android_kernel_xiaomi_sm8350/drivers/acpi/resources/rsdump.c

769 lines
24 KiB
C
Raw Normal View History

/*******************************************************************************
*
* Module Name: rsdump - Functions to display the resource structures.
*
******************************************************************************/
/*
* Copyright (C) 2000 - 2006, R. Byron Moore
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*/
#include <acpi/acpi.h>
#include <acpi/acresrc.h>
#define _COMPONENT ACPI_RESOURCES
ACPI_MODULE_NAME("rsdump")
2005-05-13 00:00:00 -04:00
#if defined(ACPI_DEBUG_OUTPUT) || defined(ACPI_DEBUGGER)
ACPICA 20050408 from Bob Moore Fixed three cases in the interpreter where an "index" argument to an ASL function was still (internally) 32 bits instead of the required 64 bits. This was the Index argument to the Index, Mid, and Match operators. The "strupr" function is now permanently local (acpi_ut_strupr), since this is not a POSIX-defined function and not present in most kernel-level C libraries. References to the C library strupr function have been removed from the headers. Completed the deployment of static functions/prototypes. All prototypes with the static attribute have been moved from the headers to the owning C file. ACPICA 20050329 from Bob Moore An error is now generated if an attempt is made to create a Buffer Field of length zero (A CreateField with a length operand of zero.) The interpreter now issues a warning whenever executable code at the module level is detected during ACPI table load. This will give some idea of the prevalence of this type of code. Implemented support for references to named objects (other than control methods) within package objects. Enhanced package object output for the debug object. Package objects are now completely dumped, showing all elements. Enhanced miscellaneous object output for the debug object. Any object can now be written to the debug object (for example, a device object can be written, and the type of the object will be displayed.) The "static" qualifier has been added to all local functions across the core subsystem. The number of "long" lines (> 80 chars) within the source has been significantly reduced, by about 1/3. Cleaned up all header files to ensure that all CA/iASL functions are prototyped (even static functions) and the formatting is consistent. Two new header files have been added, acopcode.h and acnames.h. Removed several obsolete functions that were no longer used. Signed-off-by: Len Brown <len.brown@intel.com>
2005-04-18 22:49:35 -04:00
/* Local prototypes */
static void acpi_rs_out_string(char *title, char *value);
static void acpi_rs_out_integer8(char *title, u8 value);
static void acpi_rs_out_integer16(char *title, u16 value);
static void acpi_rs_out_integer32(char *title, u32 value);
static void acpi_rs_out_integer64(char *title, u64 value);
static void acpi_rs_out_title(char *title);
static void acpi_rs_dump_byte_list(u16 length, u8 * data);
static void acpi_rs_dump_dword_list(u8 length, u32 * data);
static void acpi_rs_dump_short_byte_list(u8 length, u8 * data);
static void
acpi_rs_dump_resource_source(struct acpi_resource_source *resource_source);
static void acpi_rs_dump_address_common(union acpi_resource_data *resource);
static void
acpi_rs_dump_descriptor(void *resource, struct acpi_rsdump_info *table);
#define ACPI_RSD_OFFSET(f) (u8) ACPI_OFFSET (union acpi_resource_data,f)
#define ACPI_PRT_OFFSET(f) (u8) ACPI_OFFSET (struct acpi_pci_routing_table,f)
#define ACPI_RSD_TABLE_SIZE(name) (sizeof(name) / sizeof (struct acpi_rsdump_info))
/*******************************************************************************
*
* Resource Descriptor info tables
*
* Note: The first table entry must be a Title or Literal and must contain
* the table length (number of table entries)
*
******************************************************************************/
struct acpi_rsdump_info acpi_rs_dump_irq[6] = {
{ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_irq), "IRQ", NULL},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(irq.triggering), "Triggering",
acpi_gbl_HEdecode},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(irq.polarity), "Polarity",
acpi_gbl_LLdecode},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(irq.sharable), "Sharing",
acpi_gbl_SHRdecode},
{ACPI_RSD_UINT8, ACPI_RSD_OFFSET(irq.interrupt_count),
"Interrupt Count", NULL},
{ACPI_RSD_SHORTLIST, ACPI_RSD_OFFSET(irq.interrupts[0]),
"Interrupt List", NULL}
};
struct acpi_rsdump_info acpi_rs_dump_dma[6] = {
{ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_dma), "DMA", NULL},
{ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET(dma.type), "Speed",
acpi_gbl_TYPdecode},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(dma.bus_master), "Mastering",
acpi_gbl_BMdecode},
{ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET(dma.transfer), "Transfer Type",
acpi_gbl_SIZdecode},
{ACPI_RSD_UINT8, ACPI_RSD_OFFSET(dma.channel_count), "Channel Count",
NULL},
{ACPI_RSD_SHORTLIST, ACPI_RSD_OFFSET(dma.channels[0]), "Channel List",
NULL}
};
struct acpi_rsdump_info acpi_rs_dump_start_dpf[3] = {
{ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_start_dpf),
"Start-Dependent-Functions", NULL},
{ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET(start_dpf.compatibility_priority),
"Compatibility Priority", acpi_gbl_config_decode},
{ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET(start_dpf.performance_robustness),
"Performance/Robustness", acpi_gbl_config_decode}
};
struct acpi_rsdump_info acpi_rs_dump_end_dpf[1] = {
{ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_end_dpf),
"End-Dependent-Functions", NULL}
};
struct acpi_rsdump_info acpi_rs_dump_io[6] = {
{ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_io), "I/O", NULL},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(io.io_decode), "Address Decoding",
acpi_gbl_io_decode},
{ACPI_RSD_UINT16, ACPI_RSD_OFFSET(io.minimum), "Address Minimum", NULL},
{ACPI_RSD_UINT16, ACPI_RSD_OFFSET(io.maximum), "Address Maximum", NULL},
{ACPI_RSD_UINT8, ACPI_RSD_OFFSET(io.alignment), "Alignment", NULL},
{ACPI_RSD_UINT8, ACPI_RSD_OFFSET(io.address_length), "Address Length",
NULL}
};
struct acpi_rsdump_info acpi_rs_dump_fixed_io[3] = {
{ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_fixed_io),
"Fixed I/O", NULL},
{ACPI_RSD_UINT16, ACPI_RSD_OFFSET(fixed_io.address), "Address", NULL},
{ACPI_RSD_UINT8, ACPI_RSD_OFFSET(fixed_io.address_length),
"Address Length", NULL}
};
struct acpi_rsdump_info acpi_rs_dump_vendor[3] = {
{ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_vendor),
"Vendor Specific", NULL},
{ACPI_RSD_UINT16, ACPI_RSD_OFFSET(vendor.byte_length), "Length", NULL},
{ACPI_RSD_LONGLIST, ACPI_RSD_OFFSET(vendor.byte_data[0]), "Vendor Data",
NULL}
};
struct acpi_rsdump_info acpi_rs_dump_end_tag[1] = {
{ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_end_tag), "end_tag",
NULL}
};
struct acpi_rsdump_info acpi_rs_dump_memory24[6] = {
{ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_memory24),
"24-Bit Memory Range", NULL},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(memory24.write_protect),
"Write Protect", acpi_gbl_RWdecode},
{ACPI_RSD_UINT16, ACPI_RSD_OFFSET(memory24.minimum), "Address Minimum",
NULL},
{ACPI_RSD_UINT16, ACPI_RSD_OFFSET(memory24.maximum), "Address Maximum",
NULL},
{ACPI_RSD_UINT16, ACPI_RSD_OFFSET(memory24.alignment), "Alignment",
NULL},
{ACPI_RSD_UINT16, ACPI_RSD_OFFSET(memory24.address_length),
"Address Length", NULL}
};
struct acpi_rsdump_info acpi_rs_dump_memory32[6] = {
{ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_memory32),
"32-Bit Memory Range", NULL},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(memory32.write_protect),
"Write Protect", acpi_gbl_RWdecode},
{ACPI_RSD_UINT32, ACPI_RSD_OFFSET(memory32.minimum), "Address Minimum",
NULL},
{ACPI_RSD_UINT32, ACPI_RSD_OFFSET(memory32.maximum), "Address Maximum",
NULL},
{ACPI_RSD_UINT32, ACPI_RSD_OFFSET(memory32.alignment), "Alignment",
NULL},
{ACPI_RSD_UINT32, ACPI_RSD_OFFSET(memory32.address_length),
"Address Length", NULL}
};
struct acpi_rsdump_info acpi_rs_dump_fixed_memory32[4] = {
{ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_fixed_memory32),
"32-Bit Fixed Memory Range", NULL},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(fixed_memory32.write_protect),
"Write Protect", acpi_gbl_RWdecode},
{ACPI_RSD_UINT32, ACPI_RSD_OFFSET(fixed_memory32.address), "Address",
NULL},
{ACPI_RSD_UINT32, ACPI_RSD_OFFSET(fixed_memory32.address_length),
"Address Length", NULL}
};
struct acpi_rsdump_info acpi_rs_dump_address16[8] = {
{ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_address16),
"16-Bit WORD Address Space", NULL},
{ACPI_RSD_ADDRESS, 0, NULL, NULL},
{ACPI_RSD_UINT16, ACPI_RSD_OFFSET(address16.granularity), "Granularity",
NULL},
{ACPI_RSD_UINT16, ACPI_RSD_OFFSET(address16.minimum), "Address Minimum",
NULL},
{ACPI_RSD_UINT16, ACPI_RSD_OFFSET(address16.maximum), "Address Maximum",
NULL},
{ACPI_RSD_UINT16, ACPI_RSD_OFFSET(address16.translation_offset),
"Translation Offset", NULL},
{ACPI_RSD_UINT16, ACPI_RSD_OFFSET(address16.address_length),
"Address Length", NULL},
{ACPI_RSD_SOURCE, ACPI_RSD_OFFSET(address16.resource_source), NULL, NULL}
};
struct acpi_rsdump_info acpi_rs_dump_address32[8] = {
{ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_address32),
"32-Bit DWORD Address Space", NULL},
{ACPI_RSD_ADDRESS, 0, NULL, NULL},
{ACPI_RSD_UINT32, ACPI_RSD_OFFSET(address32.granularity), "Granularity",
NULL},
{ACPI_RSD_UINT32, ACPI_RSD_OFFSET(address32.minimum), "Address Minimum",
NULL},
{ACPI_RSD_UINT32, ACPI_RSD_OFFSET(address32.maximum), "Address Maximum",
NULL},
{ACPI_RSD_UINT32, ACPI_RSD_OFFSET(address32.translation_offset),
"Translation Offset", NULL},
{ACPI_RSD_UINT32, ACPI_RSD_OFFSET(address32.address_length),
"Address Length", NULL},
{ACPI_RSD_SOURCE, ACPI_RSD_OFFSET(address32.resource_source), NULL, NULL}
};
struct acpi_rsdump_info acpi_rs_dump_address64[8] = {
{ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_address64),
"64-Bit QWORD Address Space", NULL},
{ACPI_RSD_ADDRESS, 0, NULL, NULL},
{ACPI_RSD_UINT64, ACPI_RSD_OFFSET(address64.granularity), "Granularity",
NULL},
{ACPI_RSD_UINT64, ACPI_RSD_OFFSET(address64.minimum), "Address Minimum",
NULL},
{ACPI_RSD_UINT64, ACPI_RSD_OFFSET(address64.maximum), "Address Maximum",
NULL},
{ACPI_RSD_UINT64, ACPI_RSD_OFFSET(address64.translation_offset),
"Translation Offset", NULL},
{ACPI_RSD_UINT64, ACPI_RSD_OFFSET(address64.address_length),
"Address Length", NULL},
{ACPI_RSD_SOURCE, ACPI_RSD_OFFSET(address64.resource_source), NULL, NULL}
};
struct acpi_rsdump_info acpi_rs_dump_ext_address64[8] = {
{ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_ext_address64),
"64-Bit Extended Address Space", NULL},
{ACPI_RSD_ADDRESS, 0, NULL, NULL},
{ACPI_RSD_UINT64, ACPI_RSD_OFFSET(ext_address64.granularity),
"Granularity", NULL},
{ACPI_RSD_UINT64, ACPI_RSD_OFFSET(ext_address64.minimum),
"Address Minimum", NULL},
{ACPI_RSD_UINT64, ACPI_RSD_OFFSET(ext_address64.maximum),
"Address Maximum", NULL},
{ACPI_RSD_UINT64, ACPI_RSD_OFFSET(ext_address64.translation_offset),
"Translation Offset", NULL},
{ACPI_RSD_UINT64, ACPI_RSD_OFFSET(ext_address64.address_length),
"Address Length", NULL},
{ACPI_RSD_UINT64, ACPI_RSD_OFFSET(ext_address64.type_specific),
"Type-Specific Attribute", NULL}
};
struct acpi_rsdump_info acpi_rs_dump_ext_irq[8] = {
{ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_ext_irq),
"Extended IRQ", NULL},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(extended_irq.producer_consumer),
