android_kernel_xiaomi_sm8350/msm/sde/sde_hw_intf.c

738 lines
19 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015-2019, The Linux Foundation. All rights reserved.
*/
#include <linux/iopoll.h>
#include "sde_hwio.h"
#include "sde_hw_catalog.h"
#include "sde_hw_intf.h"
#include "sde_dbg.h"
#define INTF_TIMING_ENGINE_EN 0x000
#define INTF_CONFIG 0x004
#define INTF_HSYNC_CTL 0x008
#define INTF_VSYNC_PERIOD_F0 0x00C
#define INTF_VSYNC_PERIOD_F1 0x010
#define INTF_VSYNC_PULSE_WIDTH_F0 0x014
#define INTF_VSYNC_PULSE_WIDTH_F1 0x018
#define INTF_DISPLAY_V_START_F0 0x01C
#define INTF_DISPLAY_V_START_F1 0x020
#define INTF_DISPLAY_V_END_F0 0x024
#define INTF_DISPLAY_V_END_F1 0x028
#define INTF_ACTIVE_V_START_F0 0x02C
#define INTF_ACTIVE_V_START_F1 0x030
#define INTF_ACTIVE_V_END_F0 0x034
#define INTF_ACTIVE_V_END_F1 0x038
#define INTF_DISPLAY_HCTL 0x03C
#define INTF_ACTIVE_HCTL 0x040
#define INTF_BORDER_COLOR 0x044
#define INTF_UNDERFLOW_COLOR 0x048
#define INTF_HSYNC_SKEW 0x04C
#define INTF_POLARITY_CTL 0x050
#define INTF_TEST_CTL 0x054
#define INTF_TP_COLOR0 0x058
#define INTF_TP_COLOR1 0x05C
#define INTF_CONFIG2 0x060
#define INTF_DISPLAY_DATA_HCTL 0x064
#define INTF_ACTIVE_DATA_HCTL 0x068
#define INTF_FRAME_LINE_COUNT_EN 0x0A8
#define INTF_FRAME_COUNT 0x0AC
#define INTF_LINE_COUNT 0x0B0
#define INTF_DEFLICKER_CONFIG 0x0F0
#define INTF_DEFLICKER_STRNG_COEFF 0x0F4
#define INTF_DEFLICKER_WEAK_COEFF 0x0F8
#define INTF_REG_SPLIT_LINK 0x080
#define INTF_DSI_CMD_MODE_TRIGGER_EN 0x084
#define INTF_PANEL_FORMAT 0x090
#define INTF_TPG_ENABLE 0x100
#define INTF_TPG_MAIN_CONTROL 0x104
#define INTF_TPG_VIDEO_CONFIG 0x108
#define INTF_TPG_COMPONENT_LIMITS 0x10C
#define INTF_TPG_RECTANGLE 0x110
#define INTF_TPG_INITIAL_VALUE 0x114
#define INTF_TPG_BLK_WHITE_PATTERN_FRAMES 0x118
#define INTF_TPG_RGB_MAPPING 0x11C
#define INTF_PROG_FETCH_START 0x170
#define INTF_PROG_ROT_START 0x174
#define INTF_MISR_CTRL 0x180
#define INTF_MISR_SIGNATURE 0x184
#define INTF_MUX 0x25C
#define INTF_STATUS 0x26C
#define INTF_AVR_CONTROL 0x270
#define INTF_AVR_MODE 0x274
#define INTF_AVR_TRIGGER 0x278
#define INTF_AVR_VTOTAL 0x27C
#define INTF_TEAR_MDP_VSYNC_SEL 0x280
#define INTF_TEAR_TEAR_CHECK_EN 0x284
#define INTF_TEAR_SYNC_CONFIG_VSYNC 0x288
#define INTF_TEAR_SYNC_CONFIG_HEIGHT 0x28C
#define INTF_TEAR_SYNC_WRCOUNT 0x290
