android_kernel_xiaomi_sm8350/arch/mips/sgi-ip32/ip32-irq.c

591 lines
15 KiB
C
Raw Normal View History

/*
* Code to handle IP32 IRQs
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2000 Harald Koerfgen
* Copyright (C) 2001 Keith M Wesolowski
*/
#include <linux/init.h>
#include <linux/kernel_stat.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/bitops.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/random.h>
#include <linux/sched.h>
#include <asm/mipsregs.h>
#include <asm/signal.h>
#include <asm/system.h>
#include <asm/time.h>
#include <asm/ip32/crime.h>
#include <asm/ip32/mace.h>
#include <asm/ip32/ip32_ints.h>
/* issue a PIO read to make sure no PIO writes are pending */
static void inline flush_crime_bus(void)
{
volatile unsigned long junk = crime->control;
}
static void inline flush_mace_bus(void)
{
volatile unsigned long junk = mace->perif.ctrl.misc;
}
#undef DEBUG_IRQ
#ifdef DEBUG_IRQ
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif
/* O2 irq map
*
* IP0 -> software (ignored)
* IP1 -> software (ignored)
* IP2 -> (irq0) C crime 1.1 all interrupts; crime 1.5 ???
* IP3 -> (irq1) X unknown
* IP4 -> (irq2) X unknown
* IP5 -> (irq3) X unknown
* IP6 -> (irq4) X unknown
* IP7 -> (irq5) 0 CPU count/compare timer (system timer)
*
* crime: (C)
*
* CRIME_INT_STAT 31:0:
*
* 0 -> 1 Video in 1
* 1 -> 2 Video in 2
* 2 -> 3 Video out
* 3 -> 4 Mace ethernet
* 4 -> S SuperIO sub-interrupt
* 5 -> M Miscellaneous sub-interrupt
* 6 -> A Audio sub-interrupt
* 7 -> 8 PCI bridge errors
* 8 -> 9 PCI SCSI aic7xxx 0
* 9 -> 10 PCI SCSI aic7xxx 1
* 10 -> 11 PCI slot 0
* 11 -> 12 unused (PCI slot 1)
* 12 -> 13 unused (PCI slot 2)
* 13 -> 14 unused (PCI shared 0)
* 14 -> 15 unused (PCI shared 1)
* 15 -> 16 unused (PCI shared 2)
* 16 -> 17 GBE0 (E)
* 17 -> 18 GBE1 (E)
* 18 -> 19 GBE2 (E)
* 19 -> 20 GBE3 (E)
* 20 -> 21 CPU errors
* 21 -> 22 Memory errors
* 22 -> 23 RE empty edge (E)
* 23 -> 24 RE full edge (E)
* 24 -> 25 RE idle edge (E)
* 25 -> 26 RE empty level
* 26 -> 27 RE full level
* 27 -> 28 RE idle level
* 28 -> 29 unused (software 0) (E)
* 29 -> 30 unused (software 1) (E)
* 30 -> 31 unused (software 2) - crime 1.5 CPU SysCorError (E)
* 31 -> 32 VICE
*
* S, M, A: Use the MACE ISA interrupt register
* MACE_ISA_INT_STAT 31:0
*
* 0-7 -> 33-40 Audio
* 8 -> 41 RTC
* 9 -> 42 Keyboard
* 10 -> X Keyboard polled
* 11 -> 44 Mouse
* 12 -> X Mouse polled
* 13-15 -> 46-48 Count/compare timers
* 16-19 -> 49-52 Parallel (16 E)
* 20-25 -> 53-58 Serial 1 (22 E)
* 26-31 -> 59-64 Serial 2 (28 E)
*
* Note that this means IRQs 5-7, 43, and 45 do not exist. This is a
* different IRQ map than IRIX uses, but that's OK as Linux irq handling
* is quite different anyway.
*/
/*
* IRQ spinlock - Ralf says not to disable CPU interrupts,
* and I think he knows better.
*/
static DEFINE_SPINLOCK(ip32_irq_lock);
/* Some initial interrupts to set up */
extern irqreturn_t crime_memerr_intr (int irq, void *dev_id,
struct pt_regs *regs);
extern irqreturn_t crime_cpuerr_intr (int irq, void *dev_id,
struct pt_regs *regs);
struct irqaction memerr_irq = { crime_memerr_intr, SA_INTERRUPT,
CPU_MASK_NONE, "CRIME memory error", NULL, NULL };
struct irqaction cpuerr_irq = { crime_cpuerr_intr, SA_INTERRUPT,
CPU_MASK_NONE, "CRIME CPU error", NULL, NULL };
extern void ip32_handle_int(void);
/*
* For interrupts wired from a single device to the CPU. Only the clock
* uses this it seems, which is IRQ 0 and IP7.