"Type", acpi_gbl_consume_decode},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(extended_irq.triggering),
"Triggering", acpi_gbl_HEdecode},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(extended_irq.polarity), "Polarity",
acpi_gbl_LLdecode},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(extended_irq.sharable), "Sharing",
acpi_gbl_SHRdecode},
{ACPI_RSD_SOURCE, ACPI_RSD_OFFSET(extended_irq.resource_source), NULL,
NULL},
{ACPI_RSD_UINT8, ACPI_RSD_OFFSET(extended_irq.interrupt_count),
"Interrupt Count", NULL},
{ACPI_RSD_DWORDLIST, ACPI_RSD_OFFSET(extended_irq.interrupts[0]),
"Interrupt List", NULL}
};
struct acpi_rsdump_info acpi_rs_dump_generic_reg[6] = {
{ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_generic_reg),
"Generic Register", NULL},
{ACPI_RSD_UINT8, ACPI_RSD_OFFSET(generic_reg.space_id), "Space ID",
NULL},
{ACPI_RSD_UINT8, ACPI_RSD_OFFSET(generic_reg.bit_width), "Bit Width",
NULL},
{ACPI_RSD_UINT8, ACPI_RSD_OFFSET(generic_reg.bit_offset), "Bit Offset",
NULL},
{ACPI_RSD_UINT8, ACPI_RSD_OFFSET(generic_reg.access_size),
"Access Size", NULL},
{ACPI_RSD_UINT64, ACPI_RSD_OFFSET(generic_reg.address), "Address", NULL}
};
/*
* Tables used for common address descriptor flag fields
*/
static struct acpi_rsdump_info acpi_rs_dump_general_flags[5] = {
{ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_general_flags), NULL,
NULL},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(address.producer_consumer),
"Consumer/Producer", acpi_gbl_consume_decode},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(address.decode), "Address Decode",
acpi_gbl_DECdecode},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(address.min_address_fixed),
"Min Relocatability", acpi_gbl_min_decode},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(address.max_address_fixed),
"Max Relocatability", acpi_gbl_max_decode}
};
static struct acpi_rsdump_info acpi_rs_dump_memory_flags[5] = {
{ACPI_RSD_LITERAL, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_memory_flags),
"Resource Type", (void *)"Memory Range"},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(address.info.mem.write_protect),
"Write Protect", acpi_gbl_RWdecode},
{ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET(address.info.mem.caching),
"Caching", acpi_gbl_MEMdecode},
{ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET(address.info.mem.range_type),
"Range Type", acpi_gbl_MTPdecode},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(address.info.mem.translation),
"Translation", acpi_gbl_TTPdecode}
};
static struct acpi_rsdump_info acpi_rs_dump_io_flags[4] = {
{ACPI_RSD_LITERAL, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_io_flags),
"Resource Type", (void *)"I/O Range"},
{ACPI_RSD_2BITFLAG, ACPI_RSD_OFFSET(address.info.io.range_type),
"Range Type", acpi_gbl_RNGdecode},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(address.info.io.translation),
"Translation", acpi_gbl_TTPdecode},
{ACPI_RSD_1BITFLAG, ACPI_RSD_OFFSET(address.info.io.translation_type),
"Translation Type", acpi_gbl_TRSdecode}
};
/*
* Table used to dump _PRT contents
*/
static struct acpi_rsdump_info acpi_rs_dump_prt[5] = {
{ACPI_RSD_TITLE, ACPI_RSD_TABLE_SIZE(acpi_rs_dump_prt), NULL, NULL},
{ACPI_RSD_UINT64, ACPI_PRT_OFFSET(address), "Address", NULL},
{ACPI_RSD_UINT32, ACPI_PRT_OFFSET(pin), "Pin", NULL},
{ACPI_RSD_STRING, ACPI_PRT_OFFSET(source[0]), "Source", NULL},
{ACPI_RSD_UINT32, ACPI_PRT_OFFSET(source_index), "Source Index", NULL}
};
/*******************************************************************************
*
* FUNCTION: acpi_rs_dump_descriptor
*
* PARAMETERS: Resource
*
* RETURN: None
*
* DESCRIPTION:
*
******************************************************************************/
static void
acpi_rs_dump_descriptor(void *resource, struct acpi_rsdump_info *table)
{
u8 *target = NULL;
u8 *previous_target;
char *name;
u8 count;
/* First table entry must contain the table length (# of table entries) */
count = table->offset;
while (count) {
previous_target = target;
[ACPI] ACPICA 20051117 Fixed a problem in the AML parser where the method thread count could be decremented below zero if any errors occurred during the method parse phase. This should eliminate AE_AML_METHOD_LIMIT exceptions seen on some machines. This also fixed a related regression with the mechanism that detects and corrects methods that cannot properly handle reentrancy (related to the deployment of the new OwnerId mechanism.) Eliminated the pre-parsing of control methods (to detect errors) during table load. Related to the problem above, this was causing unwind issues if any errors occurred during the parse, and it seemed to be overkill. A table load should not be aborted if there are problems with any single control method, thus rendering this feature rather pointless. Fixed a problem with the new table-driven resource manager where an internal buffer overflow could occur for small resource templates. Implemented a new external interface, acpi_get_vendor_resource() This interface will find and return a vendor-defined resource descriptor within a _CRS or _PRS method via an ACPI 3.0 UUID match. (from Bjorn Helgaas) Removed the length limit (200) on string objects as per the upcoming ACPI 3.0A specification. This affects the following areas of the interpreter: 1) any implicit conversion of a Buffer to a String, 2) a String object result of the ASL Concatentate operator, 3) the String object result of the ASL ToString operator. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-11-17 13:07:00 -05:00
target = ACPI_ADD_PTR(u8, resource, table->offset);
name = table->name;
switch (table->opcode) {
case ACPI_RSD_TITLE:
/*
* Optional resource title
*/
if (table->name) {
