2005-04-16 18:20:36 -04:00
|
|
|
/*
|
|
|
|
* drivers/pci/pci-driver.c
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/pci.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/device.h>
|
2005-07-06 13:56:03 -04:00
|
|
|
#include <linux/mempolicy.h>
|
2005-10-30 18:03:48 -05:00
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/slab.h>
|
2005-11-07 03:59:43 -05:00
|
|
|
#include <linux/sched.h>
|
2005-04-16 18:20:36 -04:00
|
|
|
#include "pci.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Registration of PCI drivers and handling of hot-pluggable devices.
|
|
|
|
*/
|
|
|
|
|
2006-07-18 13:59:59 -04:00
|
|
|
/* multithreaded probe logic */
|
|
|
|
static int pci_multithread_probe =
|
|
|
|
#ifdef CONFIG_PCI_MULTITHREAD_PROBE
|
|
|
|
1;
|
|
|
|
#else
|
|
|
|
0;
|
|
|
|
#endif
|
|
|
|
__module_param_call("", pci_multithread_probe, param_set_bool, param_get_bool, &pci_multithread_probe, 0644);
|
|
|
|
|
|
|
|
|
2005-04-16 18:20:36 -04:00
|
|
|
/*
|
|
|
|
* Dynamic device IDs are disabled for !CONFIG_HOTPLUG
|
|
|
|
*/
|
|
|
|
|
2005-06-30 05:18:12 -04:00
|
|
|
struct pci_dynid {
|
|
|
|
struct list_head node;
|
|
|
|
struct pci_device_id id;
|
|
|
|
};
|
2005-04-16 18:20:36 -04:00
|
|
|
|
2005-07-06 12:09:38 -04:00
|
|
|
#ifdef CONFIG_HOTPLUG
|
|
|
|
|
2005-04-16 18:20:36 -04:00
|
|
|
/**
|
2005-10-23 14:57:38 -04:00
|
|
|
* store_new_id - add a new PCI device ID to this driver and re-probe devices
|
|
|
|
* @driver: target device driver
|
|
|
|
* @buf: buffer for scanning device ID data
|
|
|
|
* @count: input size
|
2005-04-16 18:20:36 -04:00
|
|
|
*
|
|
|
|
* Adds a new dynamic pci device ID to this driver,
|
|
|
|
* and causes the driver to probe for all devices again.
|
|
|
|
*/
|
2005-10-28 23:36:51 -04:00
|
|
|
static ssize_t
|
2005-04-16 18:20:36 -04:00
|
|
|
store_new_id(struct device_driver *driver, const char *buf, size_t count)
|
|
|
|
{
|
2005-06-30 05:18:12 -04:00
|
|
|
struct pci_dynid *dynid;
|
2005-04-16 18:20:36 -04:00
|
|
|
struct pci_driver *pdrv = to_pci_driver(driver);
|
|
|
|
__u32 vendor=PCI_ANY_ID, device=PCI_ANY_ID, subvendor=PCI_ANY_ID,
|
|
|
|
subdevice=PCI_ANY_ID, class=0, class_mask=0;
|
|
|
|
unsigned long driver_data=0;
|
|
|
|
int fields=0;
|
2006-08-28 14:43:25 -04:00
|
|
|
int retval = 0;
|
2005-04-16 18:20:36 -04:00
|
|
|
|
|
|
|
fields = sscanf(buf, "%x %x %x %x %x %x %lux",
|
|
|
|
&vendor, &device, &subvendor, &subdevice,
|
|
|
|
&class, &class_mask, &driver_data);
|
|
|
|
if (fields < 0)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2006-02-28 09:34:49 -05:00
|
|
|
dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
|
2005-04-16 18:20:36 -04:00
|
|
|
if (!dynid)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&dynid->node);
|
|
|
|
dynid->id.vendor = vendor;
|
|
|
|
dynid->id.device = device;
|
|
|
|
dynid->id.subvendor = subvendor;
|
|
|
|
dynid->id.subdevice = subdevice;
|
|
|
|
dynid->id.class = class;
|
|
|
|
dynid->id.class_mask = class_mask;
|
|
|
|
dynid->id.driver_data = pdrv->dynids.use_driver_data ?
