android_kernel_xiaomi_sm8350/fs/xfs/xfs_inode_item.c

1093 lines
30 KiB
C
Raw Normal View History

/*
* Copyright (c) 2000-2002 Silicon Graphics, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* Further, this software is distributed without any warranty that it is
* free of the rightful claim of any third person regarding infringement
* or the like. Any license provided herein, whether implied or
* otherwise, applies only to this software file. Patent licenses, if
* any, provided herein do not apply to combinations of this program with
* other software, or any other product whatsoever.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston MA 02111-1307, USA.
*
* Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
* Mountain View, CA 94043, or:
*
* http://www.sgi.com
*
* For further information regarding this notice, see:
*
* http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
*/
/*
* This file contains the implementation of the xfs_inode_log_item.
* It contains the item operations used to manipulate the inode log
* items as well as utility routines used by the inode specific
* transaction routines.
*/
#include "xfs.h"
#include "xfs_macros.h"
#include "xfs_types.h"
#include "xfs_inum.h"
#include "xfs_log.h"
#include "xfs_trans.h"
#include "xfs_buf_item.h"
#include "xfs_sb.h"
#include "xfs_dir.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_trans_priv.h"
#include "xfs_ag.h"
#include "xfs_alloc_btree.h"
#include "xfs_bmap_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_btree.h"
#include "xfs_ialloc.h"
#include "xfs_attr_sf.h"
#include "xfs_dir_sf.h"
#include "xfs_dir2_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode_item.h"
#include "xfs_inode.h"
#include "xfs_rw.h"
kmem_zone_t *xfs_ili_zone; /* inode log item zone */
/*
* This returns the number of iovecs needed to log the given inode item.
*
* We need one iovec for the inode log format structure, one for the
* inode core, and possibly one for the inode data/extents/b-tree root
* and one for the inode attribute data/extents/b-tree root.
*/
STATIC uint
xfs_inode_item_size(
xfs_inode_log_item_t *iip)
{
uint nvecs;
xfs_inode_t *ip;
ip = iip->ili_inode;
nvecs = 2;
/*
* Only log the data/extents/b-tree root if there is something
* left to log.
*/
iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
switch (ip->i_d.di_format) {
case XFS_DINODE_FMT_EXTENTS:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
XFS_ILOG_DEV | XFS_ILOG_UUID);
if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
(ip->i_d.di_nextents > 0) &&
(ip->i_df.if_bytes > 0)) {
ASSERT(ip->i_df.if_u1.if_extents != NULL);
nvecs++;
} else {
iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
}
break;
case XFS_DINODE_FMT_BTREE:
ASSERT(ip->i_df.if_ext_max ==
XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
iip->ili_format.ilf_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
XFS_ILOG_DEV | XFS_ILOG_UUID);
if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
(ip->i_df.if_broot_bytes > 0)) {
ASSERT(ip->i_df.if_broot != NULL);
nvecs++;
} else {
ASSERT(!(iip->ili_format.ilf_fields &
XFS_ILOG_DBROOT));
#ifdef XFS_TRANS_DEBUG
if (iip->ili_root_size > 0) {
ASSERT(iip->ili_root_size ==
ip->i_df.if_broot_bytes);
ASSERT(memcmp(iip->ili_orig_root,
ip->i_df.if_broot,
iip->ili_root_size) == 0);
} else {
ASSERT(ip->i_df.if_broot_bytes == 0);
}
#endif
iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
}
break;
case XFS_DINODE_FMT_LOCAL:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
XFS_ILOG_DEV | XFS_ILOG_UUID);
if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
(ip->i_df.if_bytes > 0)) {
ASSERT(ip->i_df.if_u1.if_data != NULL);
ASSERT(ip->i_d.di_size > 0);
nvecs++;
} else {
iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
}
break;
case XFS_DINODE_FMT_DEV:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
XFS_ILOG_DEXT | XFS_ILOG_UUID);
break;
case XFS_DINODE_FMT_UUID:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
XFS_ILOG_DEXT | XFS_ILOG_DEV);
break;
default:
ASSERT(0);
break;
}
/*
* If there are no attributes associated with this file,
* then there cannot be anything more to log.
* Clear all attribute-related log flags.
*/
if (!XFS_IFORK_Q(ip)) {
iip->ili_format.ilf_fields &=
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
return nvecs;
}
/*
* Log any necessary attribute data.