acpi_os_printf("%s Resource\n", name);
}
break;
/* Strings */
case ACPI_RSD_LITERAL:
acpi_rs_out_string(name,
ACPI_CAST_PTR(char, table->pointer));
break;
case ACPI_RSD_STRING:
acpi_rs_out_string(name, ACPI_CAST_PTR(char, target));
break;
/* Data items, 8/16/32/64 bit */
case ACPI_RSD_UINT8:
[ACPI] ACPICA 20051117 Fixed a problem in the AML parser where the method thread count could be decremented below zero if any errors occurred during the method parse phase. This should eliminate AE_AML_METHOD_LIMIT exceptions seen on some machines. This also fixed a related regression with the mechanism that detects and corrects methods that cannot properly handle reentrancy (related to the deployment of the new OwnerId mechanism.) Eliminated the pre-parsing of control methods (to detect errors) during table load. Related to the problem above, this was causing unwind issues if any errors occurred during the parse, and it seemed to be overkill. A table load should not be aborted if there are problems with any single control method, thus rendering this feature rather pointless. Fixed a problem with the new table-driven resource manager where an internal buffer overflow could occur for small resource templates. Implemented a new external interface, acpi_get_vendor_resource() This interface will find and return a vendor-defined resource descriptor within a _CRS or _PRS method via an ACPI 3.0 UUID match. (from Bjorn Helgaas) Removed the length limit (200) on string objects as per the upcoming ACPI 3.0A specification. This affects the following areas of the interpreter: 1) any implicit conversion of a Buffer to a String, 2) a String object result of the ASL Concatentate operator, 3) the String object result of the ASL ToString operator. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-11-17 13:07:00 -05:00
acpi_rs_out_integer8(name, ACPI_GET8(target));
break;
case ACPI_RSD_UINT16:
[ACPI] ACPICA 20051117 Fixed a problem in the AML parser where the method thread count could be decremented below zero if any errors occurred during the method parse phase. This should eliminate AE_AML_METHOD_LIMIT exceptions seen on some machines. This also fixed a related regression with the mechanism that detects and corrects methods that cannot properly handle reentrancy (related to the deployment of the new OwnerId mechanism.) Eliminated the pre-parsing of control methods (to detect errors) during table load. Related to the problem above, this was causing unwind issues if any errors occurred during the parse, and it seemed to be overkill. A table load should not be aborted if there are problems with any single control method, thus rendering this feature rather pointless. Fixed a problem with the new table-driven resource manager where an internal buffer overflow could occur for small resource templates. Implemented a new external interface, acpi_get_vendor_resource() This interface will find and return a vendor-defined resource descriptor within a _CRS or _PRS method via an ACPI 3.0 UUID match. (from Bjorn Helgaas) Removed the length limit (200) on string objects as per the upcoming ACPI 3.0A specification. This affects the following areas of the interpreter: 1) any implicit conversion of a Buffer to a String, 2) a String object result of the ASL Concatentate operator, 3) the String object result of the ASL ToString operator. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-11-17 13:07:00 -05:00
acpi_rs_out_integer16(name, ACPI_GET16(target));
break;
case ACPI_RSD_UINT32:
[ACPI] ACPICA 20051117 Fixed a problem in the AML parser where the method thread count could be decremented below zero if any errors occurred during the method parse phase. This should eliminate AE_AML_METHOD_LIMIT exceptions seen on some machines. This also fixed a related regression with the mechanism that detects and corrects methods that cannot properly handle reentrancy (related to the deployment of the new OwnerId mechanism.) Eliminated the pre-parsing of control methods (to detect errors) during table load. Related to the problem above, this was causing unwind issues if any errors occurred during the parse, and it seemed to be overkill. A table load should not be aborted if there are problems with any single control method, thus rendering this feature rather pointless. Fixed a problem with the new table-driven resource manager where an internal buffer overflow could occur for small resource templates. Implemented a new external interface, acpi_get_vendor_resource() This interface will find and return a vendor-defined resource descriptor within a _CRS or _PRS method via an ACPI 3.0 UUID match. (from Bjorn Helgaas) Removed the length limit (200) on string objects as per the upcoming ACPI 3.0A specification. This affects the following areas of the interpreter: 1) any implicit conversion of a Buffer to a String, 2) a String object result of the ASL Concatentate operator, 3) the String object result of the ASL ToString operator. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-11-17 13:07:00 -05:00
acpi_rs_out_integer32(name, ACPI_GET32(target));
break;