|
|
|
|
driver_data : 0UL;
|
|
|
|
|
|
|
|
spin_lock(&pdrv->dynids.lock);
|
|
|
|
list_add_tail(&pdrv->dynids.list, &dynid->node);
|
|
|
|
spin_unlock(&pdrv->dynids.lock);
|
|
|
|
|
2005-06-30 05:18:12 -04:00
|
|
|
if (get_driver(&pdrv->driver)) {
|
2006-08-28 14:43:25 -04:00
|
|
|
retval = driver_attach(&pdrv->driver);
|
2005-06-30 05:18:12 -04:00
|
|
|
put_driver(&pdrv->driver);
|
2005-04-16 18:20:36 -04:00
|
|
|
}
|
|
|
|
|
2006-08-28 14:43:25 -04:00
|
|
|
if (retval)
|
|
|
|
return retval;
|
2005-04-16 18:20:36 -04:00
|
|
|
return count;
|
|
|
|
}
|
|
|
|
static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
|
|
|
|
|
|
|
|
static void
|
|
|
|
pci_free_dynids(struct pci_driver *drv)
|
|
|
|
{
|
2005-06-30 05:18:12 -04:00
|
|
|
struct pci_dynid *dynid, *n;
|
2005-04-16 18:20:36 -04:00
|
|
|
|
|
|
|
spin_lock(&drv->dynids.lock);
|
2005-06-30 05:18:12 -04:00
|
|
|
list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
|
2005-04-16 18:20:36 -04:00
|
|
|
list_del(&dynid->node);
|
|
|
|
kfree(dynid);
|
|
|
|
}
|
|
|
|
spin_unlock(&drv->dynids.lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
pci_create_newid_file(struct pci_driver *drv)
|
|
|
|
{
|
|
|
|
int error = 0;
|
|
|
|
if (drv->probe != NULL)
|
|
|
|
error = sysfs_create_file(&drv->driver.kobj,
|
|
|
|
&driver_attr_new_id.attr);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
#else /* !CONFIG_HOTPLUG */
|
|
|
|
static inline void pci_free_dynids(struct pci_driver *drv) {}
|
|
|
|
static inline int pci_create_newid_file(struct pci_driver *drv)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
2005-06-30 05:18:12 -04:00
|
|
|
* pci_match_id - See if a pci device matches a given pci_id table
|
2005-04-16 18:20:36 -04:00
|
|
|
* @ids: array of PCI device id structures to search in
|
2005-06-30 05:18:12 -04:00
|
|
|
* @dev: the PCI device structure to match against.
|
|
|
|
*
|
2005-04-16 18:20:36 -04:00
|
|
|
* Used by a driver to check whether a PCI device present in the
|
2005-06-30 05:18:12 -04:00
|
|
|
* system is in its list of supported devices. Returns the matching
|
2005-04-16 18:20:36 -04:00
|
|
|
* pci_device_id structure or %NULL if there is no match.
|
2005-06-30 05:18:12 -04:00
|
|
|
*
|
|
|
|
* Depreciated, don't use this as it will not catch any dynamic ids
|
|
|
|
* that a driver might want to check for.
|
2005-04-16 18:20:36 -04:00
|
|
|
*/
|
2005-06-30 05:18:12 -04:00
|
|
|
const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
|
|
|
|
struct pci_dev *dev)
|
2005-04-16 18:20:36 -04:00
|
|
|
{
|
2005-06-30 05:18:12 -04:00
|
|
|
if (ids) {
|
|
|
|
while (ids->vendor || ids->subvendor || ids->class_mask) {
|
|
|
|
if (pci_match_one_device(ids, dev))
|
|
|
|
return ids;
|
|
|
|
ids++;
|
|
|
|
}
|
2005-04-16 18:20:36 -04:00
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2005-06-30 05:18:12 -04:00
|
|
|
* pci_match_device - Tell if a PCI device structure has a matching
|
|
|
|
* PCI device id structure
|
|
|
|
* @drv: the PCI driver to match against
|
2006-08-15 04:57:16 -04:00
|
|
|
* @dev: the PCI device structure to match against
|
2005-06-30 05:18:12 -04:00
|
|
|
*
|
|
|
|
* Used by a driver to check whether a PCI device present in the
|
|
|
|
* system is in its list of supported devices. Returns the matching
|
|
|
|
* pci_device_id structure or %NULL if there is no match.
|
2005-04-16 18:20:36 -04:00
|
|
|
*/
|
2005-06-30 05:18:12 -04:00
|
|
|
const struct pci_device_id *pci_match_device(struct pci_driver *drv,
|
|
|
|
struct pci_dev *dev)
|
|
|
|
{
|
|
|
|
struct pci_dynid *dynid;
|
2005-04-16 18:20:36 -04:00
|
|
|
|
PCI: use /sys/bus/pci/drivers/<driver>/new_id first
Unfortunately, the .../new_id feature does not work with the 8250_pci
driver.