#define INTF_TEAR_VSYNC_INIT_VAL 0x294
#define INTF_TEAR_INT_COUNT_VAL 0x298
#define INTF_TEAR_SYNC_THRESH 0x29C
#define INTF_TEAR_START_POS 0x2A0
#define INTF_TEAR_RD_PTR_IRQ 0x2A4
#define INTF_TEAR_WR_PTR_IRQ 0x2A8
#define INTF_TEAR_OUT_LINE_COUNT 0x2AC
#define INTF_TEAR_LINE_COUNT 0x2B0
#define INTF_TEAR_AUTOREFRESH_CONFIG 0x2B4
#define INTF_TEAR_TEAR_DETECT_CTRL 0x2B8
static struct sde_intf_cfg *_intf_offset(enum sde_intf intf,
struct sde_mdss_cfg *m,
void __iomem *addr,
struct sde_hw_blk_reg_map *b)
{
int i;
for (i = 0; i < m->intf_count; i++) {
if ((intf == m->intf[i].id) &&
(m->intf[i].type != INTF_NONE)) {
b->base_off = addr;
b->blk_off = m->intf[i].base;
b->length = m->intf[i].len;
b->hwversion = m->hwversion;
b->log_mask = SDE_DBG_MASK_INTF;
return &m->intf[i];
}
}
return ERR_PTR(-EINVAL);
}
static void sde_hw_intf_avr_trigger(struct sde_hw_intf *ctx)
{
struct sde_hw_blk_reg_map *c;
if (!ctx)
return;
c = &ctx->hw;
SDE_REG_WRITE(c, INTF_AVR_TRIGGER, 0x1);
SDE_DEBUG("AVR Triggered\n");
}
static int sde_hw_intf_avr_setup(struct sde_hw_intf *ctx,
const struct intf_timing_params *params,
const struct intf_avr_params *avr_params)
{
struct sde_hw_blk_reg_map *c;
u32 hsync_period, vsync_period;
u32 min_fps, default_fps, diff_fps;
u32 vsync_period_slow;
u32 avr_vtotal;
u32 add_porches = 0;
if (!ctx || !params || !avr_params) {
SDE_ERROR("invalid input parameter(s)\n");
return -EINVAL;
}
c = &ctx->hw;
min_fps = avr_params->min_fps;
default_fps = avr_params->default_fps;
diff_fps = default_fps - min_fps;
hsync_period = params->hsync_pulse_width +
params->h_back_porch + params->width +
params->h_front_porch;
vsync_period = params->vsync_pulse_width +
params->v_back_porch + params->height +
params->v_front_porch;
if (diff_fps)
add_porches = mult_frac(vsync_period, diff_fps, min_fps);
vsync_period_slow = vsync_period + add_porches;
avr_vtotal = vsync_period_slow * hsync_period;
SDE_REG_WRITE(c, INTF_AVR_VTOTAL, avr_vtotal);
return 0;
}
static void sde_hw_intf_avr_ctrl(struct sde_hw_intf *ctx,
const struct intf_avr_params *avr_params)
{
struct sde_hw_blk_reg_map *c;
u32 avr_mode = 0;
u32 avr_ctrl = 0;
if (!ctx || !avr_params)
return;
c = &ctx->hw;
if (avr_params->avr_mode) {
avr_ctrl = BIT(0);
avr_mode =
(avr_params->avr_mode == SDE_RM_QSYNC_ONE_SHOT_MODE) ?