[ACPI] ACPICA 20050930 Completed a major overhaul of the Resource Manager code - specifically, optimizations in the area of the AML/internal resource conversion code. The code has been optimized to simplify and eliminate duplicated code, CPU stack use has been decreased by optimizing function parameters and local variables, and naming conventions across the manager have been standardized for clarity and ease of maintenance (this includes function, parameter, variable, and struct/typedef names.) All Resource Manager dispatch and information tables have been moved to a single location for clarity and ease of maintenance. One new file was created, named "rsinfo.c". The ACPI return macros (return_ACPI_STATUS, etc.) have been modified to guarantee that the argument is not evaluated twice, making them less prone to macro side-effects. However, since there exists the possibility of additional stack use if a particular compiler cannot optimize them (such as in the debug generation case), the original macros are optionally available. Note that some invocations of the return_VALUE macro may now cause size mismatch warnings; the return_UINT8 and return_UINT32 macros are provided to eliminate these. (From Randy Dunlap) Implemented a new mechanism to enable debug tracing for individual control methods. A new external interface, acpi_debug_trace(), is provided to enable this mechanism. The intent is to allow the host OS to easily enable and disable tracing for problematic control methods. This interface can be easily exposed to a user or debugger interface if desired. See the file psxface.c for details. acpi_ut_callocate() will now return a valid pointer if a length of zero is specified - a length of one is used and a warning is issued. This matches the behavior of acpi_ut_allocate(). Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-09-30 19:03:00 -04:00
case ACPI_RSD_UINT64:
[ACPI] ACPICA 20051117 Fixed a problem in the AML parser where the method thread count could be decremented below zero if any errors occurred during the method parse phase. This should eliminate AE_AML_METHOD_LIMIT exceptions seen on some machines. This also fixed a related regression with the mechanism that detects and corrects methods that cannot properly handle reentrancy (related to the deployment of the new OwnerId mechanism.) Eliminated the pre-parsing of control methods (to detect errors) during table load. Related to the problem above, this was causing unwind issues if any errors occurred during the parse, and it seemed to be overkill. A table load should not be aborted if there are problems with any single control method, thus rendering this feature rather pointless. Fixed a problem with the new table-driven resource manager where an internal buffer overflow could occur for small resource templates. Implemented a new external interface, acpi_get_vendor_resource() This interface will find and return a vendor-defined resource descriptor within a _CRS or _PRS method via an ACPI 3.0 UUID match. (from Bjorn Helgaas) Removed the length limit (200) on string objects as per the upcoming ACPI 3.0A specification. This affects the following areas of the interpreter: 1) any implicit conversion of a Buffer to a String, 2) a String object result of the ASL Concatentate operator, 3) the String object result of the ASL ToString operator. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-11-17 13:07:00 -05:00
acpi_rs_out_integer64(name, ACPI_GET64(target));
break;
/* Flags: 1-bit and 2-bit flags supported */
case ACPI_RSD_1BITFLAG:
acpi_rs_out_string(name, ACPI_CAST_PTR(char,
table->
pointer[*target &
0x01]));
break;
case ACPI_RSD_2BITFLAG:
acpi_rs_out_string(name, ACPI_CAST_PTR(char,
table->
pointer[*target &
0x03]));
break;
case ACPI_RSD_SHORTLIST:
/*
* Short byte list (single line output) for DMA and IRQ resources
* Note: The list length is obtained from the previous table entry
*/
if (previous_target) {
acpi_rs_out_title(name);
acpi_rs_dump_short_byte_list(*previous_target,
target);
}
break;
case ACPI_RSD_LONGLIST:
/*
* Long byte list for Vendor resource data
* Note: The list length is obtained from the previous table entry
*/
if (previous_target) {
[ACPI] ACPICA 20051117 Fixed a problem in the AML parser where the method thread count could be decremented below zero if any errors occurred during the method parse phase. This should eliminate AE_AML_METHOD_LIMIT exceptions seen on some machines. This also fixed a related regression with the mechanism that detects and corrects methods that cannot properly handle reentrancy (related to the deployment of the new OwnerId mechanism.) Eliminated the pre-parsing of control methods (to detect errors) during table load. Related to the problem above, this was causing unwind issues if any errors occurred during the parse, and it seemed to be overkill. A table load should not be aborted if there are problems with any single control method, thus rendering this feature rather pointless. Fixed a problem with the new table-driven resource manager where an internal buffer overflow could occur for small resource templates. Implemented a new external interface, acpi_get_vendor_resource() This interface will find and return a vendor-defined resource descriptor within a _CRS or _PRS method via an ACPI 3.0 UUID match. (from Bjorn Helgaas) Removed the length limit (200) on string objects as per the upcoming ACPI 3.0A specification. This affects the following areas of the interpreter: 1) any implicit conversion of a Buffer to a String, 2) a String object result of the ASL Concatentate operator, 3) the String object result of the ASL ToString operator. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-11-17 13:07:00 -05:00
acpi_rs_dump_byte_list(ACPI_GET16
(previous_target),
target);
}
break;
case ACPI_RSD_DWORDLIST:
/*
* Dword list for Extended Interrupt resources
* Note: The list length is obtained from the previous table entry
*/
if (previous_target) {
acpi_rs_dump_dword_list(*previous_target,
ACPI_CAST_PTR(u32,
target));
}
break;
case ACPI_RSD_ADDRESS:
/*
* Common flags for all Address resources
*/
acpi_rs_dump_address_common(ACPI_CAST_PTR
(union acpi_resource_data,
target));
break;
case ACPI_RSD_SOURCE:
/*
* Optional resource_source for Address resources
*/
acpi_rs_dump_resource_source(ACPI_CAST_PTR
(struct
acpi_resource_source,
target));
break;
default:
acpi_os_printf("**** Invalid table opcode [%X] ****\n",
table->opcode);
return;
}
table++;
count--;
}
