(cs->dc.isac.ph_state == IPACX_IND_DR) ||
(cs->dc.isac.ph_state == IPACX_IND_DC))
ph_command(cs, IPACX_CMD_TIM);
else
ph_command(cs, IPACX_CMD_RES);
break;
case (HW_INFO3 | REQUEST):
ph_command(cs, IPACX_CMD_AR8);
break;
case (HW_TESTLOOP | REQUEST):
cs->writeisac(cs, IPACX_CDA_TSDP10, 0x80); // Timeslot 0 is B1
cs->writeisac(cs, IPACX_CDA_TSDP11, 0x81); // Timeslot 0 is B1
cda1_cr = cs->readisac(cs, IPACX_CDA1_CR);
cda2_cr = cs->readisac(cs, IPACX_CDA2_CR);
if ((long)arg &1) { // loop B1
cs->writeisac(cs, IPACX_CDA1_CR, cda1_cr |0x0a);
}
else { // B1 off
cs->writeisac(cs, IPACX_CDA1_CR, cda1_cr &~0x0a);
}
if ((long)arg &2) { // loop B2
cs->writeisac(cs, IPACX_CDA1_CR, cda1_cr |0x14);
}
else { // B2 off
cs->writeisac(cs, IPACX_CDA1_CR, cda1_cr &~0x14);
}
break;
case (HW_DEACTIVATE | RESPONSE):
skb_queue_purge(&cs->rq);
skb_queue_purge(&cs->sq);
if (cs->tx_skb) {
dev_kfree_skb_any(cs->tx_skb);
cs->tx_skb = NULL;
}
if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
del_timer(&cs->dbusytimer);
break;
default:
if (cs->debug &L1_DEB_WARN) debugl1(cs, "dch_l2l1 unknown %04x", pr);
break;
}
}
//----------------------------------------------------------
//----------------------------------------------------------
static void
dbusy_timer_handler(struct IsdnCardState *cs)
{
struct PStack *st;
int rbchd, stard;
if (test_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) {
rbchd = cs->readisac(cs, IPACX_RBCHD);
stard = cs->readisac(cs, IPACX_STARD);
if (cs->debug)
debugl1(cs, "D-Channel Busy RBCHD %02x STARD %02x", rbchd, stard);
if (!(stard &0x40)) { // D-Channel Busy
set_bit(FLG_L1_DBUSY, &cs->HW_Flags);
for (st = cs->stlist; st; st = st->next) {
st->l1.l1l2(st, PH_PAUSE | INDICATION, NULL); // flow control on
}
} else {
// seems we lost an interrupt; reset transceiver */
clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags);
if (cs->tx_skb) {
dev_kfree_skb_any(cs->tx_skb);
cs->tx_cnt = 0;
cs->tx_skb = NULL;
} else {
printk(KERN_WARNING "HiSax: ISAC D-Channel Busy no skb\n");
debugl1(cs, "D-Channel Busy no skb");
}
cs->writeisac(cs, IPACX_CMDRD, 0x01); // Tx reset, generates XPR
}
}
}
//----------------------------------------------------------
// Fill buffer from receive FIFO
//----------------------------------------------------------
static void
dch_empty_fifo(struct IsdnCardState *cs, int count)
{
u_char *ptr;
if ((cs->debug &L1_DEB_ISAC) && !(cs->debug &L1_DEB_ISAC_FIFO))
debugl1(cs, "dch_empty_fifo()");
// message too large, remove
if ((cs->rcvidx + count) >= MAX_DFRAME_LEN_L1) {
if (cs->debug &L1_DEB_WARN)
debugl1(cs, "dch_empty_fifo() incoming message too large");
cs->writeisac(cs, IPACX_CMDRD, 0x80); // RMC
cs->rcvidx = 0;
return;
}
ptr = cs->rcvbuf + cs->rcvidx;
cs->rcvidx += count;
cs->readisacfifo(cs, ptr, count);
cs->writeisac(cs, IPACX_CMDRD, 0x80); // RMC
if (cs->debug &L1_DEB_ISAC_FIFO) {
char *t = cs->dlog;
t += sprintf(t, "dch_empty_fifo() cnt %d", count);
QuickHex(t, ptr, count);
debugl1(cs, cs->dlog);
}
}
//----------------------------------------------------------
// Fill transmit FIFO
//----------------------------------------------------------
static void
dch_fill_fifo(struct IsdnCardState *cs)
{
int count;
u_char cmd, *ptr;
if ((cs->debug &L1_DEB_ISAC) && !(cs->debug &L1_DEB_ISAC_FIFO))
debugl1(cs, "dch_fill_fifo()");
if (!cs->tx_skb) return;
count = cs->tx_skb->len;
if (count <= 0) return;
if (count > D_FIFO_SIZE) {
count = D_FIFO_SIZE;
