android_kernel_xiaomi_sm8350/arch/ppc/mm/init.c

625 lines
16 KiB
C
Raw Normal View History

/*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
* Copyright (C) 1996 Paul Mackerras
* Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
* PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
*
* Derived from "arch/i386/mm/init.c"
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
#include <linux/initrd.h>
#include <linux/pagemap.h>
#include <asm/pgalloc.h>
#include <asm/prom.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/smp.h>
#include <asm/machdep.h>
#include <asm/btext.h>
#include <asm/tlb.h>
#include <asm/bootinfo.h>
#include "mem_pieces.h"
#include "mmu_decl.h"
#if defined(CONFIG_KERNEL_START_BOOL) || defined(CONFIG_LOWMEM_SIZE_BOOL)
/* The ammount of lowmem must be within 0xF0000000 - KERNELBASE. */
#if (CONFIG_LOWMEM_SIZE > (0xF0000000 - KERNELBASE))
#error "You must adjust CONFIG_LOWMEM_SIZE or CONFIG_START_KERNEL"
#endif
#endif
#define MAX_LOW_MEM CONFIG_LOWMEM_SIZE
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
unsigned long total_memory;
unsigned long total_lowmem;
unsigned long ppc_memstart;
unsigned long ppc_memoffset = PAGE_OFFSET;
int mem_init_done;
int init_bootmem_done;
int boot_mapsize;
extern char _end[];
extern char etext[], _stext[];
extern char __init_begin, __init_end;
#ifdef CONFIG_HIGHMEM
pte_t *kmap_pte;
pgprot_t kmap_prot;
EXPORT_SYMBOL(kmap_prot);
EXPORT_SYMBOL(kmap_pte);
#endif
void MMU_init(void);
void set_phys_avail(unsigned long total_ram);
/* XXX should be in current.h -- paulus */
extern struct task_struct *current_set[NR_CPUS];
char *klimit = _end;
struct mem_pieces phys_avail;
/*
* this tells the system to map all of ram with the segregs
* (i.e. page tables) instead of the bats.
* -- Cort
*/
int __map_without_bats;
int __map_without_ltlbs;
/* max amount of RAM to use */
unsigned long __max_memory;
/* max amount of low RAM to map in */
unsigned long __max_low_memory = MAX_LOW_MEM;
void show_mem(void)
{
int i,free = 0,total = 0,reserved = 0;
int shared = 0, cached = 0;
int highmem = 0;
printk("Mem-info:\n");
show_free_areas();
printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
i = max_mapnr;
while (i-- > 0) {
total++;
if (PageHighMem(mem_map+i))
highmem++;
if (PageReserved(mem_map+i))
reserved++;
else if (PageSwapCache(mem_map+i))
cached++;
else if (!page_count(mem_map+i))
free++;
else
shared += page_count(mem_map+i) - 1;
}
printk("%d pages of RAM\n",total);
printk("%d pages of HIGHMEM\n", highmem);
printk("%d free pages\n",free);
printk("%d reserved pages\n",reserved);
printk("%d pages shared\n",shared);
printk("%d pages swap cached\n",cached);
}
/* Free up now-unused memory */
static void free_sec(unsigned long start, unsigned long end, const char *name)
{
unsigned long cnt = 0;
while (start < end) {
ClearPageReserved(virt_to_page(start));
set_page_count(virt_to_page(start), 1);
free_page(start);
cnt++;
start += PAGE_SIZE;
}
if (cnt) {
printk(" %ldk %s", cnt << (PAGE_SHIFT - 10), name);
totalram_pages += cnt;
}
}
void free_initmem(void)
{
#define FREESEC(TYPE) \
free_sec((unsigned long)(&__ ## TYPE ## _begin), \
(unsigned long)(&__ ## TYPE ## _end), \
#TYPE);
printk ("Freeing unused kernel memory:");
FREESEC(init);
printk("\n");
ppc_md.progress = NULL;
#undef FREESEC
}
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
for (; start < end; start += PAGE_SIZE) {
ClearPageReserved(virt_to_page(start));
set_page_count(virt_to_page(start), 1);
free_page(start);
totalram_pages++;
}
}
#endif
/*
* Check for command-line options that affect what MMU_init will do.