The reason for this comes down to the way .../new_id is implemented.
When PCI tries to match a driver to a device, it checks the modules
static device ID tables _before_ checking the dynamic new_id tables.
When a driver is capable of matching by ID, and falls back to matching
by class (as 8250_pci does), this makes it absolutely impossible to
specify a board by ID, and as such the correct driver_data value to
use with it.
Let's say you have a serial board with vendor 0x1234 and device 0x5678.
It's class is set to PCI_CLASS_COMMUNICATION_SERIAL.
On boot, this card is matched to the 8250_pci driver, which tries to
probe it because it matched using the class entry. The driver finds
that it is unable to automatically detect the correct settings to use,
so it returns -ENODEV.
You know that the information the driver needs is to match this card
using a device_data value of '7'. So you echo 1234 5678 0 0 0 0 7
into new_id.
The kernel attempts to re-bind 8250_pci to this device. However,
because it scans the PCI driver tables, it _again_ matches the class
entry which has the wrong device_data. It fails.
End of story. You can't support the card without rebuilding the
kernel (or writing a specific PCI probe module to support it.)
So, can we make new_id override the driver-internal PCI ID tables?
IOW, like this:
From: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-11-29 16:18:04 -05:00
|
|
|
/* Look at the dynamic ids first, before the static ones */
|
2005-06-30 05:18:12 -04:00
|
|
|
spin_lock(&drv->dynids.lock);
|
|
|
|
list_for_each_entry(dynid, &drv->dynids.list, node) {
|
|
|
|
if (pci_match_one_device(&dynid->id, dev)) {
|
|
|
|
spin_unlock(&drv->dynids.lock);
|
|
|
|
return &dynid->id;
|
|
|
|
}
|
2005-04-16 18:20:36 -04:00
|
|
|
}
|
2005-06-30 05:18:12 -04:00
|
|
|
spin_unlock(&drv->dynids.lock);
|
PCI: use /sys/bus/pci/drivers/<driver>/new_id first
Unfortunately, the .../new_id feature does not work with the 8250_pci
driver.
The reason for this comes down to the way .../new_id is implemented.
When PCI tries to match a driver to a device, it checks the modules
static device ID tables _before_ checking the dynamic new_id tables.
When a driver is capable of matching by ID, and falls back to matching
by class (as 8250_pci does), this makes it absolutely impossible to
specify a board by ID, and as such the correct driver_data value to
use with it.
Let's say you have a serial board with vendor 0x1234 and device 0x5678.
It's class is set to PCI_CLASS_COMMUNICATION_SERIAL.
On boot, this card is matched to the 8250_pci driver, which tries to
probe it because it matched using the class entry. The driver finds
that it is unable to automatically detect the correct settings to use,
so it returns -ENODEV.
You know that the information the driver needs is to match this card
using a device_data value of '7'. So you echo 1234 5678 0 0 0 0 7
into new_id.
The kernel attempts to re-bind 8250_pci to this device. However,
because it scans the PCI driver tables, it _again_ matches the class
entry which has the wrong device_data. It fails.
End of story. You can't support the card without rebuilding the
kernel (or writing a specific PCI probe module to support it.)
So, can we make new_id override the driver-internal PCI ID tables?
IOW, like this:
From: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-11-29 16:18:04 -05:00
|
|
|
|
|
|
|
return pci_match_id(drv->id_table, dev);
|
2005-04-16 18:20:36 -04:00
|
|
|
}
|
|
|
|
|
2005-07-06 13:56:03 -04:00
|
|
|
static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
|
|
|
|
const struct pci_device_id *id)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
/* Execute driver initialization on node where the
|
|
|
|
device's bus is attached to. This way the driver likely
|
|
|
|
allocates its local memory on the right node without
|
|
|
|
any need to change it. */
|
|
|
|
struct mempolicy *oldpol;
|
|
|
|
cpumask_t oldmask = current->cpus_allowed;
|
|
|
|
int node = pcibus_to_node(dev->bus);
|
|
|
|
if (node >= 0 && node_online(node))
|
|
|
|
set_cpus_allowed(current, node_to_cpumask(node));
|
|
|
|
/* And set default memory allocation policy */
|
|
|
|
oldpol = current->mempolicy;
|
|
|
|
current->mempolicy = &default_policy;
|
|
|
|
mpol_get(current->mempolicy);
|
|
|
|
#endif
|
|
|
|
error = drv->probe(dev, id);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
set_cpus_allowed(current, oldmask);
|
|
|
|
mpol_free(current->mempolicy);
|
|
|
|
current->mempolicy = oldpol;
|
|
|
|
#endif
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
2005-04-16 18:20:36 -04:00
|
|
|
/**
|
|
|
|
* __pci_device_probe()
|
2005-10-23 14:57:38 -04:00
|
|
|
* @drv: driver to call to check if it wants the PCI device
|
|
|
|
* @pci_dev: PCI device being probed
|
2005-04-16 18:20:36 -04:00
|
|
|
*
|
2005-10-23 14:57:38 -04:00
|
|
|
* returns 0 on success, else error.
