android_kernel_xiaomi_sm8350/arch/sh/kernel/setup.c

602 lines
15 KiB
C
Raw Normal View History

/* $Id: setup.c,v 1.30 2003/10/13 07:21:19 lethal Exp $
*
* linux/arch/sh/kernel/setup.c
*
* Copyright (C) 1999 Niibe Yutaka
* Copyright (C) 2002, 2003 Paul Mundt
*/
/*
* This file handles the architecture-dependent parts of initialization
*/
#include <linux/screen_info.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/bootmem.h>
#include <linux/console.h>
#include <linux/seq_file.h>
#include <linux/root_dev.h>
#include <linux/utsname.h>
#include <linux/cpu.h>
#include <linux/pfn.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/sections.h>
#include <asm/irq.h>
#include <asm/setup.h>
#include <asm/clock.h>
#ifdef CONFIG_SH_KGDB
#include <asm/kgdb.h>
static int kgdb_parse_options(char *options);
#endif
extern void * __rd_start, * __rd_end;
/*
* Machine setup..
*/
/*
* Initialize loops_per_jiffy as 10000000 (1000MIPS).
* This value will be used at the very early stage of serial setup.
* The bigger value means no problem.
*/
struct sh_cpuinfo boot_cpu_data = { CPU_SH_NONE, 10000000, };
#ifdef CONFIG_VT
struct screen_info screen_info;
#endif
#if defined(CONFIG_SH_UNKNOWN)
struct sh_machine_vector sh_mv;
#endif
extern int root_mountflags;
#define MV_NAME_SIZE 32
static struct sh_machine_vector* __init get_mv_byname(const char* name);
/*
* This is set up by the setup-routine at boot-time
*/
#define PARAM ((unsigned char *)empty_zero_page)
#define MOUNT_ROOT_RDONLY (*(unsigned long *) (PARAM+0x000))
#define RAMDISK_FLAGS (*(unsigned long *) (PARAM+0x004))
#define ORIG_ROOT_DEV (*(unsigned long *) (PARAM+0x008))
#define LOADER_TYPE (*(unsigned long *) (PARAM+0x00c))
#define INITRD_START (*(unsigned long *) (PARAM+0x010))
#define INITRD_SIZE (*(unsigned long *) (PARAM+0x014))
/* ... */
#define COMMAND_LINE ((char *) (PARAM+0x100))
#define RAMDISK_IMAGE_START_MASK 0x07FF
#define RAMDISK_PROMPT_FLAG 0x8000
#define RAMDISK_LOAD_FLAG 0x4000
static char command_line[COMMAND_LINE_SIZE] = { 0, };
static struct resource code_resource = { .name = "Kernel code", };
static struct resource data_resource = { .name = "Kernel data", };
unsigned long memory_start, memory_end;
static inline void parse_cmdline (char ** cmdline_p, char mv_name[MV_NAME_SIZE],
struct sh_machine_vector** mvp,
unsigned long *mv_io_base,
int *mv_mmio_enable)
{
char c = ' ', *to = command_line, *from = COMMAND_LINE;
int len = 0;
/* Save unparsed command line copy for /proc/cmdline */
memcpy(saved_command_line, COMMAND_LINE, COMMAND_LINE_SIZE);
saved_command_line[COMMAND_LINE_SIZE-1] = '\0';
memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
memory_end = memory_start + __MEMORY_SIZE;
for (;;) {
/*
* "mem=XXX[kKmM]" defines a size of memory.