cmd = 0x08; // XTF
} else {
cmd = 0x0A; // XTF | XME
}
ptr = cs->tx_skb->data;
skb_pull(cs->tx_skb, count);
cs->tx_cnt += count;
cs->writeisacfifo(cs, ptr, count);
cs->writeisac(cs, IPACX_CMDRD, cmd);
// set timeout for transmission contol
if (test_and_set_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) {
debugl1(cs, "dch_fill_fifo dbusytimer running");
del_timer(&cs->dbusytimer);
}
init_timer(&cs->dbusytimer);
cs->dbusytimer.expires = jiffies + ((DBUSY_TIMER_VALUE * HZ)/1000);
add_timer(&cs->dbusytimer);
if (cs->debug &L1_DEB_ISAC_FIFO) {
char *t = cs->dlog;
t += sprintf(t, "dch_fill_fifo() cnt %d", count);
QuickHex(t, ptr, count);
debugl1(cs, cs->dlog);
}
}
//----------------------------------------------------------
// D channel interrupt handler
//----------------------------------------------------------
static inline void
dch_int(struct IsdnCardState *cs)
{
struct sk_buff *skb;
u_char istad, rstad;
int count;
istad = cs->readisac(cs, IPACX_ISTAD);
//##############################################
// printk(KERN_WARNING "dch_int(istad=%02x)\n", istad);
//##############################################
if (istad &0x80) { // RME
rstad = cs->readisac(cs, IPACX_RSTAD);
if ((rstad &0xf0) != 0xa0) { // !(VFR && !RDO && CRC && !RAB)
if (!(rstad &0x80))
if (cs->debug &L1_DEB_WARN)
debugl1(cs, "dch_int(): invalid frame");
if ((rstad &0x40))
if (cs->debug &L1_DEB_WARN)
debugl1(cs, "dch_int(): RDO");
if (!(rstad &0x20))
if (cs->debug &L1_DEB_WARN)
debugl1(cs, "dch_int(): CRC error");
cs->writeisac(cs, IPACX_CMDRD, 0x80); // RMC
} else { // received frame ok
count = cs->readisac(cs, IPACX_RBCLD);
if (count) count--; // RSTAB is last byte
count &= D_FIFO_SIZE-1;
if (count == 0) count = D_FIFO_SIZE;
dch_empty_fifo(cs, count);
if ((count = cs->rcvidx) > 0) {
cs->rcvidx = 0;
if (!(skb = dev_alloc_skb(count)))
printk(KERN_WARNING "HiSax dch_int(): receive out of memory\n");
else {
memcpy(skb_put(skb, count), cs->rcvbuf, count);
skb_queue_tail(&cs->rq, skb);
}
}
}
cs->rcvidx = 0;
schedule_event(cs, D_RCVBUFREADY);
}
if (istad &0x40) { // RPF
dch_empty_fifo(cs, D_FIFO_SIZE);
}
if (istad &0x20) { // RFO
if (cs->debug &L1_DEB_WARN) debugl1(cs, "dch_int(): RFO");
cs->writeisac(cs, IPACX_CMDRD, 0x40); //RRES
}
if (istad &0x10) { // XPR
if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
del_timer(&cs->dbusytimer);
if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
schedule_event(cs, D_CLEARBUSY);
if (cs->tx_skb) {
if (cs->tx_skb->len) {
dch_fill_fifo(cs);
goto afterXPR;
}
else {
dev_kfree_skb_irq(cs->tx_skb);
cs->tx_skb = NULL;
cs->tx_cnt = 0;
}
}
if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
cs->tx_cnt = 0;
dch_fill_fifo(cs);
}
else {
schedule_event(cs, D_XMTBUFREADY);
}
}
afterXPR:
if (istad &0x0C) { // XDU or XMR
if (cs->debug &L1_DEB_WARN) debugl1(cs, "dch_int(): XDU");
if (cs->tx_skb) {
skb_push(cs->tx_skb, cs->tx_cnt); // retransmit
cs->tx_cnt = 0;
dch_fill_fifo(cs);
} else {
printk(KERN_WARNING "HiSax: ISAC XDU no skb\n");
debugl1(cs, "ISAC XDU no skb");
}
}
}
//----------------------------------------------------------
//----------------------------------------------------------
static void
dch_setstack(struct PStack *st, struct IsdnCardState *cs)
{
st->l1.l1hw = dch_l2l1;
}
//----------------------------------------------------------
//----------------------------------------------------------
static void
dch_init(struct IsdnCardState *cs)
{
