android_kernel_xiaomi_sm8350/drivers/infiniband/hw/cxgb3/cxio_hal.c

1275 lines
36 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <asm/delay.h>
#include <linux/mutex.h>
#include <linux/netdevice.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include "cxio_resource.h"
#include "cxio_hal.h"
#include "cxgb3_offload.h"
#include "sge_defs.h"
static LIST_HEAD(rdev_list);
static cxio_hal_ev_callback_func_t cxio_ev_cb = NULL;
static struct cxio_rdev *cxio_hal_find_rdev_by_name(char *dev_name)
{
struct cxio_rdev *rdev;
list_for_each_entry(rdev, &rdev_list, entry)
if (!strcmp(rdev->dev_name, dev_name))
return rdev;
return NULL;
}
static struct cxio_rdev *cxio_hal_find_rdev_by_t3cdev(struct t3cdev *tdev)
{
struct cxio_rdev *rdev;
list_for_each_entry(rdev, &rdev_list, entry)
if (rdev->t3cdev_p == tdev)
return rdev;
return NULL;
}
int cxio_hal_cq_op(struct cxio_rdev *rdev_p, struct t3_cq *cq,
enum t3_cq_opcode op, u32 credit)
{
int ret;
struct t3_cqe *cqe;
u32 rptr;
struct rdma_cq_op setup;
setup.id = cq->cqid;
setup.credits = (op == CQ_CREDIT_UPDATE) ? credit : 0;
setup.op = op;
ret = rdev_p->t3cdev_p->ctl(rdev_p->t3cdev_p, RDMA_CQ_OP, &setup);
if ((ret < 0) || (op == CQ_CREDIT_UPDATE))
return ret;
/*
* If the rearm returned an index other than our current index,
* then there might be CQE's in flight (being DMA'd). We must wait
* here for them to complete or the consumer can miss a notification.
*/
if (Q_PTR2IDX((cq->rptr), cq->size_log2) != ret) {
int i=0;
rptr = cq->rptr;
/*
* Keep the generation correct by bumping rptr until it
* matches the index returned by the rearm - 1.
*/
while (Q_PTR2IDX((rptr+1), cq->size_log2) != ret)
rptr++;
/*
* Now rptr is the index for the (last) cqe that was
* in-flight at the time the HW rearmed the CQ. We
* spin until that CQE is valid.
*/
cqe = cq->queue + Q_PTR2IDX(rptr, cq->size_log2);
while (!CQ_VLD_ENTRY(rptr, cq->size_log2, cqe)) {
udelay(1);
if (i++ > 1000000) {
BUG_ON(1);
printk(KERN_ERR "%s: stalled rnic\n",
rdev_p->dev_name);
return -EIO;
}
}
IB: Return "maybe missed event" hint from ib_req_notify_cq() The semantics defined by the InfiniBand specification say that completion events are only generated when a completions is added to a completion queue (CQ) after completion notification is requested. In other words, this means that the following race is possible: while (CQ is not empty) ib_poll_cq(CQ); // new completion is added after while loop is exited ib_req_notify_cq(CQ); // no event is generated for the existing completion To close this race, the IB spec recommends doing another poll of the CQ after requesting notification. However, it is not always possible to arrange code this way (for example, we have found that NAPI for IPoIB cannot poll after requesting notification). Also, some hardware (eg Mellanox HCAs) actually will generate an event for completions added before the call to ib_req_notify_cq() -- which is allowed by the spec, since there's no way for any upper-layer consumer to know exactly when a completion was really added -- so the extra poll of the CQ is just a waste. Motivated by this, we add a new flag "IB_CQ_REPORT_MISSED_EVENTS" for ib_req_notify_cq() so that it can return a hint about whether the a completion may have been added before the request for notification. The return value of ib_req_notify_cq() is extended so: < 0 means an error occurred while requesting notification == 0 means notification was requested successfully, and if IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events were missed and it is safe to wait for another event. > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed in. It means that the consumer must poll the CQ again to make sure it is empty to avoid the race described above. We add a flag to enable this behavior rather than turning it on unconditionally, because checking for missed events may incur significant overhead for some low-level drivers, and consumers that don't care about the results of this test shouldn't be forced to pay for the test. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-05-07 00:02:48 -04:00
return 1;
}
IB: Return "maybe missed event" hint from ib_req_notify_cq() The semantics defined by the InfiniBand specification say that completion events are only generated when a completions is added to a completion queue (CQ) after completion notification is requested. In other words, this means that the following race is possible: while (CQ is not empty) ib_poll_cq(CQ); // new completion is added after while loop is exited ib_req_notify_cq(CQ); // no event is generated for the existing completion To close this race, the IB spec recommends doing another poll of the CQ after requesting notification. However, it is not always possible to arrange code this way (for example, we have found that NAPI for IPoIB cannot poll after requesting notification). Also, some hardware (eg Mellanox HCAs) actually will generate an event for completions added before the call to ib_req_notify_cq() -- which is allowed by the spec, since there's no way for any upper-layer consumer to know exactly when a completion was really added -- so the extra poll of the CQ is just a waste. Motivated by this, we add a new flag "IB_CQ_REPORT_MISSED_EVENTS" for ib_req_notify_cq() so that it can return a hint about whether the a completion may have been added before the request for notification. The return value of ib_req_notify_cq() is extended so: < 0 means an error occurred while requesting notification == 0 means notification was requested successfully, and if IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events were missed and it is safe to wait for another event. > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed in. It means that the consumer must poll the CQ again to make sure it is empty to avoid the race described above. We add a flag to enable this behavior rather than turning it on unconditionally, because checking for missed events may incur significant overhead for some low-level drivers, and consumers that don't care about the results of this test shouldn't be forced to pay for the test. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-05-07 00:02:48 -04:00
return 0;
}
static int cxio_hal_clear_cq_ctx(struct cxio_rdev *rdev_p, u32 cqid)
{
struct rdma_cq_setup setup;
setup.id = cqid;
setup.base_addr = 0; /* NULL address */
setup.size = 0; /* disaable the CQ */
setup.credits = 0;
setup.credit_thres = 0;
setup.ovfl_mode = 0;
return (rdev_p->t3cdev_p->ctl(rdev_p->t3cdev_p, RDMA_CQ_SETUP, &setup));
}
static int cxio_hal_clear_qp_ctx(struct cxio_rdev *rdev_p, u32 qpid)
{
u64 sge_cmd;
struct t3_modify_qp_wr *wqe;
struct sk_buff *skb = alloc_skb(sizeof(*wqe), GFP_KERNEL);
if (!skb) {
PDBG("%s alloc_skb failed\n", __FUNCTION__);
return -ENOMEM;
}
wqe = (struct t3_modify_qp_wr *) skb_put(skb, sizeof(*wqe));
memset(wqe, 0, sizeof(*wqe));
build_fw_riwrh((struct fw_riwrh *) wqe, T3_WR_QP_MOD, 3, 0, qpid, 7);
wqe->flags = cpu_to_be32(MODQP_WRITE_EC);
sge_cmd = qpid << 8 | 3;
wqe->sge_cmd = cpu_to_be64(sge_cmd);
skb->priority = CPL_PRIORITY_CONTROL;
return (cxgb3_ofld_send(rdev_p->t3cdev_p, skb));
}
int cxio_create_cq(struct cxio_rdev *rdev_p, struct t3_cq *cq)
{
struct rdma_cq_setup setup;
int size = (1UL << (cq->size_log2)) * sizeof(struct t3_cqe);
cq->cqid = cxio_hal_get_cqid(rdev_p->rscp);
if (!cq->cqid)
return -ENOMEM;
cq->sw_queue = kzalloc(size, GFP_KERNEL);
if (!cq->sw_queue)
return -ENOMEM;
cq->queue = dma_alloc_coherent(&(rdev_p->rnic_info.pdev->dev),
(1UL << (cq->size_log2)) *
sizeof(struct t3_cqe),
&(cq->dma_addr), GFP_KERNEL);
if (!cq->queue) {
kfree(cq->sw_queue);
return -ENOMEM;
}
pci_unmap_addr_set(cq, mapping, cq->dma_addr);
memset(cq->queue, 0, size);
setup.id = cq->cqid;
setup.base_addr = (u64) (cq->dma_addr);
setup.size = 1UL << cq->size_log2;
setup.credits = 65535;
setup.credit_thres = 1;
if (rdev_p->t3cdev_p->type == T3B)
setup.ovfl_mode = 0;
else
setup.ovfl_mode = 1;
return (rdev_p->t3cdev_p->ctl(rdev_p->t3cdev_p, RDMA_CQ_SETUP, &setup));
}
int cxio_resize_cq(struct cxio_rdev *rdev_p, struct t3_cq *cq)
{
struct rdma_cq_setup setup;
setup.id = cq->cqid;
setup.base_addr = (u64) (cq->dma_addr);
setup.size = 1UL << cq->size_log2;
setup.credits = setup.size;
setup.credit_thres = setup.size; /* TBD: overflow recovery */
setup.ovfl_mode = 1;
return (rdev_p->t3cdev_p->ctl(rdev_p->t3cdev_p, RDMA_CQ_SETUP, &setup));
}
static u32 get_qpid(struct cxio_rdev *rdev_p, struct cxio_ucontext *uctx)
{
struct cxio_qpid_list *entry;
u32 qpid;
int i;
mutex_lock(&uctx->lock);
if (!list_empty(&uctx->qpids)) {
entry = list_entry(uctx->qpids.next, struct cxio_qpid_list,
entry);
list_del(&entry->entry);
qpid = entry->qpid;
kfree(entry);
} else {
qpid = cxio_hal_get_qpid(rdev_p->rscp);
if (!qpid)
goto out;
for (i = qpid+1; i & rdev_p->qpmask; i++) {
entry = kmalloc(sizeof *entry, GFP_KERNEL);
if (!entry)
break;
entry->qpid = i;
list_add_tail(&entry->entry, &uctx->qpids);
}
}
out:
mutex_unlock(&uctx->lock);
PDBG("%s qpid 0x%x\n", __FUNCTION__, qpid);
return qpid;
}
static void put_qpid(struct cxio_rdev *rdev_p, u32 qpid,
struct cxio_ucontext *uctx)
{
struct cxio_qpid_list *entry;
entry = kmalloc(sizeof *entry, GFP_KERNEL);
if (!entry)
return;
PDBG("%s qpid 0x%x\n", __FUNCTION__, qpid);
entry->qpid = qpid;
mutex_lock(&uctx->lock);
list_add_tail(&entry->entry, &uctx->qpids);
mutex_unlock(&uctx->lock);
}
void cxio_release_ucontext(struct cxio_rdev *rdev_p, struct cxio_ucontext *uctx)
{
struct list_head *pos, *nxt;
struct cxio_qpid_list *entry;
mutex_lock(&uctx->lock);
list_for_each_safe(pos, nxt, &uctx->qpids) {
entry = list_entry(pos, struct cxio_qpid_list, entry);
list_del_init(&entry->entry);
if (!(entry->qpid & rdev_p->qpmask))
cxio_hal_put_qpid(rdev_p->rscp, entry->qpid);
kfree(entry);
}
mutex_unlock(&uctx->lock);
}
void cxio_init_ucontext(struct cxio_rdev *rdev_p, struct cxio_ucontext *uctx)
{
INIT_LIST_HEAD(&uctx->qpids);
mutex_init(&uctx->lock);
}
int cxio_create_qp(struct cxio_rdev *rdev_p, u32 kernel_domain,
struct t3_wq *wq, struct cxio_ucontext *uctx)
{
int depth = 1UL << wq->size_log2;
int rqsize = 1UL << wq->rq_size_log2;
wq->qpid = get_qpid(rdev_p, uctx);
if (!wq->qpid)
return -ENOMEM;
wq->rq = kzalloc(depth * sizeof(u64), GFP_KERNEL);
if (!wq->rq)
goto err1;
wq->rq_addr = cxio_hal_rqtpool_alloc(rdev_p, rqsize);
if (!wq->rq_addr)
goto err2;
wq->sq = kzalloc(depth * sizeof(struct t3_swsq), GFP_KERNEL);
if (!wq->sq)
goto err3;