*/
void MMU_setup(void)
{
/* Check for nobats option (used in mapin_ram). */
if (strstr(cmd_line, "nobats")) {
__map_without_bats = 1;
}
if (strstr(cmd_line, "noltlbs")) {
__map_without_ltlbs = 1;
}
/* Look for mem= option on command line */
if (strstr(cmd_line, "mem=")) {
char *p, *q;
unsigned long maxmem = 0;
for (q = cmd_line; (p = strstr(q, "mem=")) != 0; ) {
q = p + 4;
if (p > cmd_line && p[-1] != ' ')
continue;
maxmem = simple_strtoul(q, &q, 0);
if (*q == 'k' || *q == 'K') {
maxmem <<= 10;
++q;
} else if (*q == 'm' || *q == 'M') {
maxmem <<= 20;
++q;
}
}
__max_memory = maxmem;
}
}
/*
* MMU_init sets up the basic memory mappings for the kernel,
* including both RAM and possibly some I/O regions,
* and sets up the page tables and the MMU hardware ready to go.
*/
void __init MMU_init(void)
{
if (ppc_md.progress)
ppc_md.progress("MMU:enter", 0x111);
/* parse args from command line */
MMU_setup();
/*
* Figure out how much memory we have, how much
* is lowmem, and how much is highmem. If we were
* passed the total memory size from the bootloader,
* just use it.
*/
if (boot_mem_size)
total_memory = boot_mem_size;
else
total_memory = ppc_md.find_end_of_memory();
if (__max_memory && total_memory > __max_memory)
total_memory = __max_memory;
total_lowmem = total_memory;
#ifdef CONFIG_FSL_BOOKE
/* Freescale Book-E parts expect lowmem to be mapped by fixed TLB
* entries, so we need to adjust lowmem to match the amount we can map
* in the fixed entries */
adjust_total_lowmem();
#endif /* CONFIG_FSL_BOOKE */
if (total_lowmem > __max_low_memory) {
total_lowmem = __max_low_memory;
#ifndef CONFIG_HIGHMEM
total_memory = total_lowmem;
#endif /* CONFIG_HIGHMEM */
}
set_phys_avail(total_lowmem);
/* Initialize the MMU hardware */
if (ppc_md.progress)
ppc_md.progress("MMU:hw init", 0x300);
MMU_init_hw();
/* Map in all of RAM starting at KERNELBASE */
if (ppc_md.progress)
ppc_md.progress("MMU:mapin", 0x301);
mapin_ram();
#ifdef CONFIG_HIGHMEM
ioremap_base = PKMAP_BASE;
#else
ioremap_base = 0xfe000000UL; /* for now, could be 0xfffff000 */
#endif /* CONFIG_HIGHMEM */
ioremap_bot = ioremap_base;
/* Map in I/O resources */
if (ppc_md.progress)
ppc_md.progress("MMU:setio", 0x302);
if (ppc_md.setup_io_mappings)
ppc_md.setup_io_mappings();
/* Initialize the context management stuff */
mmu_context_init();
if (ppc_md.progress)
ppc_md.progress("MMU:exit", 0x211);
#ifdef CONFIG_BOOTX_TEXT
/* By default, we are no longer mapped */
boot_text_mapped = 0;
/* Must be done last, or ppc_md.progress will die. */
map_boot_text();
#endif
}
/* This is only called until mem_init is done. */
void __init *early_get_page(void)
{
void *p;
if (init_bootmem_done) {
p = alloc_bootmem_pages(PAGE_SIZE);
} else {
p = mem_pieces_find(PAGE_SIZE, PAGE_SIZE);
}
return p;
}
/*
* Initialize the bootmem system and give it all the memory we
* have available.
*/
void __init do_init_bootmem(void)
{
unsigned long start, size;
int i;
/*
* Find an area to use for the bootmem bitmap.
* We look for the first area which is at least
* 128kB in length (128kB is enough for a bitmap
* for 4GB of memory, using 4kB pages), plus 1 page
* (in case the address isn't page-aligned).