(BIT(0) | BIT(8)) : 0x0;
}
SDE_REG_WRITE(c, INTF_AVR_CONTROL, avr_ctrl);
SDE_REG_WRITE(c, INTF_AVR_MODE, avr_mode);
}
static void sde_hw_intf_setup_timing_engine(struct sde_hw_intf *ctx,
const struct intf_timing_params *p,
const struct sde_format *fmt)
{
struct sde_hw_blk_reg_map *c = &ctx->hw;
u32 hsync_period, vsync_period;
u32 display_v_start, display_v_end;
u32 hsync_start_x, hsync_end_x;
u32 active_h_start, active_h_end;
u32 active_v_start, active_v_end;
u32 active_hctl, display_hctl, hsync_ctl;
u32 polarity_ctl, den_polarity, hsync_polarity, vsync_polarity;
u32 panel_format;
u32 intf_cfg, intf_cfg2;
u32 display_data_hctl = 0, active_data_hctl = 0;
bool dp_intf = false;
/* read interface_cfg */
intf_cfg = SDE_REG_READ(c, INTF_CONFIG);
hsync_period = p->hsync_pulse_width + p->h_back_porch + p->width +
p->h_front_porch;
vsync_period = p->vsync_pulse_width + p->v_back_porch + p->height +
p->v_front_porch;
display_v_start = ((p->vsync_pulse_width + p->v_back_porch) *
hsync_period) + p->hsync_skew;
display_v_end = ((vsync_period - p->v_front_porch) * hsync_period) +
p->hsync_skew - 1;
hsync_start_x = p->h_back_porch + p->hsync_pulse_width;
hsync_end_x = hsync_period - p->h_front_porch - 1;
if (ctx->cap->type == INTF_EDP || ctx->cap->type == INTF_DP)
dp_intf = true;
if (p->width != p->xres) {
active_h_start = hsync_start_x;
active_h_end = active_h_start + p->xres - 1;
} else {
active_h_start = 0;
active_h_end = 0;
}
if (p->height != p->yres) {
active_v_start = display_v_start;
active_v_end = active_v_start + (p->yres * hsync_period) - 1;
} else {
active_v_start = 0;
active_v_end = 0;
}
if (active_h_end) {
active_hctl = (active_h_end << 16) | active_h_start;
intf_cfg |= BIT(29); /* ACTIVE_H_ENABLE */
} else {
active_hctl = 0;
}
if (active_v_end)
intf_cfg |= BIT(30); /* ACTIVE_V_ENABLE */
hsync_ctl = (hsync_period << 16) | p->hsync_pulse_width;
display_hctl = (hsync_end_x << 16) | hsync_start_x;
if (dp_intf) {
active_h_start = hsync_start_x;
active_h_end = active_h_start + p->xres - 1;
active_v_start = display_v_start;
active_v_end = active_v_start + (p->yres * hsync_period) - 1;
display_v_start += p->hsync_pulse_width + p->h_back_porch;
active_hctl = (active_h_end << 16) | active_h_start;
display_hctl = active_hctl;
}
intf_cfg2 = 0;
if (dp_intf && p->compression_en) {
active_data_hctl = (hsync_start_x + p->extra_dto_cycles) << 16;
active_data_hctl += hsync_start_x;
display_data_hctl = active_data_hctl;