|
2005-04-16 18:20:36 -04:00
|
|
|
* side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
__pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
|
2005-06-30 05:18:12 -04:00
|
|
|
{
|
|
|
|
const struct pci_device_id *id;
|
2005-04-16 18:20:36 -04:00
|
|
|
int error = 0;
|
|
|
|
|
|
|
|
if (!pci_dev->driver && drv->probe) {
|
2005-06-30 05:18:12 -04:00
|
|
|
error = -ENODEV;
|
|
|
|
|
|
|
|
id = pci_match_device(drv, pci_dev);
|
|
|
|
if (id)
|
2005-07-06 13:56:03 -04:00
|
|
|
error = pci_call_probe(drv, pci_dev, id);
|
2005-06-30 05:18:12 -04:00
|
|
|
if (error >= 0) {
|
|
|
|
pci_dev->driver = drv;
|
|
|
|
error = 0;
|
|
|
|
}
|
2005-04-16 18:20:36 -04:00
|
|
|
}
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int pci_device_probe(struct device * dev)
|
|
|
|
{
|
|
|
|
int error = 0;
|
|
|
|
struct pci_driver *drv;
|
|
|
|
struct pci_dev *pci_dev;
|
|
|
|
|
|
|
|
drv = to_pci_driver(dev->driver);
|
|
|
|
pci_dev = to_pci_dev(dev);
|
|
|
|
pci_dev_get(pci_dev);
|
|
|
|
error = __pci_device_probe(drv, pci_dev);
|
|
|
|
if (error)
|
|
|
|
pci_dev_put(pci_dev);
|
|
|
|
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int pci_device_remove(struct device * dev)
|
|
|
|
{
|
|
|
|
struct pci_dev * pci_dev = to_pci_dev(dev);
|
|
|
|
struct pci_driver * drv = pci_dev->driver;
|
|
|
|
|
|
|
|
if (drv) {
|
|
|
|
if (drv->remove)
|
|
|
|
drv->remove(pci_dev);
|
|
|
|
pci_dev->driver = NULL;
|
|
|
|
}
|
|
|
|
|
2006-10-20 17:45:32 -04:00
|
|
|
/*
|
|
|
|
* If the device is still on, set the power state as "unknown",
|
|
|
|
* since it might change by the next time we load the driver.
|
|
|
|
*/
|
|
|
|
if (pci_dev->current_state == PCI_D0)
|
|
|
|
pci_dev->current_state = PCI_UNKNOWN;
|
|
|
|
|
2005-04-16 18:20:36 -04:00
|
|
|
/*
|
|
|
|
* We would love to complain here if pci_dev->is_enabled is set, that
|
|
|
|
* the driver should have called pci_disable_device(), but the
|
|
|
|
* unfortunate fact is there are too many odd BIOS and bridge setups
|
|
|
|
* that don't like drivers doing that all of the time.
|
|
|
|
* Oh well, we can dream of sane hardware when we sleep, no matter how
|
|
|
|
* horrible the crap we have to deal with is when we are awake...
|
|
|
|
*/
|
|
|
|
|
|
|
|
pci_dev_put(pci_dev);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int pci_device_suspend(struct device * dev, pm_message_t state)
|
|
|
|
{
|
|
|
|
struct pci_dev * pci_dev = to_pci_dev(dev);
|
|
|
|
struct pci_driver * drv = pci_dev->driver;
|
|
|
|
int i = 0;
|
|
|
|
|
2006-03-23 04:38:34 -05:00
|
|
|
if (drv && drv->suspend) {
|
2005-04-16 18:20:36 -04:00
|
|
|
i = drv->suspend(pci_dev, state);
|
2006-03-23 04:38:34 -05:00
|
|
|
suspend_report_result(drv->suspend, i);
|
|
|
|
} else {
|
2005-04-16 18:20:36 -04:00
|
|
|
pci_save_state(pci_dev);
|
2006-10-20 17:45:32 -04:00
|
|
|
/*
|
|
|
|
* mark its power state as "unknown", since we don't know if
|
|
|
|
* e.g. the BIOS will change its device state when we suspend.