[ACPI] ACPICA 20050930 Completed a major overhaul of the Resource Manager code - specifically, optimizations in the area of the AML/internal resource conversion code. The code has been optimized to simplify and eliminate duplicated code, CPU stack use has been decreased by optimizing function parameters and local variables, and naming conventions across the manager have been standardized for clarity and ease of maintenance (this includes function, parameter, variable, and struct/typedef names.) All Resource Manager dispatch and information tables have been moved to a single location for clarity and ease of maintenance. One new file was created, named "rsinfo.c". The ACPI return macros (return_ACPI_STATUS, etc.) have been modified to guarantee that the argument is not evaluated twice, making them less prone to macro side-effects. However, since there exists the possibility of additional stack use if a particular compiler cannot optimize them (such as in the debug generation case), the original macros are optionally available. Note that some invocations of the return_VALUE macro may now cause size mismatch warnings; the return_UINT8 and return_UINT32 macros are provided to eliminate these. (From Randy Dunlap) Implemented a new mechanism to enable debug tracing for individual control methods. A new external interface, acpi_debug_trace(), is provided to enable this mechanism. The intent is to allow the host OS to easily enable and disable tracing for problematic control methods. This interface can be easily exposed to a user or debugger interface if desired. See the file psxface.c for details. acpi_ut_callocate() will now return a valid pointer if a length of zero is specified - a length of one is used and a warning is issued. This matches the behavior of acpi_ut_allocate(). Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-09-30 19:03:00 -04:00
}
/*******************************************************************************
*
* FUNCTION: acpi_rs_dump_resource_source
*
* PARAMETERS: resource_source - Pointer to a Resource Source struct
*
* RETURN: None
*
* DESCRIPTION: Common routine for dumping the optional resource_source and the
* corresponding resource_source_index.
*
******************************************************************************/
static void
acpi_rs_dump_resource_source(struct acpi_resource_source *resource_source)
{
[ACPI] ACPICA 20050930 Completed a major overhaul of the Resource Manager code - specifically, optimizations in the area of the AML/internal resource conversion code. The code has been optimized to simplify and eliminate duplicated code, CPU stack use has been decreased by optimizing function parameters and local variables, and naming conventions across the manager have been standardized for clarity and ease of maintenance (this includes function, parameter, variable, and struct/typedef names.) All Resource Manager dispatch and information tables have been moved to a single location for clarity and ease of maintenance. One new file was created, named "rsinfo.c". The ACPI return macros (return_ACPI_STATUS, etc.) have been modified to guarantee that the argument is not evaluated twice, making them less prone to macro side-effects. However, since there exists the possibility of additional stack use if a particular compiler cannot optimize them (such as in the debug generation case), the original macros are optionally available. Note that some invocations of the return_VALUE macro may now cause size mismatch warnings; the return_UINT8 and return_UINT32 macros are provided to eliminate these. (From Randy Dunlap) Implemented a new mechanism to enable debug tracing for individual control methods. A new external interface, acpi_debug_trace(), is provided to enable this mechanism. The intent is to allow the host OS to easily enable and disable tracing for problematic control methods. This interface can be easily exposed to a user or debugger interface if desired. See the file psxface.c for details. acpi_ut_callocate() will now return a valid pointer if a length of zero is specified - a length of one is used and a warning is issued. This matches the behavior of acpi_ut_allocate(). Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-09-30 19:03:00 -04:00
ACPI_FUNCTION_ENTRY();
if (resource_source->index == 0xFF) {
return;
}
acpi_rs_out_integer8("Resource Source Index", resource_source->index);
acpi_rs_out_string("Resource Source",
resource_source->string_ptr ?
resource_source->string_ptr : "[Not Specified]");
}
/*******************************************************************************
*
* FUNCTION: acpi_rs_dump_address_common
*
* PARAMETERS: Resource - Pointer to an internal resource descriptor
*
* RETURN: None
*
* DESCRIPTION: Dump the fields that are common to all Address resource
* descriptors
*
******************************************************************************/
static void acpi_rs_dump_address_common(union acpi_resource_data *resource)
{
ACPI_FUNCTION_ENTRY();
/* Decode the type-specific flags */
switch (resource->address.resource_type) {
case ACPI_MEMORY_RANGE:
acpi_rs_dump_descriptor(resource, acpi_rs_dump_memory_flags);
break;
case ACPI_IO_RANGE:
acpi_rs_dump_descriptor(resource, acpi_rs_dump_io_flags);
break;
case ACPI_BUS_NUMBER_RANGE:
acpi_rs_out_string("Resource Type", "Bus Number Range");
break;
default:
acpi_rs_out_integer8("Resource Type",
(u8) resource->address.resource_type);
break;
}
/* Decode the general flags */
acpi_rs_dump_descriptor(resource, acpi_rs_dump_general_flags);
}
/*******************************************************************************
*
* FUNCTION: acpi_rs_dump_resource_list
*
* PARAMETERS: resource_list - Pointer to a resource descriptor list
*
* RETURN: None
*
* DESCRIPTION: Dispatches the structure to the correct dump routine.