*/
switch (ip->i_d.di_aformat) {
case XFS_DINODE_FMT_EXTENTS:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
(ip->i_d.di_anextents > 0) &&
(ip->i_afp->if_bytes > 0)) {
ASSERT(ip->i_afp->if_u1.if_extents != NULL);
nvecs++;
} else {
iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
}
break;
case XFS_DINODE_FMT_BTREE:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
(ip->i_afp->if_broot_bytes > 0)) {
ASSERT(ip->i_afp->if_broot != NULL);
nvecs++;
} else {
iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
}
break;
case XFS_DINODE_FMT_LOCAL:
iip->ili_format.ilf_fields &=
~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
(ip->i_afp->if_bytes > 0)) {
ASSERT(ip->i_afp->if_u1.if_data != NULL);
nvecs++;
} else {
iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
}
break;
default:
ASSERT(0);
break;
}
return nvecs;
}
/*
* This is called to fill in the vector of log iovecs for the
* given inode log item. It fills the first item with an inode
* log format structure, the second with the on-disk inode structure,
* and a possible third and/or fourth with the inode data/extents/b-tree
* root and inode attributes data/extents/b-tree root.
*/
STATIC void
xfs_inode_item_format(
xfs_inode_log_item_t *iip,
xfs_log_iovec_t *log_vector)
{
uint nvecs;
xfs_log_iovec_t *vecp;
xfs_inode_t *ip;
size_t data_bytes;
xfs_bmbt_rec_t *ext_buffer;
int nrecs;
xfs_mount_t *mp;
ip = iip->ili_inode;
vecp = log_vector;
vecp->i_addr = (xfs_caddr_t)&iip->ili_format;
vecp->i_len = sizeof(xfs_inode_log_format_t);
vecp++;
nvecs = 1;
/*
* Clear i_update_core if the timestamps (or any other
* non-transactional modification) need flushing/logging
* and we're about to log them with the rest of the core.
*
* This is the same logic as xfs_iflush() but this code can't
* run at the same time as xfs_iflush because we're in commit
* processing here and so we have the inode lock held in
* exclusive mode. Although it doesn't really matter
* for the timestamps if both routines were to grab the
* timestamps or not. That would be ok.
*
* We clear i_update_core before copying out the data.
* This is for coordination with our timestamp updates
* that don't hold the inode lock. They will always
* update the timestamps BEFORE setting i_update_core,
* so if we clear i_update_core after they set it we
* are guaranteed to see their updates to the timestamps
* either here. Likewise, if they set it after we clear it
* here, we'll see it either on the next commit of this
* inode or the next time the inode gets flushed via
* xfs_iflush(). This depends on strongly ordered memory
* semantics, but we have that. We use the SYNCHRONIZE
* macro to make sure that the compiler does not reorder
* the i_update_core access below the data copy below.
*/
if (ip->i_update_core) {
ip->i_update_core = 0;
SYNCHRONIZE();
}
/*
* We don't have to worry about re-ordering here because
* the update_size field is protected by the inode lock
* and we have that held in exclusive mode.
*/
if (ip->i_update_size)
ip->i_update_size = 0;
vecp->i_addr = (xfs_caddr_t)&ip->i_d;
vecp->i_len = sizeof(xfs_dinode_core_t);
vecp++;
nvecs++;
iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
/*
* If this is really an old format inode, then we need to
* log it as such. This means that we have to copy the link
* count from the new field to the old. We don't have to worry
* about the new fields, because nothing trusts them as long as
* the old inode version number is there. If the superblock already
* has a new version number, then we don't bother converting back.
*/
mp = ip->i_mount;
ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
XFS_SB_VERSION_HASNLINK(&mp->m_sb));
if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
/*
* Convert it back.
*/
ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
ip->i_d.di_onlink = ip->i_d.di_nlink;
} else {
/*
* The superblock version has already been bumped,
* so just make the conversion to the new inode
* format permanent.