|
|
|
|
*/
|
|
|
|
if (pci_dev->current_state == PCI_D0)
|
|
|
|
pci_dev->current_state = PCI_UNKNOWN;
|
2006-03-23 04:38:34 -05:00
|
|
|
}
|
2005-04-16 18:20:36 -04:00
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
2006-06-24 17:50:29 -04:00
|
|
|
static int pci_device_suspend_late(struct device * dev, pm_message_t state)
|
|
|
|
{
|
|
|
|
struct pci_dev * pci_dev = to_pci_dev(dev);
|
|
|
|
struct pci_driver * drv = pci_dev->driver;
|
|
|
|
int i = 0;
|
|
|
|
|
|
|
|
if (drv && drv->suspend_late) {
|
|
|
|
i = drv->suspend_late(pci_dev, state);
|
|
|
|
suspend_report_result(drv->suspend_late, i);
|
|
|
|
}
|
|
|
|
return i;
|
|
|
|
}
|
2005-04-16 18:20:36 -04:00
|
|
|
|
2005-07-28 14:37:33 -04:00
|
|
|
/*
|
2005-04-16 18:20:36 -04:00
|
|
|
* Default resume method for devices that have no driver provided resume,
|
|
|
|
* or not even a driver at all.
|
|
|
|
*/
|
2006-04-18 08:49:56 -04:00
|
|
|
static int pci_default_resume(struct pci_dev *pci_dev)
|
2005-04-16 18:20:36 -04:00
|
|
|
{
|
2006-04-18 08:49:56 -04:00
|
|
|
int retval = 0;
|
2005-07-28 14:37:33 -04:00
|
|
|
|
2005-04-16 18:20:36 -04:00
|
|
|
/* restore the PCI config space */
|
|
|
|
pci_restore_state(pci_dev);
|
|
|
|
/* if the device was enabled before suspend, reenable */
|
PCI: switch pci_{enable,disable}_device() to be nestable
Changes the pci_{enable,disable}_device() functions to work in a
nested basis, so that eg, three calls to enable_device() require three
calls to disable_device().
The reason for this is to simplify PCI drivers for
multi-interface/capability devices. These are devices that cram more
than one interface in a single function. A relevant example of that is
the Wireless [USB] Host Controller Interface (similar to EHCI) [see
http://www.intel.com/technology/comms/wusb/whci.htm].
In these kind of devices, multiple interfaces are accessed through a
single bar and IRQ line. For that, the drivers map only the smallest
area of the bar to access their register banks and use shared IRQ
handlers.
However, because the order at which those drivers load cannot be known
ahead of time, the sequence in which the calls to pci_enable_device()
and pci_disable_device() cannot be predicted. Thus:
1. driverA starts pci_enable_device()
2. driverB starts pci_enable_device()
3. driverA shutdown pci_disable_device()
4. driverB shutdown pci_disable_device()
between steps 3 and 4, driver B would loose access to it's device,
even if it didn't intend to.
By using this modification, the device won't be disabled until all the
callers to enable() have called disable().
This is implemented by replacing 'struct pci_dev->is_enabled' from a
bitfield to an atomic use count. Each caller to enable increments it,
each caller to disable decrements it. When the count increments from 0
to 1, __pci_enable_device() is called to actually enable the
device. When it drops to zero, pci_disable_device() actually does the
disabling.