*
******************************************************************************/
void acpi_rs_dump_resource_list(struct acpi_resource *resource_list)
{
u32 count = 0;
u32 type;
ACPI_FUNCTION_ENTRY();
if (!(acpi_dbg_level & ACPI_LV_RESOURCES)
|| !(_COMPONENT & acpi_dbg_layer)) {
return;
}
/* Walk list and dump all resource descriptors (END_TAG terminates) */
do {
acpi_os_printf("\n[%02X] ", count);
count++;
/* Validate Type before dispatch */
type = resource_list->type;
if (type > ACPI_RESOURCE_TYPE_MAX) {
acpi_os_printf
("Invalid descriptor type (%X) in resource list\n",
resource_list->type);
return;
}
/* Dump the resource descriptor */
acpi_rs_dump_descriptor(&resource_list->data,
acpi_gbl_dump_resource_dispatch[type]);
/* Point to the next resource structure */
resource_list =
[ACPI] ACPICA 20051117 Fixed a problem in the AML parser where the method thread count could be decremented below zero if any errors occurred during the method parse phase. This should eliminate AE_AML_METHOD_LIMIT exceptions seen on some machines. This also fixed a related regression with the mechanism that detects and corrects methods that cannot properly handle reentrancy (related to the deployment of the new OwnerId mechanism.) Eliminated the pre-parsing of control methods (to detect errors) during table load. Related to the problem above, this was causing unwind issues if any errors occurred during the parse, and it seemed to be overkill. A table load should not be aborted if there are problems with any single control method, thus rendering this feature rather pointless. Fixed a problem with the new table-driven resource manager where an internal buffer overflow could occur for small resource templates. Implemented a new external interface, acpi_get_vendor_resource() This interface will find and return a vendor-defined resource descriptor within a _CRS or _PRS method via an ACPI 3.0 UUID match. (from Bjorn Helgaas) Removed the length limit (200) on string objects as per the upcoming ACPI 3.0A specification. This affects the following areas of the interpreter: 1) any implicit conversion of a Buffer to a String, 2) a String object result of the ASL Concatentate operator, 3) the String object result of the ASL ToString operator. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-11-17 13:07:00 -05:00
ACPI_ADD_PTR(struct acpi_resource, resource_list,
resource_list->length);
/* Exit when END_TAG descriptor is reached */
} while (type != ACPI_RESOURCE_TYPE_END_TAG);
}
/*******************************************************************************
*
* FUNCTION: acpi_rs_dump_irq_list
*
* PARAMETERS: route_table - Pointer to the routing table to dump.
*
* RETURN: None
*
* DESCRIPTION: Print IRQ routing table
*
******************************************************************************/
void acpi_rs_dump_irq_list(u8 * route_table)
{
struct acpi_pci_routing_table *prt_element;
u8 count;
ACPI_FUNCTION_ENTRY();
if (!(acpi_dbg_level & ACPI_LV_RESOURCES)
|| !(_COMPONENT & acpi_dbg_layer)) {
return;
}
prt_element = ACPI_CAST_PTR(struct acpi_pci_routing_table, route_table);
/* Dump all table elements, Exit on zero length element */
for (count = 0; prt_element->length; count++) {
acpi_os_printf("\n[%02X] PCI IRQ Routing Table Package\n",
count);
acpi_rs_dump_descriptor(prt_element, acpi_rs_dump_prt);
[ACPI] ACPICA 20051117 Fixed a problem in the AML parser where the method thread count could be decremented below zero if any errors occurred during the method parse phase. This should eliminate AE_AML_METHOD_LIMIT exceptions seen on some machines. This also fixed a related regression with the mechanism that detects and corrects methods that cannot properly handle reentrancy (related to the deployment of the new OwnerId mechanism.) Eliminated the pre-parsing of control methods (to detect errors) during table load. Related to the problem above, this was causing unwind issues if any errors occurred during the parse, and it seemed to be overkill. A table load should not be aborted if there are problems with any single control method, thus rendering this feature rather pointless. Fixed a problem with the new table-driven resource manager where an internal buffer overflow could occur for small resource templates. Implemented a new external interface, acpi_get_vendor_resource() This interface will find and return a vendor-defined resource descriptor within a _CRS or _PRS method via an ACPI 3.0 UUID match. (from Bjorn Helgaas) Removed the length limit (200) on string objects as per the upcoming ACPI 3.0A specification. This affects the following areas of the interpreter: 1) any implicit conversion of a Buffer to a String, 2) a String object result of the ASL Concatentate operator, 3) the String object result of the ASL ToString operator. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-11-17 13:07:00 -05:00
prt_element = ACPI_ADD_PTR(struct acpi_pci_routing_table,
prt_element, prt_element->length);
}
}
/*******************************************************************************
*
* FUNCTION: acpi_rs_out*
*
* PARAMETERS: Title - Name of the resource field
* Value - Value of the resource field
*
* RETURN: None
*
* DESCRIPTION: Miscellaneous helper functions to consistently format the
* output of the resource dump routines
*
******************************************************************************/
static void acpi_rs_out_string(char *title, char *value)
{