printk(KERN_INFO "HiSax: IPACX ISDN driver v0.1.0\n");
cs->setstack_d = dch_setstack;
cs->dbusytimer.function = (void *) dbusy_timer_handler;
cs->dbusytimer.data = (long) cs;
init_timer(&cs->dbusytimer);
cs->writeisac(cs, IPACX_TR_CONF0, 0x00); // clear LDD
cs->writeisac(cs, IPACX_TR_CONF2, 0x00); // enable transmitter
cs->writeisac(cs, IPACX_MODED, 0xC9); // transparent mode 0, RAC, stop/go
cs->writeisac(cs, IPACX_MON_CR, 0x00); // disable monitor channel
}
//==========================================================
// B channel functions
//==========================================================
//----------------------------------------------------------
// Entry point for commands
//----------------------------------------------------------
static void
bch_l2l1(struct PStack *st, int pr, void *arg)
{
struct BCState *bcs = st->l1.bcs;
struct sk_buff *skb = arg;
u_long flags;
switch (pr) {
case (PH_DATA | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
skb_queue_tail(&bcs->squeue, skb);
} else {
bcs->tx_skb = skb;
set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->hw.hscx.count = 0;
bch_fill_fifo(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | INDICATION):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
printk(KERN_WARNING "HiSax bch_l2l1(): this shouldn't happen\n");
} else {
set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->tx_skb = skb;
bcs->hw.hscx.count = 0;
bch_fill_fifo(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | REQUEST):
if (!bcs->tx_skb) {
clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (PH_ACTIVATE | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
set_bit(BC_FLG_ACTIV, &bcs->Flag);
bch_mode(bcs, st->l1.mode, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | REQUEST):
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | CONFIRM):
spin_lock_irqsave(&bcs->cs->lock, flags);
clear_bit(BC_FLG_ACTIV, &bcs->Flag);
clear_bit(BC_FLG_BUSY, &bcs->Flag);
bch_mode(bcs, 0, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
break;
}
}
//----------------------------------------------------------
// Read B channel fifo to receive buffer
//----------------------------------------------------------
static void
bch_empty_fifo(struct BCState *bcs, int count)
{
u_char *ptr, hscx;
struct IsdnCardState *cs;
int cnt;
cs = bcs->cs;
hscx = bcs->hw.hscx.hscx;
if ((cs->debug &L1_DEB_HSCX) && !(cs->debug &L1_DEB_HSCX_FIFO))
debugl1(cs, "bch_empty_fifo()");
// message too large, remove
if (bcs->hw.hscx.rcvidx + count > HSCX_BUFMAX) {
if (cs->debug &L1_DEB_WARN)
debugl1(cs, "bch_empty_fifo() incoming packet too large");
cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x80); // RMC
bcs->hw.hscx.rcvidx = 0;
return;
}
ptr = bcs->hw.hscx.rcvbuf + bcs->hw.hscx.rcvidx;
cnt = count;
while (cnt--) *ptr++ = cs->BC_Read_Reg(cs, hscx, IPACX_RFIFOB);
cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x80); // RMC
ptr = bcs->hw.hscx.rcvbuf + bcs->hw.hscx.rcvidx;
bcs->hw.hscx.rcvidx += count;
if (cs->debug &L1_DEB_HSCX_FIFO) {
char *t = bcs->blog;
t += sprintf(t, "bch_empty_fifo() B-%d cnt %d", hscx, count);
QuickHex(t, ptr, count);
debugl1(cs, bcs->blog);
}
}
//----------------------------------------------------------
// Fill buffer to transmit FIFO
//----------------------------------------------------------
static void
bch_fill_fifo(struct BCState *bcs)
{
struct IsdnCardState *cs;
int more, count, cnt;
u_char *ptr, *p, hscx;
cs = bcs->cs;