*/
start = 0;
size = 0;
for (i = 0; i < phys_avail.n_regions; ++i) {
unsigned long a = phys_avail.regions[i].address;
unsigned long s = phys_avail.regions[i].size;
if (s <= size)
continue;
start = a;
size = s;
if (s >= 33 * PAGE_SIZE)
break;
}
start = PAGE_ALIGN(start);
min_low_pfn = start >> PAGE_SHIFT;
max_low_pfn = (PPC_MEMSTART + total_lowmem) >> PAGE_SHIFT;
max_pfn = (PPC_MEMSTART + total_memory) >> PAGE_SHIFT;
boot_mapsize = init_bootmem_node(&contig_page_data, min_low_pfn,
PPC_MEMSTART >> PAGE_SHIFT,
max_low_pfn);
/* remove the bootmem bitmap from the available memory */
mem_pieces_remove(&phys_avail, start, boot_mapsize, 1);
/* add everything in phys_avail into the bootmem map */
for (i = 0; i < phys_avail.n_regions; ++i)
free_bootmem(phys_avail.regions[i].address,
phys_avail.regions[i].size);
init_bootmem_done = 1;
}
/*
* paging_init() sets up the page tables - in fact we've already done this.
*/
void __init paging_init(void)
{
unsigned long zones_size[MAX_NR_ZONES], i;
#ifdef CONFIG_HIGHMEM
map_page(PKMAP_BASE, 0, 0); /* XXX gross */
pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
(PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
(KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
kmap_prot = PAGE_KERNEL;
#endif /* CONFIG_HIGHMEM */
/*
* All pages are DMA-able so we put them all in the DMA zone.
*/
zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
for (i = 1; i < MAX_NR_ZONES; i++)
zones_size[i] = 0;
#ifdef CONFIG_HIGHMEM
zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
#endif /* CONFIG_HIGHMEM */
free_area_init(zones_size);
}
void __init mem_init(void)
{
unsigned long addr;
int codepages = 0;
int datapages = 0;
int initpages = 0;
#ifdef CONFIG_HIGHMEM
unsigned long highmem_mapnr;
highmem_mapnr = total_lowmem >> PAGE_SHIFT;
#endif /* CONFIG_HIGHMEM */
max_mapnr = total_memory >> PAGE_SHIFT;
high_memory = (void *) __va(PPC_MEMSTART + total_lowmem);
num_physpages = max_mapnr; /* RAM is assumed contiguous */
totalram_pages += free_all_bootmem();
#ifdef CONFIG_BLK_DEV_INITRD
/* if we are booted from BootX with an initial ramdisk,
make sure the ramdisk pages aren't reserved. */
if (initrd_start) {
for (addr = initrd_start; addr < initrd_end; addr += PAGE_SIZE)
ClearPageReserved(virt_to_page(addr));
}
#endif /* CONFIG_BLK_DEV_INITRD */
#ifdef CONFIG_PPC_OF
/* mark the RTAS pages as reserved */
if ( rtas_data )
for (addr = (ulong)__va(rtas_data);
addr < PAGE_ALIGN((ulong)__va(rtas_data)+rtas_size) ;
addr += PAGE_SIZE)
SetPageReserved(virt_to_page(addr));
#endif
for (addr = PAGE_OFFSET; addr < (unsigned long)high_memory;
addr += PAGE_SIZE) {
if (!PageReserved(virt_to_page(addr)))
continue;
if (addr < (ulong) etext)
codepages++;
else if (addr >= (unsigned long)&__init_begin
&& addr < (unsigned long)&__init_end)
initpages++;
else if (addr < (ulong) klimit)
datapages++;
}
#ifdef CONFIG_HIGHMEM
{
unsigned long pfn;
for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
struct page *page = mem_map + pfn;
ClearPageReserved(page);
set_page_count(page, 1);
__free_page(page);
totalhigh_pages++;
}
totalram_pages += totalhigh_pages;
}
#endif /* CONFIG_HIGHMEM */
printk("Memory: %luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
(unsigned long)nr_free_pages()<< (PAGE_SHIFT-10),
codepages<< (PAGE_SHIFT-10), datapages<< (PAGE_SHIFT-10),
initpages<< (PAGE_SHIFT-10),
(unsigned long) (totalhigh_pages << (PAGE_SHIFT-10)));
mem_init_done = 1;
}
/*
* Set phys_avail to the amount of physical memory,
* less the kernel text/data/bss.
*/
void __init
set_phys_avail(unsigned long total_memory)
{
unsigned long kstart, ksize;
/*
* Initially, available physical memory is equivalent to all
* physical memory.