intf_cfg2 |= BIT(4);
}
den_polarity = 0;
if (ctx->cap->type == INTF_HDMI) {
hsync_polarity = p->yres >= 720 ? 0 : 1;
vsync_polarity = p->yres >= 720 ? 0 : 1;
} else if (ctx->cap->type == INTF_DP) {
hsync_polarity = p->hsync_polarity;
vsync_polarity = p->vsync_polarity;
} else {
hsync_polarity = 0;
vsync_polarity = 0;
}
polarity_ctl = (den_polarity << 2) | /* DEN Polarity */
(vsync_polarity << 1) | /* VSYNC Polarity */
(hsync_polarity << 0); /* HSYNC Polarity */
if (!SDE_FORMAT_IS_YUV(fmt))
panel_format = (fmt->bits[C0_G_Y] |
(fmt->bits[C1_B_Cb] << 2) |
(fmt->bits[C2_R_Cr] << 4) |
(0x21 << 8));
else
/* Interface treats all the pixel data in RGB888 format */
panel_format = (COLOR_8BIT |
(COLOR_8BIT << 2) |
(COLOR_8BIT << 4) |
(0x21 << 8));
if (p->wide_bus_en)
intf_cfg2 |= BIT(0);
if (ctx->cfg.split_link_en)
SDE_REG_WRITE(c, INTF_REG_SPLIT_LINK, 0x3);
SDE_REG_WRITE(c, INTF_HSYNC_CTL, hsync_ctl);
SDE_REG_WRITE(c, INTF_VSYNC_PERIOD_F0, vsync_period * hsync_period);
SDE_REG_WRITE(c, INTF_VSYNC_PULSE_WIDTH_F0,
p->vsync_pulse_width * hsync_period);
SDE_REG_WRITE(c, INTF_DISPLAY_HCTL, display_hctl);
SDE_REG_WRITE(c, INTF_DISPLAY_V_START_F0, display_v_start);
SDE_REG_WRITE(c, INTF_DISPLAY_V_END_F0, display_v_end);
SDE_REG_WRITE(c, INTF_ACTIVE_HCTL, active_hctl);
SDE_REG_WRITE(c, INTF_ACTIVE_V_START_F0, active_v_start);
SDE_REG_WRITE(c, INTF_ACTIVE_V_END_F0, active_v_end);
SDE_REG_WRITE(c, INTF_BORDER_COLOR, p->border_clr);
SDE_REG_WRITE(c, INTF_UNDERFLOW_COLOR, p->underflow_clr);
SDE_REG_WRITE(c, INTF_HSYNC_SKEW, p->hsync_skew);
SDE_REG_WRITE(c, INTF_POLARITY_CTL, polarity_ctl);
SDE_REG_WRITE(c, INTF_FRAME_LINE_COUNT_EN, 0x3);
SDE_REG_WRITE(c, INTF_CONFIG, intf_cfg);
SDE_REG_WRITE(c, INTF_PANEL_FORMAT, panel_format);
SDE_REG_WRITE(c, INTF_CONFIG2, intf_cfg2);
SDE_REG_WRITE(c, INTF_DISPLAY_DATA_HCTL, display_data_hctl);
SDE_REG_WRITE(c, INTF_ACTIVE_DATA_HCTL, active_data_hctl);
}
static void sde_hw_intf_enable_timing_engine(
struct sde_hw_intf *intf,
u8 enable)
{
struct sde_hw_blk_reg_map *c = &intf->hw;
/* Note: Display interface select is handled in top block hw layer */
SDE_REG_WRITE(c, INTF_TIMING_ENGINE_EN, enable != 0);
}
static void sde_hw_intf_setup_prg_fetch(
struct sde_hw_intf *intf,
const struct intf_prog_fetch *fetch)
{
struct sde_hw_blk_reg_map *c = &intf->hw;
int fetch_enable;
/*
* Fetch should always be outside the active lines. If the fetching
* is programmed within active region, hardware behavior is unknown.