wq->queue = dma_alloc_coherent(&(rdev_p->rnic_info.pdev->dev),
depth * sizeof(union t3_wr),
&(wq->dma_addr), GFP_KERNEL);
if (!wq->queue)
goto err4;
memset(wq->queue, 0, depth * sizeof(union t3_wr));
pci_unmap_addr_set(wq, mapping, wq->dma_addr);
wq->doorbell = (void __iomem *)rdev_p->rnic_info.kdb_addr;
if (!kernel_domain)
wq->udb = (u64)rdev_p->rnic_info.udbell_physbase +
(wq->qpid << rdev_p->qpshift);
PDBG("%s qpid 0x%x doorbell 0x%p udb 0x%llx\n", __FUNCTION__,
wq->qpid, wq->doorbell, (unsigned long long) wq->udb);
return 0;
err4:
kfree(wq->sq);
err3:
cxio_hal_rqtpool_free(rdev_p, wq->rq_addr, rqsize);
err2:
kfree(wq->rq);
err1:
put_qpid(rdev_p, wq->qpid, uctx);
return -ENOMEM;
}
int cxio_destroy_cq(struct cxio_rdev *rdev_p, struct t3_cq *cq)
{
int err;
err = cxio_hal_clear_cq_ctx(rdev_p, cq->cqid);
kfree(cq->sw_queue);
dma_free_coherent(&(rdev_p->rnic_info.pdev->dev),
(1UL << (cq->size_log2))
* sizeof(struct t3_cqe), cq->queue,
pci_unmap_addr(cq, mapping));
cxio_hal_put_cqid(rdev_p->rscp, cq->cqid);
return err;
}
int cxio_destroy_qp(struct cxio_rdev *rdev_p, struct t3_wq *wq,
struct cxio_ucontext *uctx)
{
dma_free_coherent(&(rdev_p->rnic_info.pdev->dev),
(1UL << (wq->size_log2))
* sizeof(union t3_wr), wq->queue,
pci_unmap_addr(wq, mapping));
kfree(wq->sq);
cxio_hal_rqtpool_free(rdev_p, wq->rq_addr, (1UL << wq->rq_size_log2));
kfree(wq->rq);
put_qpid(rdev_p, wq->qpid, uctx);
return 0;
}
static void insert_recv_cqe(struct t3_wq *wq, struct t3_cq *cq)
{
struct t3_cqe cqe;
PDBG("%s wq %p cq %p sw_rptr 0x%x sw_wptr 0x%x\n", __FUNCTION__,
wq, cq, cq->sw_rptr, cq->sw_wptr);
memset(&cqe, 0, sizeof(cqe));
cqe.header = cpu_to_be32(V_CQE_STATUS(TPT_ERR_SWFLUSH) |
V_CQE_OPCODE(T3_SEND) |
V_CQE_TYPE(0) |
V_CQE_SWCQE(1) |
V_CQE_QPID(wq->qpid) |
V_CQE_GENBIT(Q_GENBIT(cq->sw_wptr,
cq->size_log2)));
*(cq->sw_queue + Q_PTR2IDX(cq->sw_wptr, cq->size_log2)) = cqe;
cq->sw_wptr++;
}
void cxio_flush_rq(struct t3_wq *wq, struct t3_cq *cq, int count)
{
u32 ptr;
PDBG("%s wq %p cq %p\n", __FUNCTION__, wq, cq);
/* flush RQ */
PDBG("%s rq_rptr %u rq_wptr %u skip count %u\n", __FUNCTION__,
wq->rq_rptr, wq->rq_wptr, count);
ptr = wq->rq_rptr + count;
while (ptr++ != wq->rq_wptr)
insert_recv_cqe(wq, cq);
}
static void insert_sq_cqe(struct t3_wq *wq, struct t3_cq *cq,
struct t3_swsq *sqp)
{
struct t3_cqe cqe;
PDBG("%s wq %p cq %p sw_rptr 0x%x sw_wptr 0x%x\n", __FUNCTION__,
wq, cq, cq->sw_rptr, cq->sw_wptr);
memset(&cqe, 0, sizeof(cqe));
cqe.header = cpu_to_be32(V_CQE_STATUS(TPT_ERR_SWFLUSH) |
V_CQE_OPCODE(sqp->opcode) |
V_CQE_TYPE(1) |
V_CQE_SWCQE(1) |
V_CQE_QPID(wq->qpid) |
V_CQE_GENBIT(Q_GENBIT(cq->sw_wptr,
cq->size_log2)));
cqe.u.scqe.wrid_hi = sqp->sq_wptr;
*(cq->sw_queue + Q_PTR2IDX(cq->sw_wptr, cq->size_log2)) = cqe;
cq->sw_wptr++;
}
void cxio_flush_sq(struct t3_wq *wq, struct t3_cq *cq, int count)
{
__u32 ptr;
struct t3_swsq *sqp = wq->sq + Q_PTR2IDX(wq->sq_rptr, wq->sq_size_log2);
ptr = wq->sq_rptr + count;
sqp += count;
while (ptr != wq->sq_wptr) {
insert_sq_cqe(wq, cq, sqp);
sqp++;
ptr++;
}
}
/*
* Move all CQEs from the HWCQ into the SWCQ.
*/
void cxio_flush_hw_cq(struct t3_cq *cq)
{
struct t3_cqe *cqe, *swcqe;
PDBG("%s cq %p cqid 0x%x\n", __FUNCTION__, cq, cq->cqid);
cqe = cxio_next_hw_cqe(cq);
while (cqe) {
PDBG("%s flushing hwcq rptr 0x%x to swcq wptr 0x%x\n",
__FUNCTION__, cq->rptr, cq->sw_wptr);
swcqe = cq->sw_queue + Q_PTR2IDX(cq->sw_wptr, cq->size_log2);
*swcqe = *cqe;
swcqe->header |= cpu_to_be32(V_CQE_SWCQE(1));
cq->sw_wptr++;
cq->rptr++;
cqe = cxio_next_hw_cqe(cq);
}
}
static int cqe_completes_wr(struct t3_cqe *cqe, struct t3_wq *wq)
{
if (CQE_OPCODE(*cqe) == T3_TERMINATE)
return 0;
if ((CQE_OPCODE(*cqe) == T3_RDMA_WRITE) && RQ_TYPE(*cqe))
return 0;
if ((CQE_OPCODE(*cqe) == T3_READ_RESP) && SQ_TYPE(*cqe))
return 0;
if ((CQE_OPCODE(*cqe) == T3_SEND) && RQ_TYPE(*cqe) &&
Q_EMPTY(wq->rq_rptr, wq->rq_wptr))
return 0;
return 1;
}
void cxio_count_scqes(struct t3_cq *cq, struct t3_wq *wq, int *count)
{
struct t3_cqe *cqe;
u32 ptr;
*count = 0;
ptr = cq->sw_rptr;
while (!Q_EMPTY(ptr, cq->sw_wptr)) {
cqe = cq->sw_queue + (Q_PTR2IDX(ptr, cq->size_log2));
if ((SQ_TYPE(*cqe) || (CQE_OPCODE(*cqe) == T3_READ_RESP)) &&
(CQE_QPID(*cqe) == wq->qpid))
(*count)++;
ptr++;
}
PDBG("%s cq %p count %d\n", __FUNCTION__, cq, *count);
}
void cxio_count_rcqes(struct t3_cq *cq, struct t3_wq *wq, int *count)
{
struct t3_cqe *cqe;
u32 ptr;
*count = 0;
PDBG("%s count zero %d\n", __FUNCTION__, *count);
ptr = cq->sw_rptr;
while (!Q_EMPTY(ptr, cq->sw_wptr)) {
cqe = cq->sw_queue + (Q_PTR2IDX(ptr, cq->size_log2));
if (RQ_TYPE(*cqe) && (CQE_OPCODE(*cqe) != T3_READ_RESP) &&
(CQE_QPID(*cqe) == wq->qpid) && cqe_completes_wr(cqe, wq))
(*count)++;
ptr++;
}
PDBG("%s cq %p count %d\n", __FUNCTION__, cq, *count);
}
static int cxio_hal_init_ctrl_cq(struct cxio_rdev *rdev_p)
{
struct rdma_cq_setup setup;
setup.id = 0;
setup.base_addr = 0; /* NULL address */
setup.size = 1; /* enable the CQ */
setup.credits = 0;
/* force SGE to redirect to RspQ and interrupt */
setup.credit_thres = 0;
setup.ovfl_mode = 1;
return (rdev_p->t3cdev_p->ctl(rdev_p->t3cdev_p, RDMA_CQ_SETUP, &setup));
}
static int cxio_hal_init_ctrl_qp(struct cxio_rdev *rdev_p)
{
int err;
u64 sge_cmd, ctx0, ctx1;