if ((cs->debug &L1_DEB_HSCX) && !(cs->debug &L1_DEB_HSCX_FIFO))
debugl1(cs, "bch_fill_fifo()");
if (!bcs->tx_skb) return;
if (bcs->tx_skb->len <= 0) return;
hscx = bcs->hw.hscx.hscx;
more = (bcs->mode == L1_MODE_TRANS) ? 1 : 0;
if (bcs->tx_skb->len > B_FIFO_SIZE) {
more = 1;
count = B_FIFO_SIZE;
} else {
count = bcs->tx_skb->len;
}
cnt = count;
p = ptr = bcs->tx_skb->data;
skb_pull(bcs->tx_skb, count);
bcs->tx_cnt -= count;
bcs->hw.hscx.count += count;
while (cnt--) cs->BC_Write_Reg(cs, hscx, IPACX_XFIFOB, *p++);
cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, (more ? 0x08 : 0x0a));
if (cs->debug &L1_DEB_HSCX_FIFO) {
char *t = bcs->blog;
t += sprintf(t, "chb_fill_fifo() B-%d cnt %d", hscx, count);
QuickHex(t, ptr, count);
debugl1(cs, bcs->blog);
}
}
//----------------------------------------------------------
// B channel interrupt handler
//----------------------------------------------------------
static void
bch_int(struct IsdnCardState *cs, u_char hscx)
{
u_char istab;
struct BCState *bcs;
struct sk_buff *skb;
int count;
u_char rstab;
bcs = cs->bcs + hscx;
istab = cs->BC_Read_Reg(cs, hscx, IPACX_ISTAB);
//##############################################
// printk(KERN_WARNING "bch_int(istab=%02x)\n", istab);
//##############################################
if (!test_bit(BC_FLG_INIT, &bcs->Flag)) return;
if (istab &0x80) { // RME
rstab = cs->BC_Read_Reg(cs, hscx, IPACX_RSTAB);
if ((rstab &0xf0) != 0xa0) { // !(VFR && !RDO && CRC && !RAB)
if (!(rstab &0x80))
if (cs->debug &L1_DEB_WARN)
debugl1(cs, "bch_int() B-%d: invalid frame", hscx);
if ((rstab &0x40) && (bcs->mode != L1_MODE_NULL))
if (cs->debug &L1_DEB_WARN)
debugl1(cs, "bch_int() B-%d: RDO mode=%d", hscx, bcs->mode);
if (!(rstab &0x20))
if (cs->debug &L1_DEB_WARN)
debugl1(cs, "bch_int() B-%d: CRC error", hscx);
cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x80); // RMC
}
else { // received frame ok
count = cs->BC_Read_Reg(cs, hscx, IPACX_RBCLB) &(B_FIFO_SIZE-1);
if (count == 0) count = B_FIFO_SIZE;
bch_empty_fifo(bcs, count);
if ((count = bcs->hw.hscx.rcvidx - 1) > 0) {
if (cs->debug &L1_DEB_HSCX_FIFO)
debugl1(cs, "bch_int Frame %d", count);
if (!(skb = dev_alloc_skb(count)))
printk(KERN_WARNING "HiSax bch_int(): receive frame out of memory\n");
else {
memcpy(skb_put(skb, count), bcs->hw.hscx.rcvbuf, count);
skb_queue_tail(&bcs->rqueue, skb);
}
}
}
bcs->hw.hscx.rcvidx = 0;
schedule_event(bcs, B_RCVBUFREADY);
}
if (istab &0x40) { // RPF
bch_empty_fifo(bcs, B_FIFO_SIZE);
if (bcs->mode == L1_MODE_TRANS) { // queue every chunk
// receive transparent audio data
if (!(skb = dev_alloc_skb(B_FIFO_SIZE)))
printk(KERN_WARNING "HiSax bch_int(): receive transparent out of memory\n");
else {
memcpy(skb_put(skb, B_FIFO_SIZE), bcs->hw.hscx.rcvbuf, B_FIFO_SIZE);
skb_queue_tail(&bcs->rqueue, skb);
}
bcs->hw.hscx.rcvidx = 0;
schedule_event(bcs, B_RCVBUFREADY);
}
}
if (istab &0x20) { // RFO
if (cs->debug &L1_DEB_WARN)
debugl1(cs, "bch_int() B-%d: RFO error", hscx);
cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x40); // RRES
}
if (istab &0x10) { // XPR
if (bcs->tx_skb) {
if (bcs->tx_skb->len) {
bch_fill_fifo(bcs);
goto afterXPR;
} else {
if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
(PACKET_NOACK != bcs->tx_skb->pkt_type)) {
u_long flags;
spin_lock_irqsave(&bcs->aclock, flags);
bcs->ackcnt += bcs->hw.hscx.count;
spin_unlock_irqrestore(&bcs->aclock, flags);
schedule_event(bcs, B_ACKPENDING);
}
}