*/
ip->i_d.di_version = XFS_DINODE_VERSION_2;
ip->i_d.di_onlink = 0;
memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
}
}
switch (ip->i_d.di_format) {
case XFS_DINODE_FMT_EXTENTS:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
XFS_ILOG_DEV | XFS_ILOG_UUID)));
if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
ASSERT(ip->i_df.if_bytes > 0);
ASSERT(ip->i_df.if_u1.if_extents != NULL);
ASSERT(ip->i_d.di_nextents > 0);
ASSERT(iip->ili_extents_buf == NULL);
nrecs = ip->i_df.if_bytes /
(uint)sizeof(xfs_bmbt_rec_t);
ASSERT(nrecs > 0);
#if __BYTE_ORDER == __BIG_ENDIAN
if (nrecs == ip->i_d.di_nextents) {
/*
* There are no delayed allocation
* extents, so just point to the
* real extents array.
*/
vecp->i_addr =
(char *)(ip->i_df.if_u1.if_extents);
vecp->i_len = ip->i_df.if_bytes;
} else
#endif
{
/*
* There are delayed allocation extents
* in the inode, or we need to convert
* the extents to on disk format.
* Use xfs_iextents_copy()
* to copy only the real extents into
* a separate buffer. We'll free the
* buffer in the unlock routine.
*/
ext_buffer = kmem_alloc(ip->i_df.if_bytes,
KM_SLEEP);
iip->ili_extents_buf = ext_buffer;
vecp->i_addr = (xfs_caddr_t)ext_buffer;
vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
XFS_DATA_FORK);
}
ASSERT(vecp->i_len <= ip->i_df.if_bytes);
iip->ili_format.ilf_dsize = vecp->i_len;
vecp++;
nvecs++;
}
break;
case XFS_DINODE_FMT_BTREE:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
XFS_ILOG_DEV | XFS_ILOG_UUID)));
if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
ASSERT(ip->i_df.if_broot_bytes > 0);
ASSERT(ip->i_df.if_broot != NULL);
vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot;
vecp->i_len = ip->i_df.if_broot_bytes;
vecp++;
nvecs++;
iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
}
break;
case XFS_DINODE_FMT_LOCAL:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
XFS_ILOG_DEV | XFS_ILOG_UUID)));
if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
ASSERT(ip->i_df.if_bytes > 0);
ASSERT(ip->i_df.if_u1.if_data != NULL);
ASSERT(ip->i_d.di_size > 0);
vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data;
/*
* Round i_bytes up to a word boundary.
* The underlying memory is guaranteed to
* to be there by xfs_idata_realloc().
*/
data_bytes = roundup(ip->i_df.if_bytes, 4);
ASSERT((ip->i_df.if_real_bytes == 0) ||
(ip->i_df.if_real_bytes == data_bytes));
vecp->i_len = (int)data_bytes;
vecp++;
nvecs++;
iip->ili_format.ilf_dsize = (unsigned)data_bytes;
}
break;
case XFS_DINODE_FMT_DEV:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
XFS_ILOG_DDATA | XFS_ILOG_UUID)));
if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
iip->ili_format.ilf_u.ilfu_rdev =
ip->i_df.if_u2.if_rdev;
}
break;
case XFS_DINODE_FMT_UUID:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
XFS_ILOG_DDATA | XFS_ILOG_DEV)));
if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
iip->ili_format.ilf_u.ilfu_uuid =
ip->i_df.if_u2.if_uuid;
}
break;
default:
ASSERT(0);
break;
}
/*
* If there are no attributes associated with the file,
* then we're done.
* Assert that no attribute-related log flags are set.
*/
if (!XFS_IFORK_Q(ip)) {
ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
iip->ili_format.ilf_size = nvecs;
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
return;
}
switch (ip->i_d.di_aformat) {
case XFS_DINODE_FMT_EXTENTS:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
ASSERT(ip->i_afp->if_bytes > 0);
ASSERT(ip->i_afp->if_u1.if_extents != NULL);
ASSERT(ip->i_d.di_anextents > 0);
#ifdef DEBUG
nrecs = ip->i_afp->if_bytes /
(uint)sizeof(xfs_bmbt_rec_t);
#endif
ASSERT(nrecs > 0);
ASSERT(nrecs == ip->i_d.di_anextents);
#if __BYTE_ORDER == __BIG_ENDIAN
/*
* There are not delayed allocation extents
* for attributes, so just point at the array.