*/
if (c == ' ' && !memcmp(from, "mem=", 4)) {
if (to != command_line)
to--;
{
unsigned long mem_size;
mem_size = memparse(from+4, &from);
memory_end = memory_start + mem_size;
}
}
#ifdef CONFIG_EARLY_PRINTK
if (c == ' ' && !memcmp(from, "earlyprintk=", 12)) {
char *ep_end;
if (to != command_line)
to--;
from += 12;
ep_end = strchr(from, ' ');
setup_early_printk(from);
printk("early console enabled\n");
from = ep_end;
}
#endif
if (c == ' ' && !memcmp(from, "sh_mv=", 6)) {
char* mv_end;
char* mv_comma;
int mv_len;
if (to != command_line)
to--;
from += 6;
mv_end = strchr(from, ' ');
if (mv_end == NULL)
mv_end = from + strlen(from);
mv_comma = strchr(from, ',');
if ((mv_comma != NULL) && (mv_comma < mv_end)) {
int ints[3];
get_options(mv_comma+1, ARRAY_SIZE(ints), ints);
*mv_io_base = ints[1];
*mv_mmio_enable = ints[2];
mv_len = mv_comma - from;
} else {
mv_len = mv_end - from;
}
if (mv_len > (MV_NAME_SIZE-1))
mv_len = MV_NAME_SIZE-1;
memcpy(mv_name, from, mv_len);
mv_name[mv_len] = '\0';
from = mv_end;
*mvp = get_mv_byname(mv_name);
}
c = *(from++);
if (!c)
break;
if (COMMAND_LINE_SIZE <= ++len)
break;
*(to++) = c;
}
*to = '\0';
*cmdline_p = command_line;
}
static int __init sh_mv_setup(char **cmdline_p)
{
#ifdef CONFIG_SH_UNKNOWN
extern struct sh_machine_vector mv_unknown;
#endif
struct sh_machine_vector *mv = NULL;
char mv_name[MV_NAME_SIZE] = "";
unsigned long mv_io_base = 0;
int mv_mmio_enable = 0;
parse_cmdline(cmdline_p, mv_name, &mv, &mv_io_base, &mv_mmio_enable);
#ifdef CONFIG_SH_UNKNOWN
if (mv == NULL) {
mv = &mv_unknown;
if (*mv_name != '\0') {
printk("Warning: Unsupported machine %s, using unknown\n",
mv_name);
}
}
sh_mv = *mv;
#endif
/*
* Manually walk the vec, fill in anything that the board hasn't yet
* by hand, wrapping to the generic implementation.
*/
#define mv_set(elem) do { \
if (!sh_mv.mv_##elem) \
sh_mv.mv_##elem = generic_##elem; \
} while (0)
mv_set(inb); mv_set(inw); mv_set(inl);
mv_set(outb); mv_set(outw); mv_set(outl);
mv_set(inb_p); mv_set(inw_p); mv_set(inl_p);
mv_set(outb_p); mv_set(outw_p); mv_set(outl_p);
mv_set(insb); mv_set(insw); mv_set(insl);
mv_set(outsb); mv_set(outsw); mv_set(outsl);
mv_set(readb); mv_set(readw); mv_set(readl);
mv_set(writeb); mv_set(writew); mv_set(writel);
mv_set(ioport_map);
mv_set(ioport_unmap);
mv_set(irq_demux);
#ifdef CONFIG_SH_UNKNOWN
__set_io_port_base(mv_io_base);
#endif
if (!sh_mv.mv_nr_irqs)
sh_mv.mv_nr_irqs = NR_IRQS;
return 0;
}
void __init setup_arch(char **cmdline_p)
{
unsigned long bootmap_size;
unsigned long start_pfn, max_pfn, max_low_pfn;
#ifdef CONFIG_CMDLINE_BOOL
strcpy(COMMAND_LINE, CONFIG_CMDLINE);
#endif
ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
#ifdef CONFIG_BLK_DEV_RAM
rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
#endif
if (!MOUNT_ROOT_RDONLY)
root_mountflags &= ~MS_RDONLY;
init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = (unsigned long) _end;
code_resource.start = (unsigned long)virt_to_phys(_text);
code_resource.end = (unsigned long)virt_to_phys(_etext)-1;
data_resource.start = (unsigned long)virt_to_phys(_etext);
data_resource.end = (unsigned long)virt_to_phys(_edata)-1;
sh_mv_setup(cmdline_p);
/*
* Find the highest page frame number we have available
*/
max_pfn = PFN_DOWN(__pa(memory_end));
/*
* Determine low and high memory ranges:
*/
max_low_pfn = max_pfn;
/*
* Partially used pages are not usable - thus
* we are rounding upwards:
*/
start_pfn = PFN_UP(__pa(_end));
/*
* Find a proper area for the bootmem bitmap. After this
* bootstrap step all allocations (until the page allocator
* is intact) must be done via bootmem_alloc().
*/
bootmap_size = init_bootmem_node(NODE_DATA(0), start_pfn,
__MEMORY_START>>PAGE_SHIFT,
max_low_pfn);
/*
* Register fully available low RAM pages with the bootmem allocator.
*/
{
unsigned long curr_pfn, last_pfn, pages;
/*
* We are rounding up the start address of usable memory:
*/
curr_pfn = PFN_UP(__MEMORY_START);
/*
* ... and at the end of the usable range downwards:
*/
last_pfn = PFN_DOWN(__pa(memory_end));
if (last_pfn > max_low_pfn)
last_pfn = max_low_pfn;
pages = last_pfn - curr_pfn;
free_bootmem_node(NODE_DATA(0), PFN_PHYS(curr_pfn),
PFN_PHYS(pages));
}
/*
* Reserve the kernel text and
* Reserve the bootmem bitmap. We do this in two steps (first step
* was init_bootmem()), because this catches the (definitely buggy)
* case of us accidentally initializing the bootmem allocator with
* an invalid RAM area.