u64 base_addr;
struct t3_modify_qp_wr *wqe;
struct sk_buff *skb;
skb = alloc_skb(sizeof(*wqe), GFP_KERNEL);
if (!skb) {
PDBG("%s alloc_skb failed\n", __FUNCTION__);
return -ENOMEM;
}
err = cxio_hal_init_ctrl_cq(rdev_p);
if (err) {
PDBG("%s err %d initializing ctrl_cq\n", __FUNCTION__, err);
goto err;
}
rdev_p->ctrl_qp.workq = dma_alloc_coherent(
&(rdev_p->rnic_info.pdev->dev),
(1 << T3_CTRL_QP_SIZE_LOG2) *
sizeof(union t3_wr),
&(rdev_p->ctrl_qp.dma_addr),
GFP_KERNEL);
if (!rdev_p->ctrl_qp.workq) {
PDBG("%s dma_alloc_coherent failed\n", __FUNCTION__);
err = -ENOMEM;
goto err;
}
pci_unmap_addr_set(&rdev_p->ctrl_qp, mapping,
rdev_p->ctrl_qp.dma_addr);
rdev_p->ctrl_qp.doorbell = (void __iomem *)rdev_p->rnic_info.kdb_addr;
memset(rdev_p->ctrl_qp.workq, 0,
(1 << T3_CTRL_QP_SIZE_LOG2) * sizeof(union t3_wr));
mutex_init(&rdev_p->ctrl_qp.lock);
init_waitqueue_head(&rdev_p->ctrl_qp.waitq);
/* update HW Ctrl QP context */
base_addr = rdev_p->ctrl_qp.dma_addr;
base_addr >>= 12;
ctx0 = (V_EC_SIZE((1 << T3_CTRL_QP_SIZE_LOG2)) |
V_EC_BASE_LO((u32) base_addr & 0xffff));
ctx0 <<= 32;
ctx0 |= V_EC_CREDITS(FW_WR_NUM);
base_addr >>= 16;
ctx1 = (u32) base_addr;
base_addr >>= 32;
ctx1 |= ((u64) (V_EC_BASE_HI((u32) base_addr & 0xf) | V_EC_RESPQ(0) |
V_EC_TYPE(0) | V_EC_GEN(1) |
V_EC_UP_TOKEN(T3_CTL_QP_TID) | F_EC_VALID)) << 32;
wqe = (struct t3_modify_qp_wr *) skb_put(skb, sizeof(*wqe));
memset(wqe, 0, sizeof(*wqe));
build_fw_riwrh((struct fw_riwrh *) wqe, T3_WR_QP_MOD, 0, 0,
T3_CTL_QP_TID, 7);
wqe->flags = cpu_to_be32(MODQP_WRITE_EC);
sge_cmd = (3ULL << 56) | FW_RI_SGEEC_START << 8 | 3;
wqe->sge_cmd = cpu_to_be64(sge_cmd);
wqe->ctx1 = cpu_to_be64(ctx1);
wqe->ctx0 = cpu_to_be64(ctx0);
PDBG("CtrlQP dma_addr 0x%llx workq %p size %d\n",
(unsigned long long) rdev_p->ctrl_qp.dma_addr,
rdev_p->ctrl_qp.workq, 1 << T3_CTRL_QP_SIZE_LOG2);
skb->priority = CPL_PRIORITY_CONTROL;
return (cxgb3_ofld_send(rdev_p->t3cdev_p, skb));
err:
kfree_skb(skb);
return err;
}
static int cxio_hal_destroy_ctrl_qp(struct cxio_rdev *rdev_p)
{
dma_free_coherent(&(rdev_p->rnic_info.pdev->dev),
(1UL << T3_CTRL_QP_SIZE_LOG2)
* sizeof(union t3_wr), rdev_p->ctrl_qp.workq,
pci_unmap_addr(&rdev_p->ctrl_qp, mapping));
return cxio_hal_clear_qp_ctx(rdev_p, T3_CTRL_QP_ID);
}
/* write len bytes of data into addr (32B aligned address)
* If data is NULL, clear len byte of memory to zero.
* caller aquires the ctrl_qp lock before the call
*/
static int cxio_hal_ctrl_qp_write_mem(struct cxio_rdev *rdev_p, u32 addr,
u32 len, void *data, int completion)
{
u32 i, nr_wqe, copy_len;
u8 *copy_data;
u8 wr_len, utx_len; /* lenght in 8 byte flit */
enum t3_wr_flags flag;
__be64 *wqe;
u64 utx_cmd;
addr &= 0x7FFFFFF;
nr_wqe = len % 96 ? len / 96 + 1 : len / 96; /* 96B max per WQE */
PDBG("%s wptr 0x%x rptr 0x%x len %d, nr_wqe %d data %p addr 0x%0x\n",
__FUNCTION__, rdev_p->ctrl_qp.wptr, rdev_p->ctrl_qp.rptr, len,
nr_wqe, data, addr);
utx_len = 3; /* in 32B unit */
for (i = 0; i < nr_wqe; i++) {
if (Q_FULL(rdev_p->ctrl_qp.rptr, rdev_p->ctrl_qp.wptr,
T3_CTRL_QP_SIZE_LOG2)) {
PDBG("%s ctrl_qp full wtpr 0x%0x rptr 0x%0x, "
"wait for more space i %d\n", __FUNCTION__,
rdev_p->ctrl_qp.wptr, rdev_p->ctrl_qp.rptr, i);
if (wait_event_interruptible(rdev_p->ctrl_qp.waitq,
!Q_FULL(rdev_p->ctrl_qp.rptr,
rdev_p->ctrl_qp.wptr,
T3_CTRL_QP_SIZE_LOG2))) {
PDBG("%s ctrl_qp workq interrupted\n",
__FUNCTION__);
return -ERESTARTSYS;
}
PDBG("%s ctrl_qp wakeup, continue posting work request "
"i %d\n", __FUNCTION__, i);
}
wqe = (__be64 *)(rdev_p->ctrl_qp.workq + (rdev_p->ctrl_qp.wptr %
(1 << T3_CTRL_QP_SIZE_LOG2)));
flag = 0;
if (i == (nr_wqe - 1)) {
/* last WQE */
flag = completion ? T3_COMPLETION_FLAG : 0;
if (len % 32)
utx_len = len / 32 + 1;
else
utx_len = len / 32;
}
/*
* Force a CQE to return the credit to the workq in case
* we posted more than half the max QP size of WRs
*/
if ((i != 0) &&
(i % (((1 << T3_CTRL_QP_SIZE_LOG2)) >> 1) == 0)) {
flag = T3_COMPLETION_FLAG;
PDBG("%s force completion at i %d\n", __FUNCTION__, i);
}
/* build the utx mem command */
wqe += (sizeof(struct t3_bypass_wr) >> 3);
utx_cmd = (T3_UTX_MEM_WRITE << 28) | (addr + i * 3);
utx_cmd <<= 32;
utx_cmd |= (utx_len << 28) | ((utx_len << 2) + 1);
*wqe = cpu_to_be64(utx_cmd);
wqe++;
copy_data = (u8 *) data + i * 96;
copy_len = len > 96 ? 96 : len;
/* clear memory content if data is NULL */
if (data)
memcpy(wqe, copy_data, copy_len);
else
memset(wqe, 0, copy_len);
if (copy_len % 32)
memset(((u8 *) wqe) + copy_len, 0,
32 - (copy_len % 32));
wr_len = ((sizeof(struct t3_bypass_wr)) >> 3) + 1 +
(utx_len << 2);
wqe = (__be64 *)(rdev_p->ctrl_qp.workq + (rdev_p->ctrl_qp.wptr %
(1 << T3_CTRL_QP_SIZE_LOG2)));
/* wptr in the WRID[31:0] */
((union t3_wrid *)(wqe+1))->id0.low = rdev_p->ctrl_qp.wptr;
/*
* This must be the last write with a memory barrier
* for the genbit
*/
build_fw_riwrh((struct fw_riwrh *) wqe, T3_WR_BP, flag,
Q_GENBIT(rdev_p->ctrl_qp.wptr,
T3_CTRL_QP_SIZE_LOG2), T3_CTRL_QP_ID,
wr_len);
if (flag == T3_COMPLETION_FLAG)
ring_doorbell(rdev_p->ctrl_qp.doorbell, T3_CTRL_QP_ID);
len -= 96;
rdev_p->ctrl_qp.wptr++;
}
return 0;
}
/* IN: stag key, pdid, perm, zbva, to, len, page_size, pbl, and pbl_size
* OUT: stag index, actual pbl_size, pbl_addr allocated.