dev_kfree_skb_irq(bcs->tx_skb);
bcs->hw.hscx.count = 0;
bcs->tx_skb = NULL;
}
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
bcs->hw.hscx.count = 0;
set_bit(BC_FLG_BUSY, &bcs->Flag);
bch_fill_fifo(bcs);
} else {
clear_bit(BC_FLG_BUSY, &bcs->Flag);
schedule_event(bcs, B_XMTBUFREADY);
}
}
afterXPR:
if (istab &0x04) { // XDU
if (bcs->mode == L1_MODE_TRANS) {
bch_fill_fifo(bcs);
}
else {
if (bcs->tx_skb) { // restart transmitting the whole frame
skb_push(bcs->tx_skb, bcs->hw.hscx.count);
bcs->tx_cnt += bcs->hw.hscx.count;
bcs->hw.hscx.count = 0;
}
cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x01); // XRES
if (cs->debug &L1_DEB_WARN)
debugl1(cs, "bch_int() B-%d XDU error", hscx);
}
}
}
//----------------------------------------------------------
//----------------------------------------------------------
static void
bch_mode(struct BCState *bcs, int mode, int bc)
{
struct IsdnCardState *cs = bcs->cs;
int hscx = bcs->hw.hscx.hscx;
bc = bc ? 1 : 0; // in case bc is greater than 1
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "mode_bch() switch B-% mode %d chan %d", hscx, mode, bc);
bcs->mode = mode;
bcs->channel = bc;
// map controller to according timeslot
if (!hscx)
{
cs->writeisac(cs, IPACX_BCHA_TSDP_BC1, 0x80 | bc);
cs->writeisac(cs, IPACX_BCHA_CR, 0x88);
}
else
{
cs->writeisac(cs, IPACX_BCHB_TSDP_BC1, 0x80 | bc);
cs->writeisac(cs, IPACX_BCHB_CR, 0x88);
}
switch (mode) {
case (L1_MODE_NULL):
cs->BC_Write_Reg(cs, hscx, IPACX_MODEB, 0xC0); // rec off
cs->BC_Write_Reg(cs, hscx, IPACX_EXMB, 0x30); // std adj.
cs->BC_Write_Reg(cs, hscx, IPACX_MASKB, 0xFF); // ints off
cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x41); // validate adjustments
break;
case (L1_MODE_TRANS):
cs->BC_Write_Reg(cs, hscx, IPACX_MODEB, 0x88); // ext transp mode
cs->BC_Write_Reg(cs, hscx, IPACX_EXMB, 0x00); // xxx00000
cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x41); // validate adjustments
cs->BC_Write_Reg(cs, hscx, IPACX_MASKB, _MASKB_IMASK);
break;
case (L1_MODE_HDLC):
cs->BC_Write_Reg(cs, hscx, IPACX_MODEB, 0xC8); // transp mode 0
cs->BC_Write_Reg(cs, hscx, IPACX_EXMB, 0x01); // idle=hdlc flags crc enabled
cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x41); // validate adjustments
cs->BC_Write_Reg(cs, hscx, IPACX_MASKB, _MASKB_IMASK);
break;
}
}
//----------------------------------------------------------
//----------------------------------------------------------
static void
bch_close_state(struct BCState *bcs)
{
bch_mode(bcs, 0, bcs->channel);
if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
kfree(bcs->hw.hscx.rcvbuf);
bcs->hw.hscx.rcvbuf = NULL;
kfree(bcs->blog);
bcs->blog = NULL;
skb_queue_purge(&bcs->rqueue);
skb_queue_purge(&bcs->squeue);
if (bcs->tx_skb) {
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
}
}
//----------------------------------------------------------
//----------------------------------------------------------
static int
bch_open_state(struct IsdnCardState *cs, struct BCState *bcs)
{
if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
if (!(bcs->hw.hscx.rcvbuf = kmalloc(HSCX_BUFMAX, GFP_ATOMIC))) {
printk(KERN_WARNING
"HiSax open_bchstate(): No memory for hscx.rcvbuf\n");
clear_bit(BC_FLG_INIT, &bcs->Flag);
return (1);
}
if (!(bcs->blog = kmalloc(MAX_BLOG_SPACE, GFP_ATOMIC))) {
printk(KERN_WARNING
"HiSax open_bchstate: No memory for bcs->blog\n");
clear_bit(BC_FLG_INIT, &bcs->Flag);
kfree(bcs->hw.hscx.rcvbuf);