We keep the backend __pci_enable_device() for pci_default_resume() to
use and also change the sysfs method implementation, so that userspace
enabling/disabling the device doesn't disable it one time too much.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-11-22 15:40:31 -05:00
|
|
|
if (atomic_read(&pci_dev->enable_cnt))
|
|
|
|
retval = __pci_enable_device(pci_dev);
|
2005-04-16 18:20:36 -04:00
|
|
|
/* if the device was busmaster before the suspend, make it busmaster again */
|
|
|
|
if (pci_dev->is_busmaster)
|
|
|
|
pci_set_master(pci_dev);
|
2006-04-18 08:49:56 -04:00
|
|
|
|
|
|
|
return retval;
|
2005-04-16 18:20:36 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static int pci_device_resume(struct device * dev)
|
|
|
|
{
|
2006-04-18 08:49:56 -04:00
|
|
|
int error;
|
2005-04-16 18:20:36 -04:00
|
|
|
struct pci_dev * pci_dev = to_pci_dev(dev);
|
|
|
|
struct pci_driver * drv = pci_dev->driver;
|
|
|
|
|
|
|
|
if (drv && drv->resume)
|
2006-04-18 08:49:56 -04:00
|
|
|
error = drv->resume(pci_dev);
|
2005-04-16 18:20:36 -04:00
|
|
|
else
|
2006-04-18 08:49:56 -04:00
|
|
|
error = pci_default_resume(pci_dev);
|
|
|
|
return error;
|
2005-04-16 18:20:36 -04:00
|
|
|
}
|
|
|
|
|
2006-06-24 17:50:29 -04:00
|
|
|
static int pci_device_resume_early(struct device * dev)
|
|
|
|
{
|
|
|
|
int error = 0;
|
|
|
|
struct pci_dev * pci_dev = to_pci_dev(dev);
|
|
|
|
struct pci_driver * drv = pci_dev->driver;
|
|
|
|
|
2006-12-04 18:14:45 -05:00
|
|
|
pci_fixup_device(pci_fixup_resume, pci_dev);
|
|
|
|
|
2006-06-24 17:50:29 -04:00
|
|
|
if (drv && drv->resume_early)
|
|
|
|
error = drv->resume_early(pci_dev);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
2005-04-08 01:53:31 -04:00
|
|
|
static void pci_device_shutdown(struct device *dev)
|
|
|
|
{
|
|
|
|
struct pci_dev *pci_dev = to_pci_dev(dev);
|
|
|
|
struct pci_driver *drv = pci_dev->driver;
|
|
|
|
|
|
|
|
if (drv && drv->shutdown)
|
|
|
|
drv->shutdown(pci_dev);
|
|
|
|
}
|
2005-04-16 18:20:36 -04:00
|
|
|
|
|
|
|
#define kobj_to_pci_driver(obj) container_of(obj, struct device_driver, kobj)
|
|
|
|
#define attr_to_driver_attribute(obj) container_of(obj, struct driver_attribute, attr)
|
|
|
|
|
|
|
|
static ssize_t
|
|
|
|
pci_driver_attr_show(struct kobject * kobj, struct attribute *attr, char *buf)
|
|
|
|
{
|
|
|
|
struct device_driver *driver = kobj_to_pci_driver(kobj);
|
|
|
|
struct driver_attribute *dattr = attr_to_driver_attribute(attr);
|
2005-04-29 02:26:27 -04:00
|
|
|
ssize_t ret;
|
2005-04-16 18:20:36 -04:00
|
|
|
|
2005-04-29 02:26:27 -04:00
|
|
|
if (!get_driver(driver))
|
|
|
|
return -ENODEV;
|
|
|
|
|
|
|
|
ret = dattr->show ? dattr->show(driver, buf) : -EIO;
|
|
|
|
|
|
|
|
put_driver(driver);
|
2005-04-16 18:20:36 -04:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t
|
|
|
|
pci_driver_attr_store(struct kobject * kobj, struct attribute *attr,
|
|
|
|
const char *buf, size_t count)
|
|
|
|
{
|
|
|
|
struct device_driver *driver = kobj_to_pci_driver(kobj);
|
|
|
|
struct driver_attribute *dattr = attr_to_driver_attribute(attr);
|
2005-04-29 02:26:27 -04:00
|
|
|
ssize_t ret;
|
2005-04-16 18:20:36 -04:00
|
|
|
|
2005-04-29 02:26:27 -04:00
|
|
|
if (!get_driver(driver))
|
|
|
|
return -ENODEV;
|
|
|
|
|
|
|
|
ret = dattr->store ? dattr->store(driver, buf, count) : -EIO;
|
|
|
|
|
|
|
|
put_driver(driver);
|
2005-04-16 18:20:36 -04:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct sysfs_ops pci_driver_sysfs_ops = {
|
|
|
|
.show = pci_driver_attr_show,
|
|
|
|
.store = pci_driver_attr_store,
|
|
|
|
};
|
|
|
|
static struct kobj_type pci_driver_kobj_type = {
|
|
|
|
.sysfs_ops = &pci_driver_sysfs_ops,
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
2005-10-27 17:12:54 -04:00
|
|
|
* __pci_register_driver - register a new pci driver
|
2005-04-16 18:20:36 -04:00
|
|
|
* @drv: the driver structure to register
|
2005-10-27 17:12:54 -04:00
|
|
|
* @owner: owner module of drv
|
2005-04-16 18:20:36 -04:00
|
|
|
*
|
|
|
|
* Adds the driver structure to the list of registered drivers.