* TBD: shared memory region support
*/
static int __cxio_tpt_op(struct cxio_rdev *rdev_p, u32 reset_tpt_entry,
u32 *stag, u8 stag_state, u32 pdid,
enum tpt_mem_type type, enum tpt_mem_perm perm,
u32 zbva, u64 to, u32 len, u8 page_size, __be64 *pbl,
u32 *pbl_size, u32 *pbl_addr)
{
int err;
struct tpt_entry tpt;
u32 stag_idx;
u32 wptr;
int rereg = (*stag != T3_STAG_UNSET);
stag_state = stag_state > 0;
stag_idx = (*stag) >> 8;
if ((!reset_tpt_entry) && !(*stag != T3_STAG_UNSET)) {
stag_idx = cxio_hal_get_stag(rdev_p->rscp);
if (!stag_idx)
return -ENOMEM;
*stag = (stag_idx << 8) | ((*stag) & 0xFF);
}
PDBG("%s stag_state 0x%0x type 0x%0x pdid 0x%0x, stag_idx 0x%x\n",
__FUNCTION__, stag_state, type, pdid, stag_idx);
if (reset_tpt_entry)
cxio_hal_pblpool_free(rdev_p, *pbl_addr, *pbl_size << 3);
else if (!rereg) {
*pbl_addr = cxio_hal_pblpool_alloc(rdev_p, *pbl_size << 3);
if (!*pbl_addr) {
return -ENOMEM;
}
}
mutex_lock(&rdev_p->ctrl_qp.lock);
/* write PBL first if any - update pbl only if pbl list exist */
if (pbl) {
PDBG("%s *pdb_addr 0x%x, pbl_base 0x%x, pbl_size %d\n",
__FUNCTION__, *pbl_addr, rdev_p->rnic_info.pbl_base,
*pbl_size);
err = cxio_hal_ctrl_qp_write_mem(rdev_p,
(*pbl_addr >> 5),
(*pbl_size << 3), pbl, 0);
if (err)
goto ret;
}
/* write TPT entry */
if (reset_tpt_entry)
memset(&tpt, 0, sizeof(tpt));
else {
tpt.valid_stag_pdid = cpu_to_be32(F_TPT_VALID |
V_TPT_STAG_KEY((*stag) & M_TPT_STAG_KEY) |
V_TPT_STAG_STATE(stag_state) |
V_TPT_STAG_TYPE(type) | V_TPT_PDID(pdid));
BUG_ON(page_size >= 28);
tpt.flags_pagesize_qpid = cpu_to_be32(V_TPT_PERM(perm) |
F_TPT_MW_BIND_ENABLE |
V_TPT_ADDR_TYPE((zbva ? TPT_ZBTO : TPT_VATO)) |
V_TPT_PAGE_SIZE(page_size));
tpt.rsvd_pbl_addr = reset_tpt_entry ? 0 :
cpu_to_be32(V_TPT_PBL_ADDR(PBL_OFF(rdev_p, *pbl_addr)>>3));
tpt.len = cpu_to_be32(len);
tpt.va_hi = cpu_to_be32((u32) (to >> 32));
tpt.va_low_or_fbo = cpu_to_be32((u32) (to & 0xFFFFFFFFULL));
tpt.rsvd_bind_cnt_or_pstag = 0;
tpt.rsvd_pbl_size = reset_tpt_entry ? 0 :
cpu_to_be32(V_TPT_PBL_SIZE((*pbl_size) >> 2));
}
err = cxio_hal_ctrl_qp_write_mem(rdev_p,
stag_idx +
(rdev_p->rnic_info.tpt_base >> 5),
sizeof(tpt), &tpt, 1);
/* release the stag index to free pool */
if (reset_tpt_entry)
cxio_hal_put_stag(rdev_p->rscp, stag_idx);
ret:
wptr = rdev_p->ctrl_qp.wptr;
mutex_unlock(&rdev_p->ctrl_qp.lock);
if (!err)
if (wait_event_interruptible(rdev_p->ctrl_qp.waitq,
SEQ32_GE(rdev_p->ctrl_qp.rptr,
wptr)))
return -ERESTARTSYS;
return err;
}
int cxio_register_phys_mem(struct cxio_rdev *rdev_p, u32 *stag, u32 pdid,
enum tpt_mem_perm perm, u32 zbva, u64 to, u32 len,
u8 page_size, __be64 *pbl, u32 *pbl_size,
u32 *pbl_addr)
{
*stag = T3_STAG_UNSET;
return __cxio_tpt_op(rdev_p, 0, stag, 1, pdid, TPT_NON_SHARED_MR, perm,
zbva, to, len, page_size, pbl, pbl_size, pbl_addr);
}
int cxio_reregister_phys_mem(struct cxio_rdev *rdev_p, u32 *stag, u32 pdid,
enum tpt_mem_perm perm, u32 zbva, u64 to, u32 len,
u8 page_size, __be64 *pbl, u32 *pbl_size,
u32 *pbl_addr)
{
return __cxio_tpt_op(rdev_p, 0, stag, 1, pdid, TPT_NON_SHARED_MR, perm,
zbva, to, len, page_size, pbl, pbl_size, pbl_addr);
}
int cxio_dereg_mem(struct cxio_rdev *rdev_p, u32 stag, u32 pbl_size,
u32 pbl_addr)
{
return __cxio_tpt_op(rdev_p, 1, &stag, 0, 0, 0, 0, 0, 0ULL, 0, 0, NULL,
&pbl_size, &pbl_addr);
}
int cxio_allocate_window(struct cxio_rdev *rdev_p, u32 * stag, u32 pdid)
{
u32 pbl_size = 0;
*stag = T3_STAG_UNSET;
return __cxio_tpt_op(rdev_p, 0, stag, 0, pdid, TPT_MW, 0, 0, 0ULL, 0, 0,
NULL, &pbl_size, NULL);
}
int cxio_deallocate_window(struct cxio_rdev *rdev_p, u32 stag)
{
return __cxio_tpt_op(rdev_p, 1, &stag, 0, 0, 0, 0, 0, 0ULL, 0, 0, NULL,
NULL, NULL);
}
int cxio_rdma_init(struct cxio_rdev *rdev_p, struct t3_rdma_init_attr *attr)
{
struct t3_rdma_init_wr *wqe;
struct sk_buff *skb = alloc_skb(sizeof(*wqe), GFP_ATOMIC);
if (!skb)
return -ENOMEM;
PDBG("%s rdev_p %p\n", __FUNCTION__, rdev_p);