*/
fetch_enable = SDE_REG_READ(c, INTF_CONFIG);
if (fetch->enable) {
fetch_enable |= BIT(31);
SDE_REG_WRITE(c, INTF_PROG_FETCH_START,
fetch->fetch_start);
} else {
fetch_enable &= ~BIT(31);
}
SDE_REG_WRITE(c, INTF_CONFIG, fetch_enable);
}
static void sde_hw_intf_bind_pingpong_blk(
struct sde_hw_intf *intf,
bool enable,
const enum sde_pingpong pp)
{
struct sde_hw_blk_reg_map *c;
u32 mux_cfg;
if (!intf)
return;
c = &intf->hw;
mux_cfg = SDE_REG_READ(c, INTF_MUX);
mux_cfg &= ~0xf;
if (enable) {
mux_cfg |= (pp - PINGPONG_0) & 0x7;
if (intf->cfg.split_link_en)
mux_cfg = 0x60000;
} else {
mux_cfg = 0xf000f;
}
SDE_REG_WRITE(c, INTF_MUX, mux_cfg);
}
static void sde_hw_intf_get_status(
struct sde_hw_intf *intf,
struct intf_status *s)
{
struct sde_hw_blk_reg_map *c = &intf->hw;
s->is_en = SDE_REG_READ(c, INTF_TIMING_ENGINE_EN);
if (s->is_en) {
s->frame_count = SDE_REG_READ(c, INTF_FRAME_COUNT);
s->line_count = SDE_REG_READ(c, INTF_LINE_COUNT);
} else {
s->line_count = 0;
s->frame_count = 0;
}
}
static void sde_hw_intf_v1_get_status(
struct sde_hw_intf *intf,
struct intf_status *s)
{
struct sde_hw_blk_reg_map *c = &intf->hw;
s->is_en = SDE_REG_READ(c, INTF_STATUS) & BIT(0);
if (s->is_en) {
s->frame_count = SDE_REG_READ(c, INTF_FRAME_COUNT);
s->line_count = SDE_REG_READ(c, INTF_LINE_COUNT);
} else {
s->line_count = 0;
s->frame_count = 0;
}
}
static void sde_hw_intf_setup_misr(struct sde_hw_intf *intf,
bool enable, u32 frame_count)
{
struct sde_hw_blk_reg_map *c = &intf->hw;
u32 config = 0;
SDE_REG_WRITE(c, INTF_MISR_CTRL, MISR_CTRL_STATUS_CLEAR);
/* clear misr data */
wmb();
if (enable)
config = (frame_count & MISR_FRAME_COUNT_MASK) |
MISR_CTRL_ENABLE |
INTF_MISR_CTRL_FREE_RUN_MASK |
INTF_MISR_CTRL_INPUT_SEL_DATA;
SDE_REG_WRITE(c, INTF_MISR_CTRL, config);
}
static int sde_hw_intf_collect_misr(struct sde_hw_intf *intf, bool nonblock,
u32 *misr_value)
{
struct sde_hw_blk_reg_map *c = &intf->hw;
u32 ctrl = 0;
if (!misr_value)
return -EINVAL;
ctrl = SDE_REG_READ(c, INTF_MISR_CTRL);
if (!nonblock) {
if (ctrl & MISR_CTRL_ENABLE) {
int rc;
rc = readl_poll_timeout(c->base_off + c->blk_off +
INTF_MISR_CTRL, ctrl,
(ctrl & MISR_CTRL_STATUS) > 0, 500,
84000);
if (rc)
return rc;
} else {
return -EINVAL;
}
}
*misr_value = SDE_REG_READ(c, INTF_MISR_SIGNATURE);
return 0;
}
static u32 sde_hw_intf_get_line_count(struct sde_hw_intf *intf)
{
struct sde_hw_blk_reg_map *c;
if (!intf)
return 0;
c = &intf->hw;
return SDE_REG_READ(c, INTF_LINE_COUNT);
}
static int sde_hw_intf_setup_te_config(struct sde_hw_intf *intf,
struct sde_hw_tear_check *te)
{
struct sde_hw_blk_reg_map *c;
int cfg;
if (!intf)
return -EINVAL;
c = &intf->hw;
cfg = BIT(19); /* VSYNC_COUNTER_EN */
if (te->hw_vsync_mode)
cfg |= BIT(20);
cfg |= te->vsync_count;