*/
phys_avail.regions[0].address = PPC_MEMSTART;
phys_avail.regions[0].size = total_memory;
phys_avail.n_regions = 1;
/*
* Map out the kernel text/data/bss from the available physical
* memory.
*/
kstart = __pa(_stext); /* should be 0 */
ksize = PAGE_ALIGN(klimit - _stext);
mem_pieces_remove(&phys_avail, kstart, ksize, 0);
mem_pieces_remove(&phys_avail, 0, 0x4000, 0);
#if defined(CONFIG_BLK_DEV_INITRD)
/* Remove the init RAM disk from the available memory. */
if (initrd_start) {
mem_pieces_remove(&phys_avail, __pa(initrd_start),
initrd_end - initrd_start, 1);
}
#endif /* CONFIG_BLK_DEV_INITRD */
#ifdef CONFIG_PPC_OF
/* remove the RTAS pages from the available memory */
if (rtas_data)
mem_pieces_remove(&phys_avail, rtas_data, rtas_size, 1);
#endif
}
/* Mark some memory as reserved by removing it from phys_avail. */
void __init reserve_phys_mem(unsigned long start, unsigned long size)
{
mem_pieces_remove(&phys_avail, start, size, 1);
}
/*
* This is called when a page has been modified by the kernel.
* It just marks the page as not i-cache clean. We do the i-cache
* flush later when the page is given to a user process, if necessary.
*/
void flush_dcache_page(struct page *page)
{
clear_bit(PG_arch_1, &page->flags);
}
void flush_dcache_icache_page(struct page *page)
{
#ifdef CONFIG_BOOKE
void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
__flush_dcache_icache(start);
kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
#elif defined(CONFIG_8xx)
[PATCH] ppc32: 8xx avoid icbi misbehaviour in __flush_dcache_icache_phys On 8xx, in the case where a pagefault happens for a process who's not the owner of the vma in question (ptrace for instance), the flush operation is performed via the physical address. Unfortunately, that results in a strange, unexplainable "icbi" instruction fault, most likely due to a CPU bug (see oops below). Avoid that by flushing the page via its kernel virtual address. Oops: kernel access of bad area, sig: 11 [#2] NIP: C000543C LR: C000B060 SP: C0F35DF0 REGS: c0f35d40 TRAP: 0300 Not tainted MSR: 00009022 EE: 1 PR: 0 FP: 0 ME: 1 IR/DR: 10 DAR: 00000010, DSISR: C2000000 TASK = c0ea8430[761] 'gdbserver' THREAD: c0f34000 Last syscall: 26 GPR00: 00009022 C0F35DF0 C0EA8430 00F59000 00000100 FFFFFFFF 00F58000 00000001 GPR08: C021DAEF C0270000 00009032 C0270000 22044024 10025428 01000800 00000001 GPR16: 007FFF3F 00000001 00000000 7FBC6AC0 00F61022 00000001 C0839300 C01E0000 GPR24: 00CD0889 C082F568 3000AC18 C02A7A00 C0EA15C8 00F588A9 C02ACB00 C02ACB00 NIP [c000543c] __flush_dcache_icache_phys+0x38/0x54 LR [c000b060] flush_dcache_icache_page+0x20/0x30 Call trace: [c000b154] update_mmu_cache+0x7c/0xa4 [c005ae98] do_wp_page+0x460/0x5ec [c005c8a0] handle_mm_fault+0x7cc/0x91c [c005ccec] get_user_pages+0x2fc/0x65c [c0027104] access_process_vm+0x9c/0x1d4 [c00076e0] sys_ptrace+0x240/0x4a4 [c0002bd0] ret_from_syscall+0x0/0x44 Signed-off-by: Marcelo Tosatti <marcelo.tosatti@cyclades.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-27 03:45:17 -04:00
/* On 8xx there is no need to kmap since highmem is not supported */
__flush_dcache_icache(page_address(page));
#else
__flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
#endif
}
void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
{
clear_page(page);
clear_bit(PG_arch_1, &pg->flags);
}
void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
struct page *pg)
{
copy_page(vto, vfrom);
clear_bit(PG_arch_1, &pg->flags);
}
void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
unsigned long addr, int len)
{
unsigned long maddr;
maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
flush_icache_range(maddr, maddr + len);
kunmap(page);
}
/*
* This is called at the end of handling a user page fault, when the
* fault has been handled by updating a PTE in the linux page tables.