*/
vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents);
vecp->i_len = ip->i_afp->if_bytes;
#else
ASSERT(iip->ili_aextents_buf == NULL);
/*
* Need to endian flip before logging
*/
ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
KM_SLEEP);
iip->ili_aextents_buf = ext_buffer;
vecp->i_addr = (xfs_caddr_t)ext_buffer;
vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
XFS_ATTR_FORK);
#endif
iip->ili_format.ilf_asize = vecp->i_len;
vecp++;
nvecs++;
}
break;
case XFS_DINODE_FMT_BTREE:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
ASSERT(ip->i_afp->if_broot_bytes > 0);
ASSERT(ip->i_afp->if_broot != NULL);
vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot;
vecp->i_len = ip->i_afp->if_broot_bytes;
vecp++;
nvecs++;
iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
}
break;
case XFS_DINODE_FMT_LOCAL:
ASSERT(!(iip->ili_format.ilf_fields &
(XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
ASSERT(ip->i_afp->if_bytes > 0);
ASSERT(ip->i_afp->if_u1.if_data != NULL);
vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data;
/*
* Round i_bytes up to a word boundary.
* The underlying memory is guaranteed to
* to be there by xfs_idata_realloc().
*/
data_bytes = roundup(ip->i_afp->if_bytes, 4);
ASSERT((ip->i_afp->if_real_bytes == 0) ||
(ip->i_afp->if_real_bytes == data_bytes));
vecp->i_len = (int)data_bytes;
vecp++;
nvecs++;
iip->ili_format.ilf_asize = (unsigned)data_bytes;
}
break;
default:
ASSERT(0);
break;
}
ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
iip->ili_format.ilf_size = nvecs;
}
/*
* This is called to pin the inode associated with the inode log
* item in memory so it cannot be written out. Do this by calling
* xfs_ipin() to bump the pin count in the inode while holding the
* inode pin lock.
*/
STATIC void
xfs_inode_item_pin(
xfs_inode_log_item_t *iip)
{
ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE));
xfs_ipin(iip->ili_inode);
}
/*
* This is called to unpin the inode associated with the inode log
* item which was previously pinned with a call to xfs_inode_item_pin().
* Just call xfs_iunpin() on the inode to do this.
*/
/* ARGSUSED */
STATIC void
xfs_inode_item_unpin(
xfs_inode_log_item_t *iip,
int stale)
{
xfs_iunpin(iip->ili_inode);
}
/* ARGSUSED */
STATIC void
xfs_inode_item_unpin_remove(
xfs_inode_log_item_t *iip,
xfs_trans_t *tp)
{
xfs_iunpin(iip->ili_inode);
}
/*
* This is called to attempt to lock the inode associated with this
* inode log item, in preparation for the push routine which does the actual
* iflush. Don't sleep on the inode lock or the flush lock.
*
* If the flush lock is already held, indicating that the inode has
* been or is in the process of being flushed, then (ideally) we'd like to
* see if the inode's buffer is still incore, and if so give it a nudge.
* We delay doing so until the pushbuf routine, though, to avoid holding
* the AIL lock across a call to the blackhole which is the buffercache.
* Also we don't want to sleep in any device strategy routines, which can happen
* if we do the subsequent bawrite in here.
*/
STATIC uint
xfs_inode_item_trylock(
xfs_inode_log_item_t *iip)
{
register xfs_inode_t *ip;
ip = iip->ili_inode;
if (xfs_ipincount(ip) > 0) {
return XFS_ITEM_PINNED;
}
if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
return XFS_ITEM_LOCKED;
}
if (!xfs_iflock_nowait(ip)) {
/*
* If someone else isn't already trying to push the inode
* buffer, we get to do it.
*/
if (iip->ili_pushbuf_flag == 0) {
iip->ili_pushbuf_flag = 1;
#ifdef DEBUG
iip->ili_push_owner = get_thread_id();
#endif
/*
* Inode is left locked in shared mode.
* Pushbuf routine gets to unlock it.
*/
return XFS_ITEM_PUSHBUF;
} else {
/*
* We hold the AIL_LOCK, so we must specify the
* NONOTIFY flag so that we won't double trip.
*/
xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
return XFS_ITEM_FLUSHING;
}
/* NOTREACHED */
}
/* Stale items should force out the iclog */
if (ip->i_flags & XFS_ISTALE) {
xfs_ifunlock(ip);
xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
return XFS_ITEM_PINNED;
}
#ifdef DEBUG
if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
ASSERT(iip->ili_format.ilf_fields != 0);
ASSERT(iip->ili_logged == 0);
ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL);
}
#endif
return XFS_ITEM_SUCCESS;
}
/*
* Unlock the inode associated with the inode log item.