*/
reserve_bootmem_node(NODE_DATA(0), __MEMORY_START+PAGE_SIZE,
(PFN_PHYS(start_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START);
/*
* reserve physical page 0 - it's a special BIOS page on many boxes,
* enabling clean reboots, SMP operation, laptop functions.
*/
reserve_bootmem_node(NODE_DATA(0), __MEMORY_START, PAGE_SIZE);
#ifdef CONFIG_BLK_DEV_INITRD
ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0);
if (&__rd_start != &__rd_end) {
LOADER_TYPE = 1;
INITRD_START = PHYSADDR((unsigned long)&__rd_start) - __MEMORY_START;
INITRD_SIZE = (unsigned long)&__rd_end - (unsigned long)&__rd_start;
}
if (LOADER_TYPE && INITRD_START) {
if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
reserve_bootmem_node(NODE_DATA(0), INITRD_START+__MEMORY_START, INITRD_SIZE);
initrd_start =
INITRD_START ? INITRD_START + PAGE_OFFSET + __MEMORY_START : 0;
initrd_end = initrd_start + INITRD_SIZE;
} else {
printk("initrd extends beyond end of memory "
"(0x%08lx > 0x%08lx)\ndisabling initrd\n",
INITRD_START + INITRD_SIZE,
max_low_pfn << PAGE_SHIFT);
initrd_start = 0;
}
}
#endif
#ifdef CONFIG_DUMMY_CONSOLE
conswitchp = &dummy_con;
#endif
/* Perform the machine specific initialisation */
if (likely(sh_mv.mv_setup))
sh_mv.mv_setup(cmdline_p);
paging_init();
}
struct sh_machine_vector* __init get_mv_byname(const char* name)
{
extern long __machvec_start, __machvec_end;
struct sh_machine_vector *all_vecs =
(struct sh_machine_vector *)&__machvec_start;
int i, n = ((unsigned long)&__machvec_end
- (unsigned long)&__machvec_start)/
sizeof(struct sh_machine_vector);
for (i = 0; i < n; ++i) {
struct sh_machine_vector *mv = &all_vecs[i];
if (mv == NULL)
continue;
if (strcasecmp(name, get_system_type()) == 0) {
return mv;
}
}
return NULL;
}
static struct cpu cpu[NR_CPUS];
static int __init topology_init(void)
{
int cpu_id;
for_each_possible_cpu(cpu_id)
[PATCH] node hotplug: register cpu: remove node struct With Goto-san's patch, we can add new pgdat/node at runtime. I'm now considering node-hot-add with cpu + memory on ACPI. I found acpi container, which describes node, could evaluate cpu before memory. This means cpu-hot-add occurs before memory hot add. In most part, cpu-hot-add doesn't depend on node hot add. But register_cpu(), which creates symbolic link from node to cpu, requires that node should be onlined before register_cpu(). When a node is onlined, its pgdat should be there. This patch-set holds off creating symbolic link from node to cpu until node is onlined. This removes node arguments from register_cpu(). Now, register_cpu() requires 'struct node' as its argument. But the array of struct node is now unified in driver/base/node.c now (By Goto's node hotplug patch). We can get struct node in generic way. So, this argument is not necessary now. This patch also guarantees add cpu under node only when node is onlined. It is necessary for node-hot-add vs. cpu-hot-add patch following this. Moreover, register_cpu calculates cpu->node_id by cpu_to_node() without regard to its 'struct node *root' argument. This patch removes it. Also modify callers of register_cpu()/unregister_cpu, whose args are changed by register-cpu-remove-node-struct patch. [Brice.Goglin@ens-lyon.org: fix it] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Brice Goglin <Brice.Goglin@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 05:53:41 -04:00
register_cpu(&cpu[cpu_id], cpu_id);
return 0;
}
subsys_initcall(topology_init);
static const char *cpu_name[] = {
[CPU_SH7604] = "SH7604", [CPU_SH7300] = "SH7300",
[CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
[CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
[CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
[CPU_SH7729] = "SH7729", [CPU_SH7750] = "SH7750",
[CPU_SH7750S] = "SH7750S", [CPU_SH7750R] = "SH7750R",
[CPU_SH7751] = "SH7751", [CPU_SH7751R] = "SH7751R",
[CPU_SH7760] = "SH7760", [CPU_SH73180] = "SH73180",
[CPU_ST40RA] = "ST40RA", [CPU_ST40GX1] = "ST40GX1",
[CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
[CPU_SH7770] = "SH7770", [CPU_SH7780] = "SH7780",
[CPU_SH7781] = "SH7781", [CPU_SH7343] = "SH7343",
[CPU_SH_NONE] = "Unknown"
};
const char *get_cpu_subtype(void)
{
return cpu_name[boot_cpu_data.type];
}
#ifdef CONFIG_PROC_FS
/* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
static const char *cpu_flags[] = {
"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
"ptea", "llsc", "l2", NULL
};
static void show_cpuflags(struct seq_file *m)
{
unsigned long i;
seq_printf(m, "cpu flags\t:");
if (!cpu_data->flags) {
seq_printf(m, " %s\n", cpu_flags[0]);
return;
}
for (i = 0; cpu_flags[i]; i++)
if ((cpu_data->flags & (1 << i)))
seq_printf(m, " %s", cpu_flags[i+1]);
seq_printf(m, "\n");
}
static void show_cacheinfo(struct seq_file *m, const char *type,
struct cache_info info)
{
unsigned int cache_size;
cache_size = info.ways * info.sets * info.linesz;
seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
type, cache_size >> 10, info.ways);
}
/*
* Get CPU information for use by the procfs.