bcs->hw.hscx.rcvbuf = NULL;
return (2);
}
skb_queue_head_init(&bcs->rqueue);
skb_queue_head_init(&bcs->squeue);
}
bcs->tx_skb = NULL;
clear_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->event = 0;
bcs->hw.hscx.rcvidx = 0;
bcs->tx_cnt = 0;
return (0);
}
//----------------------------------------------------------
//----------------------------------------------------------
static int
bch_setstack(struct PStack *st, struct BCState *bcs)
{
bcs->channel = st->l1.bc;
if (bch_open_state(st->l1.hardware, bcs)) return (-1);
st->l1.bcs = bcs;
st->l2.l2l1 = bch_l2l1;
setstack_manager(st);
bcs->st = st;
setstack_l1_B(st);
return (0);
}
//----------------------------------------------------------
//----------------------------------------------------------
static void
bch_init(struct IsdnCardState *cs, int hscx)
{
cs->bcs[hscx].BC_SetStack = bch_setstack;
cs->bcs[hscx].BC_Close = bch_close_state;
cs->bcs[hscx].hw.hscx.hscx = hscx;
cs->bcs[hscx].cs = cs;
bch_mode(cs->bcs + hscx, 0, hscx);
}
//==========================================================
// Shared functions
//==========================================================
//----------------------------------------------------------
// Main interrupt handler
//----------------------------------------------------------
void
interrupt_ipacx(struct IsdnCardState *cs)
{
u_char ista;
while ((ista = cs->readisac(cs, IPACX_ISTA))) {
//#################################################
// printk(KERN_WARNING "interrupt_ipacx(ista=%02x)\n", ista);
//#################################################
if (ista &0x80) bch_int(cs, 0); // B channel interrupts
if (ista &0x40) bch_int(cs, 1);
if (ista &0x01) dch_int(cs); // D channel
if (ista &0x10) cic_int(cs); // Layer 1 state
}
}
//----------------------------------------------------------
// Clears chip interrupt status
//----------------------------------------------------------
static void
clear_pending_ints(struct IsdnCardState *cs)
{
int ista;
// all interrupts off
cs->writeisac(cs, IPACX_MASK, 0xff);
cs->writeisac(cs, IPACX_MASKD, 0xff);
cs->BC_Write_Reg(cs, 0, IPACX_MASKB, 0xff);
cs->BC_Write_Reg(cs, 1, IPACX_MASKB, 0xff);
ista = cs->readisac(cs, IPACX_ISTA);
if (ista &0x80) cs->BC_Read_Reg(cs, 0, IPACX_ISTAB);
if (ista &0x40) cs->BC_Read_Reg(cs, 1, IPACX_ISTAB);
if (ista &0x10) cs->readisac(cs, IPACX_CIR0);
if (ista &0x01) cs->readisac(cs, IPACX_ISTAD);
}
//----------------------------------------------------------
// Does chip configuration work
// Work to do depends on bit mask in part
//----------------------------------------------------------
void
init_ipacx(struct IsdnCardState *cs, int part)
{
if (part &1) { // initialise chip
//##################################################
// printk(KERN_INFO "init_ipacx(%x)\n", part);
//##################################################
clear_pending_ints(cs);
bch_init(cs, 0);
bch_init(cs, 1);
dch_init(cs);
}
if (part &2) { // reenable all interrupts and start chip
cs->BC_Write_Reg(cs, 0, IPACX_MASKB, _MASKB_IMASK);
cs->BC_Write_Reg(cs, 1, IPACX_MASKB, _MASKB_IMASK);
cs->writeisac(cs, IPACX_MASKD, _MASKD_IMASK);
cs->writeisac(cs, IPACX_MASK, _MASK_IMASK); // global mask register
// reset HDLC Transmitters/receivers
cs->writeisac(cs, IPACX_CMDRD, 0x41);
cs->BC_Write_Reg(cs, 0, IPACX_CMDRB, 0x41);
cs->BC_Write_Reg(cs, 1, IPACX_CMDRB, 0x41);
ph_command(cs, IPACX_CMD_RES);
}
}
//----------------- end of file -----------------------