[PATCH] intel ixp2000 network driver
The way the hardware and firmware work is that there is one shared RX
queue and IRQ for a number of different network interfaces. Due to this,
we would like to process received packets for every interface in the same
NAPI poll handler, so we need a pseudo-device to schedule polling on.
What the driver currently does is that it always schedules polling for
the first network interface in the list, and processes packets for every
interface in the poll handler for that first interface -- however, this
scheme breaks down if the first network interface happens to not be up,
since netif_rx_schedule_prep() checks netif_running().
sky2 apparently has the same issue, and Stephen Hemminger suggested a
way to work around this: create a variant of netif_rx_schedule_prep()
that does not check netif_running(). I implemented this locally and
called it netif_rx_schedule_prep_notup(), and it seems to work well,
but it's something that probably not everyone would be happy with.
The ixp2000 is an ARM CPU with a high-speed network interface in the
CPU itself (full duplex 4Gb/s or 10Gb/s depending on the IXP model.)
The CPU package also contains 8 or 16 (again depending on the IXP
model) 'microengines', which are somewhat primitive but very fast
and efficient processor cores which can be used to offload various
things from the main CPU.
This driver makes the high-speed network interface in the CPU visible
and usable as a regular linux network device. Currently, it only
supports the Radisys ENP2611 IXP board, but adding support for other
board types should be fairly easy.
Signed-off-by: Lennert Buytenhek <buytenh@wantstofly.org>
Signed-off-by: Jeff Garzik <jgarzik@pobox.com>
2005-11-11 12:23:13 -05:00
|
|
|
/*
|
|
|
|
* Helper functions for the PM3386s on the Radisys ENP2611
|
|
|
|
* Copyright (C) 2004, 2005 Lennert Buytenhek <buytenh@wantstofly.org>
|
|
|
|
* Dedicated to Marija Kulikova.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef __PM3386_H
|
|
|
|
#define __PM3386_H
|
|
|
|
|
|
|
|
void pm3386_reset(void);
|
2006-05-15 15:25:29 -04:00
|
|
|
int pm3386_port_count(void);
|
[PATCH] intel ixp2000 network driver
The way the hardware and firmware work is that there is one shared RX
queue and IRQ for a number of different network interfaces. Due to this,
we would like to process received packets for every interface in the same
NAPI poll handler, so we need a pseudo-device to schedule polling on.
What the driver currently does is that it always schedules polling for
the first network interface in the list, and processes packets for every
interface in the poll handler for that first interface -- however, this
scheme breaks down if the first network interface happens to not be up,
since netif_rx_schedule_prep() checks netif_running().
sky2 apparently has the same issue, and Stephen Hemminger suggested a
way to work around this: create a variant of netif_rx_schedule_prep()
that does not check netif_running(). I implemented this locally and
called it netif_rx_schedule_prep_notup(), and it seems to work well,
but it's something that probably not everyone would be happy with.
The ixp2000 is an ARM CPU with a high-speed network interface in the
CPU itself (full duplex 4Gb/s or 10Gb/s depending on the IXP model.)
The CPU package also contains 8 or 16 (again depending on the IXP
model) 'microengines', which are somewhat primitive but very fast
and efficient processor cores which can be used to offload various
things from the main CPU.
This driver makes the high-speed network interface in the CPU visible
and usable as a regular linux network device. Currently, it only
supports the Radisys ENP2611 IXP board, but adding support for other
board types should be fairly easy.
Signed-off-by: Lennert Buytenhek <buytenh@wantstofly.org>
Signed-off-by: Jeff Garzik <jgarzik@pobox.com>
2005-11-11 12:23:13 -05:00
|
|
|
void pm3386_init_port(int port);
|
|
|
|
void pm3386_get_mac(int port, u8 *mac);
|
2005-11-23 06:49:47 -05:00
|
|
|
void pm3386_set_mac(int port, u8 *mac);
|
[PATCH] intel ixp2000 network driver
The way the hardware and firmware work is that there is one shared RX
queue and IRQ for a number of different network interfaces. Due to this,
we would like to process received packets for every interface in the same
NAPI poll handler, so we need a pseudo-device to schedule polling on.
What the driver currently does is that it always schedules polling for
the first network interface in the list, and processes packets for every
interface in the poll handler for that first interface -- however, this
scheme breaks down if the first network interface happens to not be up,
since netif_rx_schedule_prep() checks netif_running().
sky2 apparently has the same issue, and Stephen Hemminger suggested a
way to work around this: create a variant of netif_rx_schedule_prep()
that does not check netif_running(). I implemented this locally and
called it netif_rx_schedule_prep_notup(), and it seems to work well,
but it's something that probably not everyone would be happy with.
The ixp2000 is an ARM CPU with a high-speed network interface in the
CPU itself (full duplex 4Gb/s or 10Gb/s depending on the IXP model.)
The CPU package also contains 8 or 16 (again depending on the IXP
model) 'microengines', which are somewhat primitive but very fast
and efficient processor cores which can be used to offload various
things from the main CPU.
This driver makes the high-speed network interface in the CPU visible
and usable as a regular linux network device. Currently, it only
supports the Radisys ENP2611 IXP board, but adding support for other
board types should be fairly easy.
Signed-off-by: Lennert Buytenhek <buytenh@wantstofly.org>
Signed-off-by: Jeff Garzik <jgarzik@pobox.com>
2005-11-11 12:23:13 -05:00
|
|
|
void pm3386_get_stats(int port, struct net_device_stats *stats);
|
2005-11-23 06:49:51 -05:00
|
|
|
void pm3386_set_carrier(int port, int state);
|
[PATCH] intel ixp2000 network driver
The way the hardware and firmware work is that there is one shared RX
queue and IRQ for a number of different network interfaces. Due to this,
we would like to process received packets for every interface in the same
NAPI poll handler, so we need a pseudo-device to schedule polling on.
What the driver currently does is that it always schedules polling for
the first network interface in the list, and processes packets for every
interface in the poll handler for that first interface -- however, this
scheme breaks down if the first network interface happens to not be up,
since netif_rx_schedule_prep() checks netif_running().
sky2 apparently has the same issue, and Stephen Hemminger suggested a
way to work around this: create a variant of netif_rx_schedule_prep()
that does not check netif_running(). I implemented this locally and
called it netif_rx_schedule_prep_notup(), and it seems to work well,
but it's something that probably not everyone would be happy with.
The ixp2000 is an ARM CPU with a high-speed network interface in the
CPU itself (full duplex 4Gb/s or 10Gb/s depending on the IXP model.)
The CPU package also contains 8 or 16 (again depending on the IXP
model) 'microengines', which are somewhat primitive but very fast
and efficient processor cores which can be used to offload various
things from the main CPU.
This driver makes the high-speed network interface in the CPU visible
and usable as a regular linux network device. Currently, it only
supports the Radisys ENP2611 IXP board, but adding support for other
board types should be fairly easy.
Signed-off-by: Lennert Buytenhek <buytenh@wantstofly.org>
Signed-off-by: Jeff Garzik <jgarzik@pobox.com>
2005-11-11 12:23:13 -05:00
|
|
|
int pm3386_is_link_up(int port);
|
|
|
|
void pm3386_enable_rx(int port);
|
|
|
|
void pm3386_disable_rx(int port);
|
|
|
|
void pm3386_enable_tx(int port);
|
|
|
|
void pm3386_disable_tx(int port);
|
|
|
|
|
|
|
|
|
|
|
|
#endif
|