wqe = (struct t3_rdma_init_wr *) __skb_put(skb, sizeof(*wqe));
wqe->wrh.op_seop_flags = cpu_to_be32(V_FW_RIWR_OP(T3_WR_INIT));
wqe->wrh.gen_tid_len = cpu_to_be32(V_FW_RIWR_TID(attr->tid) |
V_FW_RIWR_LEN(sizeof(*wqe) >> 3));
wqe->wrid.id1 = 0;
wqe->qpid = cpu_to_be32(attr->qpid);
wqe->pdid = cpu_to_be32(attr->pdid);
wqe->scqid = cpu_to_be32(attr->scqid);
wqe->rcqid = cpu_to_be32(attr->rcqid);
wqe->rq_addr = cpu_to_be32(attr->rq_addr - rdev_p->rnic_info.rqt_base);
wqe->rq_size = cpu_to_be32(attr->rq_size);
wqe->mpaattrs = attr->mpaattrs;
wqe->qpcaps = attr->qpcaps;
wqe->ulpdu_size = cpu_to_be16(attr->tcp_emss);
wqe->flags = cpu_to_be32(attr->flags);
wqe->ord = cpu_to_be32(attr->ord);
wqe->ird = cpu_to_be32(attr->ird);
wqe->qp_dma_addr = cpu_to_be64(attr->qp_dma_addr);
wqe->qp_dma_size = cpu_to_be32(attr->qp_dma_size);
wqe->irs = cpu_to_be32(attr->irs);
skb->priority = 0; /* 0=>ToeQ; 1=>CtrlQ */
return (cxgb3_ofld_send(rdev_p->t3cdev_p, skb));
}
void cxio_register_ev_cb(cxio_hal_ev_callback_func_t ev_cb)
{
cxio_ev_cb = ev_cb;
}
void cxio_unregister_ev_cb(cxio_hal_ev_callback_func_t ev_cb)
{
cxio_ev_cb = NULL;
}
static int cxio_hal_ev_handler(struct t3cdev *t3cdev_p, struct sk_buff *skb)
{
static int cnt;
struct cxio_rdev *rdev_p = NULL;
struct respQ_msg_t *rsp_msg = (struct respQ_msg_t *) skb->data;
PDBG("%d: %s cq_id 0x%x cq_ptr 0x%x genbit %0x overflow %0x an %0x"
" se %0x notify %0x cqbranch %0x creditth %0x\n",
cnt, __FUNCTION__, RSPQ_CQID(rsp_msg), RSPQ_CQPTR(rsp_msg),
RSPQ_GENBIT(rsp_msg), RSPQ_OVERFLOW(rsp_msg), RSPQ_AN(rsp_msg),
RSPQ_SE(rsp_msg), RSPQ_NOTIFY(rsp_msg), RSPQ_CQBRANCH(rsp_msg),
RSPQ_CREDIT_THRESH(rsp_msg));
PDBG("CQE: QPID 0x%0x genbit %0x type 0x%0x status 0x%0x opcode %d "
"len 0x%0x wrid_hi_stag 0x%x wrid_low_msn 0x%x\n",
CQE_QPID(rsp_msg->cqe), CQE_GENBIT(rsp_msg->cqe),
CQE_TYPE(rsp_msg->cqe), CQE_STATUS(rsp_msg->cqe),
CQE_OPCODE(rsp_msg->cqe), CQE_LEN(rsp_msg->cqe),
CQE_WRID_HI(rsp_msg->cqe), CQE_WRID_LOW(rsp_msg->cqe));
rdev_p = (struct cxio_rdev *)t3cdev_p->ulp;
if (!rdev_p) {
PDBG("%s called by t3cdev %p with null ulp\n", __FUNCTION__,
t3cdev_p);
return 0;
}
if (CQE_QPID(rsp_msg->cqe) == T3_CTRL_QP_ID) {
rdev_p->ctrl_qp.rptr = CQE_WRID_LOW(rsp_msg->cqe) + 1;
wake_up_interruptible(&rdev_p->ctrl_qp.waitq);
dev_kfree_skb_irq(skb);
} else if (CQE_QPID(rsp_msg->cqe) == 0xfff8)
dev_kfree_skb_irq(skb);
else if (cxio_ev_cb)
(*cxio_ev_cb) (rdev_p, skb);
else
dev_kfree_skb_irq(skb);
cnt++;
return 0;
}
/* Caller takes care of locking if needed */
int cxio_rdev_open(struct cxio_rdev *rdev_p)
{
struct net_device *netdev_p = NULL;
int err = 0;
if (strlen(rdev_p->dev_name)) {
if (cxio_hal_find_rdev_by_name(rdev_p->dev_name)) {
return -EBUSY;
}
netdev_p = dev_get_by_name(rdev_p->dev_name);
if (!netdev_p) {
return -EINVAL;
}
dev_put(netdev_p);
} else if (rdev_p->t3cdev_p) {
if (cxio_hal_find_rdev_by_t3cdev(rdev_p->t3cdev_p)) {
return -EBUSY;
}
netdev_p = rdev_p->t3cdev_p->lldev;
strncpy(rdev_p->dev_name, rdev_p->t3cdev_p->name,
T3_MAX_DEV_NAME_LEN);
} else {
PDBG("%s t3cdev_p or dev_name must be set\n", __FUNCTION__);
return -EINVAL;
}
list_add_tail(&rdev_p->entry, &rdev_list);
PDBG("%s opening rnic dev %s\n", __FUNCTION__, rdev_p->dev_name);
memset(&rdev_p->ctrl_qp, 0, sizeof(rdev_p->ctrl_qp));
if (!rdev_p->t3cdev_p)
rdev_p->t3cdev_p = dev2t3cdev(netdev_p);
rdev_p->t3cdev_p->ulp = (void *) rdev_p;
err = rdev_p->t3cdev_p->ctl(rdev_p->t3cdev_p, RDMA_GET_PARAMS,
&(rdev_p->rnic_info));
if (err) {
printk(KERN_ERR "%s t3cdev_p(%p)->ctl returned error %d.\n",
__FUNCTION__, rdev_p->t3cdev_p, err);
goto err1;
}
err = rdev_p->t3cdev_p->ctl(rdev_p->t3cdev_p, GET_PORTS,
&(rdev_p->port_info));
if (err) {
printk(KERN_ERR "%s t3cdev_p(%p)->ctl returned error %d.\n",
__FUNCTION__, rdev_p->t3cdev_p, err);
goto err1;
}
/*
* qpshift is the number of bits to shift the qpid left in order
* to get the correct address of the doorbell for that qp.