* We use it to preload an HPTE into the hash table corresponding to
* the updated linux PTE.
*/
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
pte_t pte)
{
/* handle i-cache coherency */
unsigned long pfn = pte_pfn(pte);
if (pfn_valid(pfn)) {
struct page *page = pfn_to_page(pfn);
#ifdef CONFIG_8xx
[PATCH] ppc32 8xx: update_mmu_cache() needs unconditional tlbie Currently 8xx fails to boot due to endless pagefaults. Seems the bug is exposed by the change which avoids flushing the TLB when not necessary (in case the pte has not changed), introduced recently: __handle_mm_fault(): entry = pte_mkyoung(entry); if (!pte_same(old_entry, entry)) { ptep_set_access_flags(vma, address, pte, entry, write_access); update_mmu_cache(vma, address, entry); lazy_mmu_prot_update(entry); } else { /* * This is needed only for protection faults but the arch code * is not yet telling us if this is a protection fault or not. * This still avoids useless tlb flushes for .text page faults * with threads. */ if (write_access) flush_tlb_page(vma, address); } The "update_mmu_cache()" call was unconditional before, which caused the TLB to be flushed by: if (pfn_valid(pfn)) { struct page *page = pfn_to_page(pfn); if (!PageReserved(page) && !test_bit(PG_arch_1, &page->flags)) { if (vma->vm_mm == current->active_mm) { #ifdef CONFIG_8xx /* On 8xx, cache control instructions (particularly * "dcbst" from flush_dcache_icache) fault as write * operation if there is an unpopulated TLB entry * for the address in question. To workaround that, * we invalidate the TLB here, thus avoiding dcbst * misbehaviour. */ _tlbie(address); #endif __flush_dcache_icache((void *) address); } else flush_dcache_icache_page(page); set_bit(PG_arch_1, &page->flags); } Which worked to due to pure luck: PG_arch_1 was always unset before, but now it isnt. The root of the problem are the changes against the 8xx TLB handlers introduced during v2.6. What happens is the TLBMiss handlers load the zeroed pte into the TLB, causing the TLBError handler to be invoked (thats two TLB faults per pagefault), which then jumps to the generic MM code to setup the pte. The bug is that the zeroed TLB is not invalidated (the same reason for the "dcbst" misbehaviour), resulting in infinite TLBError faults. The "two exception" approach requires a TLB flush (to nuke the zeroed TLB) at each PTE update for correct behaviour: Signed-off-by: Marcelo Tosatti <marcelo.tosatti@cyclades.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-11-14 02:38:31 -05:00
/* On 8xx, the TLB handlers work in 2 stages:
* First, a zeroed entry is loaded by TLBMiss handler,
* which causes the TLBError handler to be triggered.
* That means the zeroed TLB has to be invalidated
* whenever a page miss occurs.
*/
_tlbie(address);
#endif
[PATCH] ppc32 8xx: update_mmu_cache() needs unconditional tlbie Currently 8xx fails to boot due to endless pagefaults. Seems the bug is exposed by the change which avoids flushing the TLB when not necessary (in case the pte has not changed), introduced recently: __handle_mm_fault(): entry = pte_mkyoung(entry); if (!pte_same(old_entry, entry)) { ptep_set_access_flags(vma, address, pte, entry, write_access); update_mmu_cache(vma, address, entry); lazy_mmu_prot_update(entry); } else { /* * This is needed only for protection faults but the arch code * is not yet telling us if this is a protection fault or not. * This still avoids useless tlb flushes for .text page faults * with threads. */ if (write_access) flush_tlb_page(vma, address); } The "update_mmu_cache()" call was unconditional before, which caused the TLB to be flushed by: if (pfn_valid(pfn)) { struct page *page = pfn_to_page(pfn); if (!PageReserved(page) && !test_bit(PG_arch_1, &page->flags)) { if (vma->vm_mm == current->active_mm) { #ifdef CONFIG_8xx /* On 8xx, cache control instructions (particularly * "dcbst" from flush_dcache_icache) fault as write * operation if there is an unpopulated TLB entry * for the address in question. To workaround that, * we invalidate the TLB here, thus avoiding dcbst * misbehaviour. */ _tlbie(address); #endif __flush_dcache_icache((void *) address); } else flush_dcache_icache_page(page); set_bit(PG_arch_1, &page->flags); } Which worked to due to pure luck: PG_arch_1 was always unset before, but now it isnt. The root of the problem are the changes against the 8xx TLB handlers introduced during v2.6. What happens is the TLBMiss handlers load the zeroed pte into the TLB, causing the TLBError handler to be invoked (thats two TLB faults per pagefault), which then jumps to the generic MM code to setup the pte. The bug is that the zeroed TLB is not invalidated (the same reason for the "dcbst" misbehaviour), resulting in infinite TLBError faults. The "two exception" approach requires a TLB flush (to nuke the zeroed TLB) at each PTE update for correct behaviour: Signed-off-by: Marcelo Tosatti <marcelo.tosatti@cyclades.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-11-14 02:38:31 -05:00
if (!PageReserved(page)
&& !test_bit(PG_arch_1, &page->flags)) {
if (vma->vm_mm == current->active_mm)
__flush_dcache_icache((void *) address);
[PATCH] ppc32 8xx: update_mmu_cache() needs unconditional tlbie Currently 8xx fails to boot due to endless pagefaults. Seems the bug is exposed by the change which avoids flushing the TLB when not necessary (in case the pte has not changed), introduced recently: __handle_mm_fault(): entry = pte_mkyoung(entry); if (!pte_same(old_entry, entry)) { ptep_set_access_flags(vma, address, pte, entry, write_access); update_mmu_cache(vma, address, entry); lazy_mmu_prot_update(entry); } else { /* * This is needed only for protection faults but the arch code * is not yet telling us if this is a protection fault or not. * This still avoids useless tlb flushes for .text page faults * with threads. */ if (write_access) flush_tlb_page(vma, address); } The "update_mmu_cache()" call was unconditional before, which caused the TLB to be flushed by: if (pfn_valid(pfn)) { struct page *page = pfn_to_page(pfn); if (!PageReserved(page) && !test_bit(PG_arch_1, &page->flags)) { if (vma->vm_mm == current->active_mm) { #ifdef CONFIG_8xx /* On 8xx, cache control instructions (particularly * "dcbst" from flush_dcache_icache) fault as write * operation if there is an unpopulated TLB entry * for the address in question. To workaround that, * we invalidate the TLB here, thus avoiding dcbst * misbehaviour. */ _tlbie(address); #endif __flush_dcache_icache((void *) address); } else flush_dcache_icache_page(page); set_bit(PG_arch_1, &page->flags); } Which worked to due to pure luck: PG_arch_1 was always unset before, but now it isnt. The root of the problem are the changes against the 8xx TLB handlers introduced during v2.6. What happens is the TLBMiss handlers load the zeroed pte into the TLB, causing the TLBError handler to be invoked (thats two TLB faults per pagefault), which then jumps to the generic MM code to setup the pte. The bug is that the zeroed TLB is not invalidated (the same reason for the "dcbst" misbehaviour), resulting in infinite TLBError faults. The "two exception" approach requires a TLB flush (to nuke the zeroed TLB) at each PTE update for correct behaviour: Signed-off-by: Marcelo Tosatti <marcelo.tosatti@cyclades.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-11-14 02:38:31 -05:00
else
flush_dcache_icache_page(page);
set_bit(PG_arch_1, &page->flags);
}
}
#ifdef CONFIG_PPC_STD_MMU
/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
if (Hash != 0 && pte_young(pte)) {
struct mm_struct *mm;
pmd_t *pmd;
mm = (address < TASK_SIZE)? vma->vm_mm: &init_mm;
pmd = pmd_offset(pgd_offset(mm, address), address);
if (!pmd_none(*pmd))
add_hash_page(mm->context, address, pmd_val(*pmd));
}
#endif
}
/*
* This is called by /dev/mem to know if a given address has to
* be mapped non-cacheable or not
*/
int page_is_ram(unsigned long pfn)
{
return pfn < max_pfn;
}
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t vma_prot)
{
if (ppc_md.phys_mem_access_prot)
return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
if (!page_is_ram(pfn))
vma_prot = __pgprot(pgprot_val(vma_prot)
| _PAGE_GUARDED | _PAGE_NO_CACHE);
return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);