SDE_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_VSYNC, cfg);
SDE_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_HEIGHT, te->sync_cfg_height);
SDE_REG_WRITE(c, INTF_TEAR_VSYNC_INIT_VAL, te->vsync_init_val);
SDE_REG_WRITE(c, INTF_TEAR_RD_PTR_IRQ, te->rd_ptr_irq);
SDE_REG_WRITE(c, INTF_TEAR_WR_PTR_IRQ, te->wr_ptr_irq);
SDE_REG_WRITE(c, INTF_TEAR_START_POS, te->start_pos);
SDE_REG_WRITE(c, INTF_TEAR_SYNC_THRESH,
((te->sync_threshold_continue << 16) |
te->sync_threshold_start));
SDE_REG_WRITE(c, INTF_TEAR_SYNC_WRCOUNT,
(te->start_pos + te->sync_threshold_start + 1));
return 0;
}
static int sde_hw_intf_setup_autorefresh_config(struct sde_hw_intf *intf,
struct sde_hw_autorefresh *cfg)
{
struct sde_hw_blk_reg_map *c;
u32 refresh_cfg;
if (!intf || !cfg)
return -EINVAL;
c = &intf->hw;
if (cfg->enable)
refresh_cfg = BIT(31) | cfg->frame_count;
else
refresh_cfg = 0;
SDE_REG_WRITE(c, INTF_TEAR_AUTOREFRESH_CONFIG, refresh_cfg);
return 0;
}
static int sde_hw_intf_get_autorefresh_config(struct sde_hw_intf *intf,
struct sde_hw_autorefresh *cfg)
{
struct sde_hw_blk_reg_map *c;
u32 val;
if (!intf || !cfg)
return -EINVAL;
c = &intf->hw;
val = SDE_REG_READ(c, INTF_TEAR_AUTOREFRESH_CONFIG);
cfg->enable = (val & BIT(31)) >> 31;
cfg->frame_count = val & 0xffff;
return 0;
}
static int sde_hw_intf_poll_timeout_wr_ptr(struct sde_hw_intf *intf,
u32 timeout_us)
{
struct sde_hw_blk_reg_map *c;
u32 val;
int rc;
if (!intf)
return -EINVAL;
c = &intf->hw;
rc = readl_poll_timeout(c->base_off + c->blk_off + INTF_TEAR_LINE_COUNT,
val, (val & 0xffff) >= 1, 10, timeout_us);
return rc;
}
static int sde_hw_intf_enable_te(struct sde_hw_intf *intf, bool enable)
{
struct sde_hw_blk_reg_map *c;
if (!intf)
return -EINVAL;
c = &intf->hw;
SDE_REG_WRITE(c, INTF_TEAR_TEAR_CHECK_EN, enable);
return 0;
}
static void sde_hw_intf_update_te(struct sde_hw_intf *intf,
struct sde_hw_tear_check *te)
{
struct sde_hw_blk_reg_map *c;
int cfg;
if (!intf || !te)
return;
c = &intf->hw;
cfg = SDE_REG_READ(c, INTF_TEAR_SYNC_THRESH);
cfg &= ~0xFFFF;
cfg |= te->sync_threshold_start;
SDE_REG_WRITE(c, INTF_TEAR_SYNC_THRESH, cfg);
}
static int sde_hw_intf_connect_external_te(struct sde_hw_intf *intf,
bool enable_external_te)
{
struct sde_hw_blk_reg_map *c = &intf->hw;
u32 cfg;
int orig;
if (!intf)
return -EINVAL;
c = &intf->hw;
cfg = SDE_REG_READ(c, INTF_TEAR_SYNC_CONFIG_VSYNC);
orig = (bool)(cfg & BIT(20));
if (enable_external_te)
cfg |= BIT(20);
else
cfg &= ~BIT(20);
SDE_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_VSYNC, cfg);
return orig;
}
static int sde_hw_intf_get_vsync_info(struct sde_hw_intf *intf,
struct sde_hw_pp_vsync_info *info)
{
struct sde_hw_blk_reg_map *c = &intf->hw;
u32 val;
if (!intf || !info)
return -EINVAL;
c = &intf->hw;
val = SDE_REG_READ(c, INTF_TEAR_VSYNC_INIT_VAL);