[ACPI] ACPICA 20060127 Implemented support in the Resource Manager to allow unresolved namestring references within resource package objects for the _PRT method. This support is in addition to the previously implemented unresolved reference support within the AML parser. If the interpreter slack mode is enabled (true on Linux unless acpi=strict), these unresolved references will be passed through to the caller as a NULL package entry. http://bugzilla.kernel.org/show_bug.cgi?id=5741 Implemented and deployed new macros and functions for error and warning messages across the subsystem. These macros are simpler and generate less code than their predecessors. The new macros ACPI_ERROR, ACPI_EXCEPTION, ACPI_WARNING, and ACPI_INFO replace the ACPI_REPORT_* macros. Implemented the acpi_cpu_flags type to simplify host OS integration of the Acquire/Release Lock OSL interfaces. Suggested by Steven Rostedt and Andrew Morton. Fixed a problem where Alias ASL operators are sometimes not correctly resolved. causing AE_AML_INTERNAL http://bugzilla.kernel.org/show_bug.cgi?id=5189 http://bugzilla.kernel.org/show_bug.cgi?id=5674 Fixed several problems with the implementation of the ConcatenateResTemplate ASL operator. As per the ACPI specification, zero length buffers are now treated as a single EndTag. One-length buffers always cause a fatal exception. Non-zero length buffers that do not end with a full 2-byte EndTag cause a fatal exception. Fixed a possible structure overwrite in the AcpiGetObjectInfo external interface. (With assistance from Thomas Renninger) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-01-27 16:43:00 -05:00
acpi_os_printf("%27s : %s", title, value);
if (!*value) {
acpi_os_printf("[NULL NAMESTRING]");
}
acpi_os_printf("\n");
}
static void acpi_rs_out_integer8(char *title, u8 value)
{
acpi_os_printf("%27s : %2.2X\n", title, value);
}
static void acpi_rs_out_integer16(char *title, u16 value)
{
acpi_os_printf("%27s : %4.4X\n", title, value);
}
static void acpi_rs_out_integer32(char *title, u32 value)
[ACPI] ACPICA 20050930 Completed a major overhaul of the Resource Manager code - specifically, optimizations in the area of the AML/internal resource conversion code. The code has been optimized to simplify and eliminate duplicated code, CPU stack use has been decreased by optimizing function parameters and local variables, and naming conventions across the manager have been standardized for clarity and ease of maintenance (this includes function, parameter, variable, and struct/typedef names.) All Resource Manager dispatch and information tables have been moved to a single location for clarity and ease of maintenance. One new file was created, named "rsinfo.c". The ACPI return macros (return_ACPI_STATUS, etc.) have been modified to guarantee that the argument is not evaluated twice, making them less prone to macro side-effects. However, since there exists the possibility of additional stack use if a particular compiler cannot optimize them (such as in the debug generation case), the original macros are optionally available. Note that some invocations of the return_VALUE macro may now cause size mismatch warnings; the return_UINT8 and return_UINT32 macros are provided to eliminate these. (From Randy Dunlap) Implemented a new mechanism to enable debug tracing for individual control methods. A new external interface, acpi_debug_trace(), is provided to enable this mechanism. The intent is to allow the host OS to easily enable and disable tracing for problematic control methods. This interface can be easily exposed to a user or debugger interface if desired. See the file psxface.c for details. acpi_ut_callocate() will now return a valid pointer if a length of zero is specified - a length of one is used and a warning is issued. This matches the behavior of acpi_ut_allocate(). Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-09-30 19:03:00 -04:00
{
acpi_os_printf("%27s : %8.8X\n", title, value);
[ACPI] ACPICA 20050930 Completed a major overhaul of the Resource Manager code - specifically, optimizations in the area of the AML/internal resource conversion code. The code has been optimized to simplify and eliminate duplicated code, CPU stack use has been decreased by optimizing function parameters and local variables, and naming conventions across the manager have been standardized for clarity and ease of maintenance (this includes function, parameter, variable, and struct/typedef names.) All Resource Manager dispatch and information tables have been moved to a single location for clarity and ease of maintenance. One new file was created, named "rsinfo.c". The ACPI return macros (return_ACPI_STATUS, etc.) have been modified to guarantee that the argument is not evaluated twice, making them less prone to macro side-effects. However, since there exists the possibility of additional stack use if a particular compiler cannot optimize them (such as in the debug generation case), the original macros are optionally available. Note that some invocations of the return_VALUE macro may now cause size mismatch warnings; the return_UINT8 and return_UINT32 macros are provided to eliminate these. (From Randy Dunlap) Implemented a new mechanism to enable debug tracing for individual control methods. A new external interface, acpi_debug_trace(), is provided to enable this mechanism. The intent is to allow the host OS to easily enable and disable tracing for problematic control methods. This interface can be easily exposed to a user or debugger interface if desired. See the file psxface.c for details. acpi_ut_callocate() will now return a valid pointer if a length of zero is specified - a length of one is used and a warning is issued. This matches the behavior of acpi_ut_allocate(). Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2005-09-30 19:03:00 -04:00
}
static void acpi_rs_out_integer64(char *title, u64 value)
{
acpi_os_printf("%27s : %8.8X%8.8X\n", title, ACPI_FORMAT_UINT64(value));
}
static void acpi_rs_out_title(char *title)
{
acpi_os_printf("%27s : ", title);
}
/*******************************************************************************
*
* FUNCTION: acpi_rs_dump*List
*
* PARAMETERS: Length - Number of elements in the list
* Data - Start of the list
*
* RETURN: None
*
* DESCRIPTION: Miscellaneous functions to dump lists of raw data
*
******************************************************************************/
static void acpi_rs_dump_byte_list(u16 length, u8 * data)
{
u8 i;
for (i = 0; i < length; i++) {
acpi_os_printf("%25s%2.2X : %2.2X\n", "Byte", i, data[i]);
}
}
static void acpi_rs_dump_short_byte_list(u8 length, u8 * data)
{
u8 i;
for (i = 0; i < length; i++) {
acpi_os_printf("%X ", data[i]);
}
acpi_os_printf("\n");
}
static void acpi_rs_dump_dword_list(u8 length, u32 * data)
{
u8 i;
for (i = 0; i < length; i++) {
acpi_os_printf("%25s%2.2X : %8.8X\n", "Dword", i, data[i]);
}
}
#endif