|
|
|
|
* Returns a negative value on error, otherwise 0.
|
2005-05-03 20:38:30 -04:00
|
|
|
* If no error occurred, the driver remains registered even if
|
2005-04-16 18:20:36 -04:00
|
|
|
* no device was claimed during registration.
|
|
|
|
*/
|
2005-10-27 17:12:54 -04:00
|
|
|
int __pci_register_driver(struct pci_driver *drv, struct module *owner)
|
2005-04-16 18:20:36 -04:00
|
|
|
{
|
|
|
|
int error;
|
|
|
|
|
|
|
|
/* initialize common driver fields */
|
|
|
|
drv->driver.name = drv->name;
|
|
|
|
drv->driver.bus = &pci_bus_type;
|
2005-10-27 17:12:54 -04:00
|
|
|
drv->driver.owner = owner;
|
2005-04-16 18:20:36 -04:00
|
|
|
drv->driver.kobj.ktype = &pci_driver_kobj_type;
|
2006-08-16 12:42:18 -04:00
|
|
|
|
|
|
|
if (pci_multithread_probe)
|
|
|
|
drv->driver.multithread_probe = pci_multithread_probe;
|
|
|
|
else
|
|
|
|
drv->driver.multithread_probe = drv->multithread_probe;
|
2005-06-30 05:18:12 -04:00
|
|
|
|
|
|
|
spin_lock_init(&drv->dynids.lock);
|
|
|
|
INIT_LIST_HEAD(&drv->dynids.list);
|
2005-04-16 18:20:36 -04:00
|
|
|
|
|
|
|
/* register with core */
|
|
|
|
error = driver_register(&drv->driver);
|
2006-11-08 22:53:59 -05:00
|
|
|
if (error)
|
|
|
|
return error;
|
2005-04-16 18:20:36 -04:00
|
|
|
|
2006-11-08 22:53:59 -05:00
|
|
|
error = pci_create_newid_file(drv);
|
|
|
|
if (error)
|
|
|
|
driver_unregister(&drv->driver);
|
2005-04-16 18:20:36 -04:00
|
|
|
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pci_unregister_driver - unregister a pci driver
|
|
|
|
* @drv: the driver structure to unregister
|
|
|
|
*
|
|
|
|
* Deletes the driver structure from the list of registered PCI drivers,
|
|
|
|
* gives it a chance to clean up by calling its remove() function for
|
|
|
|
* each device it was responsible for, and marks those devices as
|
|
|
|
* driverless.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void
|
|
|
|
pci_unregister_driver(struct pci_driver *drv)
|
|
|
|
{
|
|
|
|
driver_unregister(&drv->driver);
|
|
|
|
pci_free_dynids(drv);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct pci_driver pci_compat_driver = {
|
|
|
|
.name = "compat"
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pci_dev_driver - get the pci_driver of a device
|
|
|
|
* @dev: the device to query
|
|
|
|
*
|
|
|
|
* Returns the appropriate pci_driver structure or %NULL if there is no
|
|
|
|
* registered driver for the device.
|
|
|
|
*/
|
|
|
|
struct pci_driver *
|
|
|
|
pci_dev_driver(const struct pci_dev *dev)
|
|
|
|
{
|
|
|
|
if (dev->driver)
|
|
|
|
return dev->driver;
|
|
|
|
else {
|
|
|
|
int i;
|
|
|
|
for(i=0; i<=PCI_ROM_RESOURCE; i++)
|
|
|
|
if (dev->resource[i].flags & IORESOURCE_BUSY)
|
|
|
|
return &pci_compat_driver;
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
|
|
|
|
* @dev: the PCI device structure to match against
|
2005-10-23 14:57:38 -04:00
|
|
|
* @drv: the device driver to search for matching PCI device id structures
|
2005-04-16 18:20:36 -04:00
|
|
|
*
|
|
|
|
* Used by a driver to check whether a PCI device present in the
|
2005-10-23 14:57:38 -04:00
|
|
|
* system is in its list of supported devices. Returns the matching
|
2005-04-16 18:20:36 -04:00
|
|
|
* pci_device_id structure or %NULL if there is no match.