info->rd_ptr_init_val = val & 0xffff;
val = SDE_REG_READ(c, INTF_TEAR_INT_COUNT_VAL);
info->rd_ptr_frame_count = (val & 0xffff0000) >> 16;
info->rd_ptr_line_count = val & 0xffff;
val = SDE_REG_READ(c, INTF_TEAR_LINE_COUNT);
info->wr_ptr_line_count = val & 0xffff;
val = SDE_REG_READ(c, INTF_FRAME_COUNT);
info->intf_frame_count = val;
return 0;
}
static void sde_hw_intf_vsync_sel(struct sde_hw_intf *intf,
u32 vsync_source)
{
struct sde_hw_blk_reg_map *c;
if (!intf)
return;
c = &intf->hw;
SDE_REG_WRITE(c, INTF_TEAR_MDP_VSYNC_SEL, (vsync_source & 0xf));
}
static void _setup_intf_ops(struct sde_hw_intf_ops *ops,
unsigned long cap)
{
ops->setup_timing_gen = sde_hw_intf_setup_timing_engine;
ops->setup_prg_fetch = sde_hw_intf_setup_prg_fetch;
ops->get_status = sde_hw_intf_get_status;
ops->enable_timing = sde_hw_intf_enable_timing_engine;
ops->setup_misr = sde_hw_intf_setup_misr;
ops->collect_misr = sde_hw_intf_collect_misr;
ops->get_line_count = sde_hw_intf_get_line_count;
ops->avr_setup = sde_hw_intf_avr_setup;
ops->avr_trigger = sde_hw_intf_avr_trigger;
ops->avr_ctrl = sde_hw_intf_avr_ctrl;
if (cap & BIT(SDE_INTF_INPUT_CTRL))
ops->bind_pingpong_blk = sde_hw_intf_bind_pingpong_blk;
if (cap & BIT(SDE_INTF_TE)) {
ops->setup_tearcheck = sde_hw_intf_setup_te_config;
ops->enable_tearcheck = sde_hw_intf_enable_te;
ops->update_tearcheck = sde_hw_intf_update_te;
ops->connect_external_te = sde_hw_intf_connect_external_te;
ops->get_vsync_info = sde_hw_intf_get_vsync_info;
ops->setup_autorefresh = sde_hw_intf_setup_autorefresh_config;
ops->get_autorefresh = sde_hw_intf_get_autorefresh_config;
ops->poll_timeout_wr_ptr = sde_hw_intf_poll_timeout_wr_ptr;
ops->vsync_sel = sde_hw_intf_vsync_sel;
ops->get_status = sde_hw_intf_v1_get_status;
}
}
static struct sde_hw_blk_ops sde_hw_ops = {
.start = NULL,
.stop = NULL,
};
struct sde_hw_intf *sde_hw_intf_init(enum sde_intf idx,
void __iomem *addr,
struct sde_mdss_cfg *m)
{
struct sde_hw_intf *c;
struct sde_intf_cfg *cfg;
int rc;
c = kzalloc(sizeof(*c), GFP_KERNEL);
if (!c)
return ERR_PTR(-ENOMEM);
cfg = _intf_offset(idx, m, addr, &c->hw);
if (IS_ERR_OR_NULL(cfg)) {
kfree(c);
pr_err("failed to create sde_hw_intf %d\n", idx);
return ERR_PTR(-EINVAL);
}
/*
* Assign ops
*/
c->idx = idx;
c->cap = cfg;
c->mdss = m;
_setup_intf_ops(&c->ops, c->cap->features);
rc = sde_hw_blk_init(&c->base, SDE_HW_BLK_INTF, idx, &sde_hw_ops);
if (rc) {
SDE_ERROR("failed to init hw blk %d\n", rc);
goto blk_init_error;
}
sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name, c->hw.blk_off,
c->hw.blk_off + c->hw.length, c->hw.xin_id);
return c;
blk_init_error:
kzfree(c);
return ERR_PTR(rc);
}
void sde_hw_intf_destroy(struct sde_hw_intf *intf)
{
if (intf)
sde_hw_blk_destroy(&intf->base);
kfree(intf);
}