*/
cxio_init_ucontext(rdev_p, &rdev_p->uctx);
rdev_p->qpshift = PAGE_SHIFT -
ilog2(65536 >>
ilog2(rdev_p->rnic_info.udbell_len >>
PAGE_SHIFT));
rdev_p->qpnr = rdev_p->rnic_info.udbell_len >> PAGE_SHIFT;
rdev_p->qpmask = (65536 >> ilog2(rdev_p->qpnr)) - 1;
PDBG("%s rnic %s info: tpt_base 0x%0x tpt_top 0x%0x num stags %d "
"pbl_base 0x%0x pbl_top 0x%0x rqt_base 0x%0x, rqt_top 0x%0x\n",
__FUNCTION__, rdev_p->dev_name, rdev_p->rnic_info.tpt_base,
rdev_p->rnic_info.tpt_top, cxio_num_stags(rdev_p),
rdev_p->rnic_info.pbl_base,
rdev_p->rnic_info.pbl_top, rdev_p->rnic_info.rqt_base,
rdev_p->rnic_info.rqt_top);
PDBG("udbell_len 0x%0x udbell_physbase 0x%lx kdb_addr %p qpshift %lu "
"qpnr %d qpmask 0x%x\n",
rdev_p->rnic_info.udbell_len,
rdev_p->rnic_info.udbell_physbase, rdev_p->rnic_info.kdb_addr,
rdev_p->qpshift, rdev_p->qpnr, rdev_p->qpmask);
err = cxio_hal_init_ctrl_qp(rdev_p);
if (err) {
printk(KERN_ERR "%s error %d initializing ctrl_qp.\n",
__FUNCTION__, err);
goto err1;
}
err = cxio_hal_init_resource(rdev_p, cxio_num_stags(rdev_p), 0,
0, T3_MAX_NUM_QP, T3_MAX_NUM_CQ,
T3_MAX_NUM_PD);
if (err) {
printk(KERN_ERR "%s error %d initializing hal resources.\n",
__FUNCTION__, err);
goto err2;
}
err = cxio_hal_pblpool_create(rdev_p);
if (err) {
printk(KERN_ERR "%s error %d initializing pbl mem pool.\n",
__FUNCTION__, err);
goto err3;
}
err = cxio_hal_rqtpool_create(rdev_p);
if (err) {
printk(KERN_ERR "%s error %d initializing rqt mem pool.\n",
__FUNCTION__, err);
goto err4;
}
return 0;
err4:
cxio_hal_pblpool_destroy(rdev_p);
err3:
cxio_hal_destroy_resource(rdev_p->rscp);
err2:
cxio_hal_destroy_ctrl_qp(rdev_p);
err1:
list_del(&rdev_p->entry);
return err;
}
void cxio_rdev_close(struct cxio_rdev *rdev_p)
{
if (rdev_p) {
cxio_hal_pblpool_destroy(rdev_p);
cxio_hal_rqtpool_destroy(rdev_p);
list_del(&rdev_p->entry);
rdev_p->t3cdev_p->ulp = NULL;
cxio_hal_destroy_ctrl_qp(rdev_p);
cxio_hal_destroy_resource(rdev_p->rscp);
}
}
int __init cxio_hal_init(void)
{
if (cxio_hal_init_rhdl_resource(T3_MAX_NUM_RI))
return -ENOMEM;
t3_register_cpl_handler(CPL_ASYNC_NOTIF, cxio_hal_ev_handler);
return 0;
}
void __exit cxio_hal_exit(void)
{
struct cxio_rdev *rdev, *tmp;
t3_register_cpl_handler(CPL_ASYNC_NOTIF, NULL);
list_for_each_entry_safe(rdev, tmp, &rdev_list, entry)
cxio_rdev_close(rdev);
cxio_hal_destroy_rhdl_resource();
}
static void flush_completed_wrs(struct t3_wq *wq, struct t3_cq *cq)
{
struct t3_swsq *sqp;
__u32 ptr = wq->sq_rptr;
int count = Q_COUNT(wq->sq_rptr, wq->sq_wptr);
sqp = wq->sq + Q_PTR2IDX(ptr, wq->sq_size_log2);
while (count--)
if (!sqp->signaled) {
ptr++;
sqp = wq->sq + Q_PTR2IDX(ptr, wq->sq_size_log2);
} else if (sqp->complete) {
/*
* Insert this completed cqe into the swcq.
*/
PDBG("%s moving cqe into swcq sq idx %ld cq idx %ld\n",
__FUNCTION__, Q_PTR2IDX(ptr, wq->sq_size_log2),
Q_PTR2IDX(cq->sw_wptr, cq->size_log2));
sqp->cqe.header |= htonl(V_CQE_SWCQE(1));
*(cq->sw_queue + Q_PTR2IDX(cq->sw_wptr, cq->size_log2))
= sqp->cqe;
cq->sw_wptr++;
sqp->signaled = 0;
break;
} else
break;
}
static void create_read_req_cqe(struct t3_wq *wq, struct t3_cqe *hw_cqe,
struct t3_cqe *read_cqe)
{
read_cqe->u.scqe.wrid_hi = wq->oldest_read->sq_wptr;
read_cqe->len = wq->oldest_read->read_len;
read_cqe->header = htonl(V_CQE_QPID(CQE_QPID(*hw_cqe)) |
V_CQE_SWCQE(SW_CQE(*hw_cqe)) |
V_CQE_OPCODE(T3_READ_REQ) |
V_CQE_TYPE(1));
}
/*
* Return a ptr to the next read wr in the SWSQ or NULL.
