ftrace: dynamic enabling/disabling of function calls
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.
The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.
Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.
e.g.
call ftrace /* 5 bytes */
is replaced with
jmp 3f /* jmp is 2 bytes and we jump 3 forward */
3:
When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace. When it is disabled,
we replace the code back to the jmp.
Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls. A large batch is allocated at
boot up to get most of the calls there.
Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 15:20:42 -04:00
|
|
|
/*
|
|
|
|
* Code for replacing ftrace calls with jumps.
|
|
|
|
*
|
|
|
|
* Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
|
|
|
|
*
|
|
|
|
* Thanks goes to Ingo Molnar, for suggesting the idea.
|
|
|
|
* Mathieu Desnoyers, for suggesting postponing the modifications.
|
|
|
|
* Arjan van de Ven, for keeping me straight, and explaining to me
|
|
|
|
* the dangers of modifying code on the run.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <linux/hardirq.h>
|
|
|
|
#include <linux/ftrace.h>
|
|
|
|
#include <linux/percpu.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/list.h>
|
|
|
|
|
2008-05-12 15:20:43 -04:00
|
|
|
#include <asm/alternative.h>
|
2008-06-21 14:17:27 -04:00
|
|
|
#include <asm/ftrace.h>
|
ftrace: dynamic enabling/disabling of function calls
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.
The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.
Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.
e.g.
call ftrace /* 5 bytes */
is replaced with
jmp 3f /* jmp is 2 bytes and we jump 3 forward */
3:
When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace. When it is disabled,
we replace the code back to the jmp.
Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls. A large batch is allocated at
boot up to get most of the calls there.
Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 15:20:42 -04:00
|
|
|
|
|
|
|
|
2008-05-12 15:20:43 -04:00
|
|
|
/* Long is fine, even if it is only 4 bytes ;-) */
|
|
|
|
static long *ftrace_nop;
|
ftrace: dynamic enabling/disabling of function calls
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.
The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.
Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.
e.g.
call ftrace /* 5 bytes */
is replaced with
jmp 3f /* jmp is 2 bytes and we jump 3 forward */
3:
When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace. When it is disabled,
we replace the code back to the jmp.
Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls. A large batch is allocated at
boot up to get most of the calls there.
Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 15:20:42 -04:00
|
|
|
|
|
|
|
union ftrace_code_union {
|
2008-06-21 14:17:27 -04:00
|
|
|
char code[MCOUNT_INSN_SIZE];
|
ftrace: dynamic enabling/disabling of function calls
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.
The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.
Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.
e.g.
call ftrace /* 5 bytes */
is replaced with
jmp 3f /* jmp is 2 bytes and we jump 3 forward */
3:
When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace. When it is disabled,
we replace the code back to the jmp.
Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls. A large batch is allocated at
boot up to get most of the calls there.
Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 15:20:42 -04:00
|
|
|
struct {
|
|
|
|
char e8;
|
|
|
|
int offset;
|
|
|
|
} __attribute__((packed));
|
|
|
|
};
|
|
|
|
|
2008-06-21 14:17:27 -04:00
|
|
|
|
2008-05-12 15:20:43 -04:00
|
|
|
static int notrace ftrace_calc_offset(long ip, long addr)
|
|
|
|
{
|
|
|
|
return (int)(addr - ip);
|
|
|
|
}
|
ftrace: dynamic enabling/disabling of function calls
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.
The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.
Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.
e.g.
call ftrace /* 5 bytes */
is replaced with
jmp 3f /* jmp is 2 bytes and we jump 3 forward */
3:
When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace. When it is disabled,
we replace the code back to the jmp.
Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls. A large batch is allocated at
boot up to get most of the calls there.
Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 15:20:42 -04:00
|
|
|
|
2008-05-12 15:20:43 -04:00
|
|
|
notrace unsigned char *ftrace_nop_replace(void)
|
|
|
|
{
|
|
|
|
return (char *)ftrace_nop;
|
|
|
|
}
|
|
|
|
|
|
|
|
notrace unsigned char *ftrace_call_replace(unsigned long ip, unsigned long addr)
|
|
|
|
{
|
|
|
|
static union ftrace_code_union calc;
|
ftrace: dynamic enabling/disabling of function calls
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.
The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.
Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.
e.g.
call ftrace /* 5 bytes */
is replaced with
jmp 3f /* jmp is 2 bytes and we jump 3 forward */
3:
When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace. When it is disabled,
we replace the code back to the jmp.
Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls. A large batch is allocated at
boot up to get most of the calls there.
Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 15:20:42 -04:00
|
|
|
|
2008-05-12 15:20:43 -04:00
|
|
|
calc.e8 = 0xe8;
|
2008-06-21 14:17:27 -04:00
|
|
|
calc.offset = ftrace_calc_offset(ip + MCOUNT_INSN_SIZE, addr);
|
2008-05-12 15:20:43 -04:00
|
|
|
|
|
|
|
/*
|
|
|
|
* No locking needed, this must be called via kstop_machine
|
|
|
|
* which in essence is like running on a uniprocessor machine.
|
|
|
|
*/
|
|
|
|
return calc.code;
|
ftrace: dynamic enabling/disabling of function calls
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.
The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.
Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.
e.g.
call ftrace /* 5 bytes */
is replaced with
jmp 3f /* jmp is 2 bytes and we jump 3 forward */
3:
When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace. When it is disabled,
we replace the code back to the jmp.
Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls. A large batch is allocated at
boot up to get most of the calls there.
Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 15:20:42 -04:00
|
|
|
}
|
|
|
|
|
2008-05-12 15:20:43 -04:00
|
|
|
notrace int
|
ftrace: dynamic enabling/disabling of function calls
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.
The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.
Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.
e.g.
call ftrace /* 5 bytes */
is replaced with
jmp 3f /* jmp is 2 bytes and we jump 3 forward */
3:
When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace. When it is disabled,
we replace the code back to the jmp.
Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls. A large batch is allocated at
boot up to get most of the calls there.
Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 15:20:42 -04:00
|
|
|
ftrace_modify_code(unsigned long ip, unsigned char *old_code,
|
|
|
|
unsigned char *new_code)
|
|
|
|
{
|
2008-05-12 15:20:43 -04:00
|
|
|
unsigned replaced;
|
|
|
|
unsigned old = *(unsigned *)old_code; /* 4 bytes */
|
|
|
|
unsigned new = *(unsigned *)new_code; /* 4 bytes */
|
|
|
|
unsigned char newch = new_code[4];
|
ftrace: dynamic enabling/disabling of function calls
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.
The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.
Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.
e.g.
call ftrace /* 5 bytes */
is replaced with
jmp 3f /* jmp is 2 bytes and we jump 3 forward */
3:
When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace. When it is disabled,
we replace the code back to the jmp.
Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls. A large batch is allocated at
boot up to get most of the calls there.
Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 15:20:42 -04:00
|
|
|
int faulted = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Note: Due to modules and __init, code can
|
|
|
|
* disappear and change, we need to protect against faulting
|
|
|
|
* as well as code changing.
|
|
|
|
*
|
|
|
|
* No real locking needed, this code is run through
|
|
|
|
* kstop_machine.
|
|
|
|
*/
|
|
|
|
asm volatile (
|
|
|
|
"1: lock\n"
|
2008-05-12 15:20:43 -04:00
|
|
|
" cmpxchg %3, (%2)\n"
|
|
|
|
" jnz 2f\n"
|
|
|
|
" movb %b4, 4(%2)\n"
|
ftrace: dynamic enabling/disabling of function calls
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.
The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.
Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.
e.g.
call ftrace /* 5 bytes */
is replaced with
jmp 3f /* jmp is 2 bytes and we jump 3 forward */
3:
When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace. When it is disabled,
we replace the code back to the jmp.
Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls. A large batch is allocated at
boot up to get most of the calls there.
Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 15:20:42 -04:00
|
|
|
"2:\n"
|
|
|
|
".section .fixup, \"ax\"\n"
|
2008-05-12 15:20:56 -04:00
|
|
|
"3: movl $1, %0\n"
|
|
|
|
" jmp 2b\n"
|
ftrace: dynamic enabling/disabling of function calls
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.
The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.
Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.
e.g.
call ftrace /* 5 bytes */
is replaced with
jmp 3f /* jmp is 2 bytes and we jump 3 forward */
3:
When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace. When it is disabled,
we replace the code back to the jmp.
Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls. A large batch is allocated at
boot up to get most of the calls there.
Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 15:20:42 -04:00
|
|
|
".previous\n"
|
|
|
|
_ASM_EXTABLE(1b, 3b)
|
|
|
|
: "=r"(faulted), "=a"(replaced)
|
2008-06-17 11:43:02 -04:00
|
|
|
: "r"(ip), "r"(new), "c"(newch),
|
2008-05-12 15:20:43 -04:00
|
|
|
"0"(faulted), "a"(old)
|
ftrace: dynamic enabling/disabling of function calls
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.
The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.
Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.
e.g.
call ftrace /* 5 bytes */
is replaced with
jmp 3f /* jmp is 2 bytes and we jump 3 forward */
3:
When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace. When it is disabled,
we replace the code back to the jmp.
Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls. A large batch is allocated at
boot up to get most of the calls there.
Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 15:20:42 -04:00
|
|
|
: "memory");
|
|
|
|
sync_core();
|
|
|
|
|
2008-05-12 15:20:43 -04:00
|
|
|
if (replaced != old && replaced != new)
|
ftrace: dynamic enabling/disabling of function calls
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.
The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.
Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.
e.g.
call ftrace /* 5 bytes */
is replaced with
jmp 3f /* jmp is 2 bytes and we jump 3 forward */
3:
When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace. When it is disabled,
we replace the code back to the jmp.
Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls. A large batch is allocated at
boot up to get most of the calls there.
Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 15:20:42 -04:00
|
|
|
faulted = 2;
|
|
|
|
|
|
|
|
return faulted;
|
|
|
|
}
|
|
|
|
|
2008-05-12 15:20:43 -04:00
|
|
|
notrace int ftrace_update_ftrace_func(ftrace_func_t func)
|
|
|
|
{
|
|
|
|
unsigned long ip = (unsigned long)(&ftrace_call);
|
2008-06-21 14:17:27 -04:00
|
|
|
unsigned char old[MCOUNT_INSN_SIZE], *new;
|
2008-05-12 15:20:43 -04:00
|
|
|
int ret;
|
|
|
|
|
2008-06-21 14:17:27 -04:00
|
|
|
memcpy(old, &ftrace_call, MCOUNT_INSN_SIZE);
|
2008-05-12 15:20:43 -04:00
|
|
|
new = ftrace_call_replace(ip, (unsigned long)func);
|
|
|
|
ret = ftrace_modify_code(ip, old, new);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
notrace int ftrace_mcount_set(unsigned long *data)
|
|
|
|
{
|
|
|
|
unsigned long ip = (long)(&mcount_call);
|
|
|
|
unsigned long *addr = data;
|
2008-06-21 14:17:27 -04:00
|
|
|
unsigned char old[MCOUNT_INSN_SIZE], *new;
|
2008-05-12 15:20:43 -04:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Replace the mcount stub with a pointer to the
|
|
|
|
* ip recorder function.
|
|
|
|
*/
|
2008-06-21 14:17:27 -04:00
|
|
|
memcpy(old, &mcount_call, MCOUNT_INSN_SIZE);
|
2008-05-12 15:20:43 -04:00
|
|
|
new = ftrace_call_replace(ip, *addr);
|
|
|
|
*addr = ftrace_modify_code(ip, old, new);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int __init ftrace_dyn_arch_init(void *data)
|
ftrace: dynamic enabling/disabling of function calls
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.
The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.
Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.
e.g.
call ftrace /* 5 bytes */
is replaced with
jmp 3f /* jmp is 2 bytes and we jump 3 forward */
3:
When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace. When it is disabled,
we replace the code back to the jmp.
Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls. A large batch is allocated at
boot up to get most of the calls there.
Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 15:20:42 -04:00
|
|
|
{
|
2008-05-12 15:20:43 -04:00
|
|
|
const unsigned char *const *noptable = find_nop_table();
|
ftrace: dynamic enabling/disabling of function calls
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.
The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.
Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.
e.g.
call ftrace /* 5 bytes */
is replaced with
jmp 3f /* jmp is 2 bytes and we jump 3 forward */
3:
When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace. When it is disabled,
we replace the code back to the jmp.
Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls. A large batch is allocated at
boot up to get most of the calls there.
Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 15:20:42 -04:00
|
|
|
|
2008-05-12 15:20:43 -04:00
|
|
|
/* This is running in kstop_machine */
|
|
|
|
|
|
|
|
ftrace_mcount_set(data);
|
|
|
|
|
2008-06-21 14:17:27 -04:00
|
|
|
ftrace_nop = (unsigned long *)noptable[MCOUNT_INSN_SIZE];
|
2008-05-12 15:20:43 -04:00
|
|
|
|
ftrace: dynamic enabling/disabling of function calls
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.
The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.
Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.
e.g.
call ftrace /* 5 bytes */
is replaced with
jmp 3f /* jmp is 2 bytes and we jump 3 forward */
3:
When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace. When it is disabled,
we replace the code back to the jmp.
Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls. A large batch is allocated at
boot up to get most of the calls there.
Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 15:20:42 -04:00
|
|
|
return 0;
|
|
|
|
}
|