|
|
|
|
*/
|
2005-06-30 05:18:12 -04:00
|
|
|
static int pci_bus_match(struct device *dev, struct device_driver *drv)
|
2005-04-16 18:20:36 -04:00
|
|
|
{
|
2005-06-30 05:18:12 -04:00
|
|
|
struct pci_dev *pci_dev = to_pci_dev(dev);
|
|
|
|
struct pci_driver *pci_drv = to_pci_driver(drv);
|
2005-04-16 18:20:36 -04:00
|
|
|
const struct pci_device_id *found_id;
|
|
|
|
|
2005-06-30 05:18:12 -04:00
|
|
|
found_id = pci_match_device(pci_drv, pci_dev);
|
2005-04-16 18:20:36 -04:00
|
|
|
if (found_id)
|
|
|
|
return 1;
|
|
|
|
|
2005-06-30 05:18:12 -04:00
|
|
|
return 0;
|
2005-04-16 18:20:36 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pci_dev_get - increments the reference count of the pci device structure
|
|
|
|
* @dev: the device being referenced
|
|
|
|
*
|
|
|
|
* Each live reference to a device should be refcounted.
|
|
|
|
*
|
|
|
|
* Drivers for PCI devices should normally record such references in
|
|
|
|
* their probe() methods, when they bind to a device, and release
|
|
|
|
* them by calling pci_dev_put(), in their disconnect() methods.
|
|
|
|
*
|
|
|
|
* A pointer to the device with the incremented reference counter is returned.
|
|
|
|
*/
|
|
|
|
struct pci_dev *pci_dev_get(struct pci_dev *dev)
|
|
|
|
{
|
|
|
|
if (dev)
|
|
|
|
get_device(&dev->dev);
|
|
|
|
return dev;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pci_dev_put - release a use of the pci device structure
|
|
|
|
* @dev: device that's been disconnected
|
|
|
|
*
|
|
|
|
* Must be called when a user of a device is finished with it. When the last
|
|
|
|
* user of the device calls this function, the memory of the device is freed.
|
|
|
|
*/
|
|
|
|
void pci_dev_put(struct pci_dev *dev)
|
|
|
|
{
|
|
|
|
if (dev)
|
|
|
|
put_device(&dev->dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef CONFIG_HOTPLUG
|
2005-11-16 03:00:00 -05:00
|
|
|
int pci_uevent(struct device *dev, char **envp, int num_envp,
|
|
|
|
char *buffer, int buffer_size)
|
2005-04-16 18:20:36 -04:00
|
|
|
{
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
struct bus_type pci_bus_type = {
|
|
|
|
.name = "pci",
|
|
|
|
.match = pci_bus_match,
|
2005-11-16 03:00:00 -05:00
|
|
|
.uevent = pci_uevent,
|
2006-01-05 09:30:22 -05:00
|
|
|
.probe = pci_device_probe,
|
|
|
|
.remove = pci_device_remove,
|
2005-04-16 18:20:36 -04:00
|
|
|
.suspend = pci_device_suspend,
|
2006-06-24 17:50:29 -04:00
|
|
|
.suspend_late = pci_device_suspend_late,
|
|
|
|
.resume_early = pci_device_resume_early,
|
2005-04-16 18:20:36 -04:00
|
|
|
.resume = pci_device_resume,
|
2006-06-24 17:50:29 -04:00
|
|
|
.shutdown = pci_device_shutdown,
|
2005-04-16 18:20:36 -04:00
|
|
|
.dev_attrs = pci_dev_attrs,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int __init pci_driver_init(void)
|
|
|
|
{
|
|
|
|
return bus_register(&pci_bus_type);
|
|
|
|
}
|
|
|
|
|
|
|
|
postcore_initcall(pci_driver_init);
|
|
|
|
|
2005-06-30 05:18:12 -04:00
|
|
|
EXPORT_SYMBOL(pci_match_id);
|
2005-04-16 18:20:36 -04:00
|
|
|
EXPORT_SYMBOL(pci_match_device);
|
2005-10-27 17:12:54 -04:00
|
|
|
EXPORT_SYMBOL(__pci_register_driver);
|
2005-04-16 18:20:36 -04:00
|
|
|
EXPORT_SYMBOL(pci_unregister_driver);
|
|
|
|
EXPORT_SYMBOL(pci_dev_driver);
|
|
|
|
EXPORT_SYMBOL(pci_bus_type);
|
|
|
|
EXPORT_SYMBOL(pci_dev_get);
|
|
|
|
EXPORT_SYMBOL(pci_dev_put);
|