*/
static void advance_oldest_read(struct t3_wq *wq)
{
u32 rptr = wq->oldest_read - wq->sq + 1;
u32 wptr = Q_PTR2IDX(wq->sq_wptr, wq->sq_size_log2);
while (Q_PTR2IDX(rptr, wq->sq_size_log2) != wptr) {
wq->oldest_read = wq->sq + Q_PTR2IDX(rptr, wq->sq_size_log2);
if (wq->oldest_read->opcode == T3_READ_REQ)
return;
rptr++;
}
wq->oldest_read = NULL;
}
/*
* cxio_poll_cq
*
* Caller must:
* check the validity of the first CQE,
* supply the wq assicated with the qpid.
*
* credit: cq credit to return to sge.
* cqe_flushed: 1 iff the CQE is flushed.
* cqe: copy of the polled CQE.
*
* return value:
* 0 CQE returned,
* -1 CQE skipped, try again.
*/
int cxio_poll_cq(struct t3_wq *wq, struct t3_cq *cq, struct t3_cqe *cqe,
u8 *cqe_flushed, u64 *cookie, u32 *credit)
{
int ret = 0;
struct t3_cqe *hw_cqe, read_cqe;
*cqe_flushed = 0;
*credit = 0;
hw_cqe = cxio_next_cqe(cq);
PDBG("%s CQE OOO %d qpid 0x%0x genbit %d type %d status 0x%0x"
" opcode 0x%0x len 0x%0x wrid_hi_stag 0x%x wrid_low_msn 0x%x\n",
__FUNCTION__, CQE_OOO(*hw_cqe), CQE_QPID(*hw_cqe),
CQE_GENBIT(*hw_cqe), CQE_TYPE(*hw_cqe), CQE_STATUS(*hw_cqe),
CQE_OPCODE(*hw_cqe), CQE_LEN(*hw_cqe), CQE_WRID_HI(*hw_cqe),
CQE_WRID_LOW(*hw_cqe));
/*
* skip cqe's not affiliated with a QP.
*/
if (wq == NULL) {
ret = -1;
goto skip_cqe;
}
/*
* Gotta tweak READ completions:
* 1) the cqe doesn't contain the sq_wptr from the wr.
* 2) opcode not reflected from the wr.
* 3) read_len not reflected from the wr.
* 4) cq_type is RQ_TYPE not SQ_TYPE.
*/
if (RQ_TYPE(*hw_cqe) && (CQE_OPCODE(*hw_cqe) == T3_READ_RESP)) {
/*
* Don't write to the HWCQ, so create a new read req CQE
* in local memory.
*/
create_read_req_cqe(wq, hw_cqe, &read_cqe);
hw_cqe = &read_cqe;
advance_oldest_read(wq);
}
/*
* T3A: Discard TERMINATE CQEs.
*/
if (CQE_OPCODE(*hw_cqe) == T3_TERMINATE) {
ret = -1;
wq->error = 1;
goto skip_cqe;
}
if (CQE_STATUS(*hw_cqe) || wq->error) {
*cqe_flushed = wq->error;
wq->error = 1;
/*
* T3A inserts errors into the CQE. We cannot return
* these as work completions.
*/
/* incoming write failures */
if ((CQE_OPCODE(*hw_cqe) == T3_RDMA_WRITE)
&& RQ_TYPE(*hw_cqe)) {
ret = -1;
goto skip_cqe;
}
/* incoming read request failures */
if ((CQE_OPCODE(*hw_cqe) == T3_READ_RESP) && SQ_TYPE(*hw_cqe)) {
ret = -1;
goto skip_cqe;
}
/* incoming SEND with no receive posted failures */
if ((CQE_OPCODE(*hw_cqe) == T3_SEND) && RQ_TYPE(*hw_cqe) &&
Q_EMPTY(wq->rq_rptr, wq->rq_wptr)) {
ret = -1;
goto skip_cqe;
}
goto proc_cqe;
}
/*
* RECV completion.
*/
if (RQ_TYPE(*hw_cqe)) {
/*
* HW only validates 4 bits of MSN. So we must validate that
* the MSN in the SEND is the next expected MSN. If its not,
* then we complete this with TPT_ERR_MSN and mark the wq in
* error.
*/
if (unlikely((CQE_WRID_MSN(*hw_cqe) != (wq->rq_rptr + 1)))) {
wq->error = 1;
hw_cqe->header |= htonl(V_CQE_STATUS(TPT_ERR_MSN));
goto proc_cqe;
}
goto proc_cqe;
}
/*
* If we get here its a send completion.
*
* Handle out of order completion. These get stuffed
* in the SW SQ. Then the SW SQ is walked to move any
* now in-order completions into the SW CQ. This handles
* 2 cases:
* 1) reaping unsignaled WRs when the first subsequent
* signaled WR is completed.
* 2) out of order read completions.
*/
if (!SW_CQE(*hw_cqe) && (CQE_WRID_SQ_WPTR(*hw_cqe) != wq->sq_rptr)) {
struct t3_swsq *sqp;
PDBG("%s out of order completion going in swsq at idx %ld\n",
__FUNCTION__,
Q_PTR2IDX(CQE_WRID_SQ_WPTR(*hw_cqe), wq->sq_size_log2));
sqp = wq->sq +
Q_PTR2IDX(CQE_WRID_SQ_WPTR(*hw_cqe), wq->sq_size_log2);
sqp->cqe = *hw_cqe;
sqp->complete = 1;
ret = -1;
goto flush_wq;
}
proc_cqe:
*cqe = *hw_cqe;
/*
* Reap the associated WR(s) that are freed up with this
* completion.
*/
if (SQ_TYPE(*hw_cqe)) {
wq->sq_rptr = CQE_WRID_SQ_WPTR(*hw_cqe);
PDBG("%s completing sq idx %ld\n", __FUNCTION__,
Q_PTR2IDX(wq->sq_rptr, wq->sq_size_log2));
*cookie = (wq->sq +
Q_PTR2IDX(wq->sq_rptr, wq->sq_size_log2))->wr_id;
wq->sq_rptr++;
} else {
PDBG("%s completing rq idx %ld\n", __FUNCTION__,
Q_PTR2IDX(wq->rq_rptr, wq->rq_size_log2));
*cookie = *(wq->rq + Q_PTR2IDX(wq->rq_rptr, wq->rq_size_log2));
wq->rq_rptr++;
}
flush_wq:
/*
* Flush any completed cqes that are now in-order.
*/
flush_completed_wrs(wq, cq);
skip_cqe:
if (SW_CQE(*hw_cqe)) {
PDBG("%s cq %p cqid 0x%x skip sw cqe sw_rptr 0x%x\n",
__FUNCTION__, cq, cq->cqid, cq->sw_rptr);
++cq->sw_rptr;
} else {
PDBG("%s cq %p cqid 0x%x skip hw cqe rptr 0x%x\n",
__FUNCTION__, cq, cq->cqid, cq->rptr);
++cq->rptr;
/*
* T3A: compute credits.
*/
if (((cq->rptr - cq->wptr) > (1 << (cq->size_log2 - 1)))
|| ((cq->rptr - cq->wptr) >= 128)) {
*credit = cq->rptr - cq->wptr;
cq->wptr = cq->rptr;
}
}
return ret;
}