* Clear the fields of the inode and inode log item that
* are specific to the current transaction. If the
* hold flags is set, do not unlock the inode.
*/
STATIC void
xfs_inode_item_unlock(
xfs_inode_log_item_t *iip)
{
uint hold;
uint iolocked;
uint lock_flags;
xfs_inode_t *ip;
ASSERT(iip != NULL);
ASSERT(iip->ili_inode->i_itemp != NULL);
ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE));
ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
XFS_ILI_IOLOCKED_EXCL)) ||
ismrlocked(&(iip->ili_inode->i_iolock), MR_UPDATE));
ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
XFS_ILI_IOLOCKED_SHARED)) ||
ismrlocked(&(iip->ili_inode->i_iolock), MR_ACCESS));
/*
* Clear the transaction pointer in the inode.
*/
ip = iip->ili_inode;
ip->i_transp = NULL;
/*
* If the inode needed a separate buffer with which to log
* its extents, then free it now.
*/
if (iip->ili_extents_buf != NULL) {
ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
ASSERT(ip->i_d.di_nextents > 0);
ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
ASSERT(ip->i_df.if_bytes > 0);
kmem_free(iip->ili_extents_buf, ip->i_df.if_bytes);
iip->ili_extents_buf = NULL;
}
if (iip->ili_aextents_buf != NULL) {
ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
ASSERT(ip->i_d.di_anextents > 0);
ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
ASSERT(ip->i_afp->if_bytes > 0);
kmem_free(iip->ili_aextents_buf, ip->i_afp->if_bytes);
iip->ili_aextents_buf = NULL;
}
/*
* Figure out if we should unlock the inode or not.
*/
hold = iip->ili_flags & XFS_ILI_HOLD;
/*
* Before clearing out the flags, remember whether we
* are holding the inode's IO lock.
*/
iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY;
/*
* Clear out the fields of the inode log item particular
* to the current transaction.
*/
iip->ili_ilock_recur = 0;
iip->ili_iolock_recur = 0;
iip->ili_flags = 0;
/*
* Unlock the inode if XFS_ILI_HOLD was not set.
*/
if (!hold) {
lock_flags = XFS_ILOCK_EXCL;
if (iolocked & XFS_ILI_IOLOCKED_EXCL) {
lock_flags |= XFS_IOLOCK_EXCL;
} else if (iolocked & XFS_ILI_IOLOCKED_SHARED) {
lock_flags |= XFS_IOLOCK_SHARED;
}
xfs_iput(iip->ili_inode, lock_flags);
}
}
/*
* This is called to find out where the oldest active copy of the
* inode log item in the on disk log resides now that the last log
* write of it completed at the given lsn. Since we always re-log
* all dirty data in an inode, the latest copy in the on disk log
* is the only one that matters. Therefore, simply return the
* given lsn.
*/
/*ARGSUSED*/
STATIC xfs_lsn_t
xfs_inode_item_committed(
xfs_inode_log_item_t *iip,
xfs_lsn_t lsn)
{
return (lsn);
}
/*
* The transaction with the inode locked has aborted. The inode
* must not be dirty within the transaction (unless we're forcibly
* shutting down). We simply unlock just as if the transaction
* had been cancelled.
*/
STATIC void
xfs_inode_item_abort(
xfs_inode_log_item_t *iip)
{
xfs_inode_item_unlock(iip);
return;
}
/*
* This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
* failed to get the inode flush lock but did get the inode locked SHARED.
* Here we're trying to see if the inode buffer is incore, and if so whether it's
* marked delayed write. If that's the case, we'll initiate a bawrite on that
* buffer to expedite the process.
*
* We aren't holding the AIL_LOCK (or the flush lock) when this gets called,
* so it is inherently race-y.
*/
STATIC void
xfs_inode_item_pushbuf(
xfs_inode_log_item_t *iip)
{
xfs_inode_t *ip;
xfs_mount_t *mp;
xfs_buf_t *bp;
uint dopush;
ip = iip->ili_inode;
ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));
/*
* The ili_pushbuf_flag keeps others from
* trying to duplicate our effort.