*/
static int show_cpuinfo(struct seq_file *m, void *v)
{
unsigned int cpu = smp_processor_id();
if (!cpu && cpu_online(cpu))
seq_printf(m, "machine\t\t: %s\n", get_system_type());
seq_printf(m, "processor\t: %d\n", cpu);
seq_printf(m, "cpu family\t: %s\n", system_utsname.machine);
seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype());
show_cpuflags(m);
seq_printf(m, "cache type\t: ");
/*
* Check for what type of cache we have, we support both the
* unified cache on the SH-2 and SH-3, as well as the harvard
* style cache on the SH-4.
*/
if (boot_cpu_data.icache.flags & SH_CACHE_COMBINED) {
seq_printf(m, "unified\n");
show_cacheinfo(m, "cache", boot_cpu_data.icache);
} else {
seq_printf(m, "split (harvard)\n");
show_cacheinfo(m, "icache", boot_cpu_data.icache);
show_cacheinfo(m, "dcache", boot_cpu_data.dcache);
}
/* Optional secondary cache */
if (boot_cpu_data.flags & CPU_HAS_L2_CACHE)
show_cacheinfo(m, "scache", boot_cpu_data.scache);
seq_printf(m, "bogomips\t: %lu.%02lu\n",
boot_cpu_data.loops_per_jiffy/(500000/HZ),
(boot_cpu_data.loops_per_jiffy/(5000/HZ)) % 100);
return show_clocks(m);
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos < NR_CPUS ? cpu_data + *pos : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};
#endif /* CONFIG_PROC_FS */
#ifdef CONFIG_SH_KGDB
/*
* Parse command-line kgdb options. By default KGDB is enabled,
* entered on error (or other action) using default serial info.
* The command-line option can include a serial port specification
* and an action to override default or configured behavior.
*/
struct kgdb_sermap kgdb_sci_sermap =
{ "ttySC", 5, kgdb_sci_setup, NULL };
struct kgdb_sermap *kgdb_serlist = &kgdb_sci_sermap;
struct kgdb_sermap *kgdb_porttype = &kgdb_sci_sermap;
void kgdb_register_sermap(struct kgdb_sermap *map)
{
struct kgdb_sermap *last;
for (last = kgdb_serlist; last->next; last = last->next)
;
last->next = map;
if (!map->namelen) {
map->namelen = strlen(map->name);
}
}
static int __init kgdb_parse_options(char *options)
{
char c;
int baud;
/* Check for port spec (or use default) */
/* Determine port type and instance */
if (!memcmp(options, "tty", 3)) {
struct kgdb_sermap *map = kgdb_serlist;
while (map && memcmp(options, map->name, map->namelen))
map = map->next;
if (!map) {
KGDB_PRINTK("unknown port spec in %s\n", options);
return -1;
}
kgdb_porttype = map;
kgdb_serial_setup = map->setup_fn;
kgdb_portnum = options[map->namelen] - '0';
options += map->namelen + 1;
options = (*options == ',') ? options+1 : options;
/* Read optional parameters (baud/parity/bits) */
baud = simple_strtoul(options, &options, 10);
if (baud != 0) {
kgdb_baud = baud;
c = toupper(*options);
if (c == 'E' || c == 'O' || c == 'N') {
kgdb_parity = c;
options++;
}
c = *options;
if (c == '7' || c == '8') {
kgdb_bits = c;
options++;
}
options = (*options == ',') ? options+1 : options;
}
}
/* Check for action specification */
if (!memcmp(options, "halt", 4)) {
kgdb_halt = 1;
options += 4;
} else if (!memcmp(options, "disabled", 8)) {
kgdb_enabled = 0;
options += 8;
}
if (*options) {
KGDB_PRINTK("ignored unknown options: %s\n", options);
return 0;
}
return 1;
}
__setup("kgdb=", kgdb_parse_options);
#endif /* CONFIG_SH_KGDB */