*/
ASSERT(iip->ili_pushbuf_flag != 0);
ASSERT(iip->ili_push_owner == get_thread_id());
/*
* If flushlock isn't locked anymore, chances are that the
* inode flush completed and the inode was taken off the AIL.
* So, just get out.
*/
if ((valusema(&(ip->i_flock)) > 0) ||
((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
iip->ili_pushbuf_flag = 0;
xfs_iunlock(ip, XFS_ILOCK_SHARED);
return;
}
mp = ip->i_mount;
bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno,
iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);
if (bp != NULL) {
if (XFS_BUF_ISDELAYWRITE(bp)) {
/*
* We were racing with iflush because we don't hold
* the AIL_LOCK or the flush lock. However, at this point,
* we have the buffer, and we know that it's dirty.
* So, it's possible that iflush raced with us, and
* this item is already taken off the AIL.
* If not, we can flush it async.
*/
dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) &&
(valusema(&(ip->i_flock)) <= 0));
iip->ili_pushbuf_flag = 0;
xfs_iunlock(ip, XFS_ILOCK_SHARED);
xfs_buftrace("INODE ITEM PUSH", bp);
if (XFS_BUF_ISPINNED(bp)) {
xfs_log_force(mp, (xfs_lsn_t)0,
XFS_LOG_FORCE);
}
if (dopush) {
xfs_bawrite(mp, bp);
} else {
xfs_buf_relse(bp);
}
} else {
iip->ili_pushbuf_flag = 0;
xfs_iunlock(ip, XFS_ILOCK_SHARED);
xfs_buf_relse(bp);
}
return;
}
/*
* We have to be careful about resetting pushbuf flag too early (above).
* Even though in theory we can do it as soon as we have the buflock,
* we don't want others to be doing work needlessly. They'll come to
* this function thinking that pushing the buffer is their
* responsibility only to find that the buffer is still locked by
* another doing the same thing
*/
iip->ili_pushbuf_flag = 0;
xfs_iunlock(ip, XFS_ILOCK_SHARED);
return;
}
/*
* This is called to asynchronously write the inode associated with this
* inode log item out to disk. The inode will already have been locked by
* a successful call to xfs_inode_item_trylock().
*/
STATIC void
xfs_inode_item_push(
xfs_inode_log_item_t *iip)
{
xfs_inode_t *ip;
ip = iip->ili_inode;
ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));
ASSERT(valusema(&(ip->i_flock)) <= 0);
/*
* Since we were able to lock the inode's flush lock and
* we found it on the AIL, the inode must be dirty. This
* is because the inode is removed from the AIL while still
* holding the flush lock in xfs_iflush_done(). Thus, if
* we found it in the AIL and were able to obtain the flush
* lock without sleeping, then there must not have been
* anyone in the process of flushing the inode.
*/
ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
iip->ili_format.ilf_fields != 0);
/*
* Write out the inode. The completion routine ('iflush_done') will
* pull it from the AIL, mark it clean, unlock the flush lock.
*/
(void) xfs_iflush(ip, XFS_IFLUSH_ASYNC);
xfs_iunlock(ip, XFS_ILOCK_SHARED);
return;
}
/*
* XXX rcc - this one really has to do something. Probably needs
* to stamp in a new field in the incore inode.
*/
/* ARGSUSED */
STATIC void
xfs_inode_item_committing(
xfs_inode_log_item_t *iip,
xfs_lsn_t lsn)
{
iip->ili_last_lsn = lsn;
return;
}
/*
* This is the ops vector shared by all buf log items.
*/
struct xfs_item_ops xfs_inode_item_ops = {
.iop_size = (uint(*)(xfs_log_item_t*))xfs_inode_item_size,
.iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
xfs_inode_item_format,
.iop_pin = (void(*)(xfs_log_item_t*))xfs_inode_item_pin,
.iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin,
.iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
xfs_inode_item_unpin_remove,
.iop_trylock = (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock,
.iop_unlock = (void(*)(xfs_log_item_t*))xfs_inode_item_unlock,
.iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
xfs_inode_item_committed,
.iop_push = (void(*)(xfs_log_item_t*))xfs_inode_item_push,
.iop_abort = (void(*)(xfs_log_item_t*))xfs_inode_item_abort,
.iop_pushbuf = (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf,
.iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
xfs_inode_item_committing
};
/*
* Initialize the inode log item for a newly allocated (in-core) inode.
*/
void
xfs_inode_item_init(
xfs_inode_t *ip,
xfs_mount_t *mp)
{
xfs_inode_log_item_t *iip;
ASSERT(ip->i_itemp == NULL);
iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
iip->ili_item.li_type = XFS_LI_INODE;
iip->ili_item.li_ops = &xfs_inode_item_ops;
iip->ili_item.li_mountp = mp;
iip->ili_inode = ip;
/*
We have zeroed memory. No need ...
iip->ili_extents_buf = NULL;
iip->ili_pushbuf_flag = 0;
*/
iip->ili_format.ilf_type = XFS_LI_INODE;
iip->ili_format.ilf_ino = ip->i_ino;
iip->ili_format.ilf_blkno = ip->i_blkno;
iip->ili_format.ilf_len = ip->i_len;
iip->ili_format.ilf_boffset = ip->i_boffset;
}
/*
* Free the inode log item and any memory hanging off of it.
*/
void
xfs_inode_item_destroy(
xfs_inode_t *ip)
{
#ifdef XFS_TRANS_DEBUG
if (ip->i_itemp->ili_root_size != 0) {
kmem_free(ip->i_itemp->ili_orig_root,
ip->i_itemp->ili_root_size);
}
#endif
kmem_zone_free(xfs_ili_zone, ip->i_itemp);
}
/*
* This is the inode flushing I/O completion routine. It is called
* from interrupt level when the buffer containing the inode is
* flushed to disk. It is responsible for removing the inode item
* from the AIL if it has not been re-logged, and unlocking the inode's
* flush lock.
*/
/*ARGSUSED*/
void
xfs_iflush_done(
xfs_buf_t *bp,
xfs_inode_log_item_t *iip)
{
xfs_inode_t *ip;
SPLDECL(s);
ip = iip->ili_inode;
/*
* We only want to pull the item from the AIL if it is
* actually there and its location in the log has not
* changed since we started the flush. Thus, we only bother
* if the ili_logged flag is set and the inode's lsn has not
* changed. First we check the lsn outside
* the lock since it's cheaper, and then we recheck while
* holding the lock before removing the inode from the AIL.
*/
if (iip->ili_logged &&
(iip->ili_item.li_lsn == iip->ili_flush_lsn)) {
AIL_LOCK(ip->i_mount, s);
if (iip->ili_item.li_lsn == iip->ili_flush_lsn) {
/*
* xfs_trans_delete_ail() drops the AIL lock.
*/
xfs_trans_delete_ail(ip->i_mount,
(xfs_log_item_t*)iip, s);
} else {
AIL_UNLOCK(ip->i_mount, s);
}
}
iip->ili_logged = 0;
/*
* Clear the ili_last_fields bits now that we know that the
* data corresponding to them is safely on disk.
*/
iip->ili_last_fields = 0;
/*
* Release the inode's flush lock since we're done with it.
*/
xfs_ifunlock(ip);
return;
}
/*
* This is the inode flushing abort routine. It is called
* from xfs_iflush when the filesystem is shutting down to clean
* up the inode state.
* It is responsible for removing the inode item
* from the AIL if it has not been re-logged, and unlocking the inode's
* flush lock.
*/
void
xfs_iflush_abort(
xfs_inode_t *ip)
{
xfs_inode_log_item_t *iip;
xfs_mount_t *mp;
SPLDECL(s);
iip = ip->i_itemp;
mp = ip->i_mount;
if (iip) {
if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
AIL_LOCK(mp, s);
if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
/*
* xfs_trans_delete_ail() drops the AIL lock.
*/
xfs_trans_delete_ail(mp, (xfs_log_item_t *)iip,
s);
} else
AIL_UNLOCK(mp, s);
}
iip->ili_logged = 0;
/*
* Clear the ili_last_fields bits now that we know that the
* data corresponding to them is safely on disk.
*/
iip->ili_last_fields = 0;
/*
* Clear the inode logging fields so no more flushes are
* attempted.
*/
iip->ili_format.ilf_fields = 0;
}
/*
* Release the inode's flush lock since we're done with it.
*/
xfs_ifunlock(ip);
}
void
xfs_istale_done(
xfs_buf_t *bp,
xfs_inode_log_item_t *iip)
{
xfs_iflush_abort(iip->ili_inode);
}