*/
static void enable_cpu_irq(unsigned int irq)
{
set_c0_status(STATUSF_IP7);
}
static unsigned int startup_cpu_irq(unsigned int irq)
{
enable_cpu_irq(irq);
return 0;
}
static void disable_cpu_irq(unsigned int irq)
{
clear_c0_status(STATUSF_IP7);
}
static void end_cpu_irq(unsigned int irq)
{
if (!(irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS)))
enable_cpu_irq (irq);
}
#define shutdown_cpu_irq disable_cpu_irq
#define mask_and_ack_cpu_irq disable_cpu_irq
static struct hw_interrupt_type ip32_cpu_interrupt = {
"IP32 CPU",
startup_cpu_irq,
shutdown_cpu_irq,
enable_cpu_irq,
disable_cpu_irq,
mask_and_ack_cpu_irq,
end_cpu_irq,
NULL
};
/*
* This is for pure CRIME interrupts - ie not MACE. The advantage?
* We get to split the register in half and do faster lookups.
*/
static uint64_t crime_mask;
static void enable_crime_irq(unsigned int irq)
{
unsigned long flags;
spin_lock_irqsave(&ip32_irq_lock, flags);
crime_mask |= 1 << (irq - 1);
crime->imask = crime_mask;
spin_unlock_irqrestore(&ip32_irq_lock, flags);
}
static unsigned int startup_crime_irq(unsigned int irq)
{
enable_crime_irq(irq);
return 0; /* This is probably not right; we could have pending irqs */
}
static void disable_crime_irq(unsigned int irq)
{
unsigned long flags;
spin_lock_irqsave(&ip32_irq_lock, flags);
crime_mask &= ~(1 << (irq - 1));
crime->imask = crime_mask;
flush_crime_bus();
spin_unlock_irqrestore(&ip32_irq_lock, flags);
}
static void mask_and_ack_crime_irq(unsigned int irq)
{
unsigned long flags;
/* Edge triggered interrupts must be cleared. */
if ((irq >= CRIME_GBE0_IRQ && irq <= CRIME_GBE3_IRQ)
|| (irq >= CRIME_RE_EMPTY_E_IRQ && irq <= CRIME_RE_IDLE_E_IRQ)
|| (irq >= CRIME_SOFT0_IRQ && irq <= CRIME_SOFT2_IRQ)) {
uint64_t crime_int;
spin_lock_irqsave(&ip32_irq_lock, flags);
crime_int = crime->hard_int;
crime_int &= ~(1 << (irq - 1));
crime->hard_int = crime_int;
spin_unlock_irqrestore(&ip32_irq_lock, flags);
}
disable_crime_irq(irq);
}
static void end_crime_irq(unsigned int irq)
{
if (!(irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS)))
enable_crime_irq(irq);
}
#define shutdown_crime_irq disable_crime_irq
static struct hw_interrupt_type ip32_crime_interrupt = {
"IP32 CRIME",
startup_crime_irq,
shutdown_crime_irq,
enable_crime_irq,
disable_crime_irq,
mask_and_ack_crime_irq,
end_crime_irq,
NULL
};
/*
* This is for MACE PCI interrupts. We can decrease bus traffic by masking
* as close to the source as possible. This also means we can take the
* next chunk of the CRIME register in one piece.
*/
static unsigned long macepci_mask;
static void enable_macepci_irq(unsigned int irq)
{
unsigned long flags;
spin_lock_irqsave(&ip32_irq_lock, flags);
macepci_mask |= MACEPCI_CONTROL_INT(irq - 9);
mace->pci.control = macepci_mask;
crime_mask |= 1 << (irq - 1);
crime->imask = crime_mask;
spin_unlock_irqrestore(&ip32_irq_lock, flags);
}
static unsigned int startup_macepci_irq(unsigned int irq)
{
enable_macepci_irq (irq);
return 0;
}
static void disable_macepci_irq(unsigned int irq)
{
unsigned long flags;
spin_lock_irqsave(&ip32_irq_lock, flags);
crime_mask &= ~(1 << (irq - 1));
crime->imask = crime_mask;
flush_crime_bus();
macepci_mask &= ~MACEPCI_CONTROL_INT(irq - 9);
mace->pci.control = macepci_mask;
flush_mace_bus();
spin_unlock_irqrestore(&ip32_irq_lock, flags);
}
static void end_macepci_irq(unsigned int irq)
{
if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)))
enable_macepci_irq(irq);
}
#define shutdown_macepci_irq disable_macepci_irq
#define mask_and_ack_macepci_irq disable_macepci_irq
static struct hw_interrupt_type ip32_macepci_interrupt = {
"IP32 MACE PCI",
startup_macepci_irq,
shutdown_macepci_irq,
enable_macepci_irq,
disable_macepci_irq,
mask_and_ack_macepci_irq,
end_macepci_irq,
NULL
};
/* This is used for MACE ISA interrupts. That means bits 4-6 in the
* CRIME register.
*/
#define MACEISA_AUDIO_INT (MACEISA_AUDIO_SW_INT | \
MACEISA_AUDIO_SC_INT | \
MACEISA_AUDIO1_DMAT_INT | \
MACEISA_AUDIO1_OF_INT | \
MACEISA_AUDIO2_DMAT_INT | \
MACEISA_AUDIO2_MERR_INT | \
MACEISA_AUDIO3_DMAT_INT | \
MACEISA_AUDIO3_MERR_INT)
#define MACEISA_MISC_INT (MACEISA_RTC_INT | \
MACEISA_KEYB_INT | \
MACEISA_KEYB_POLL_INT | \
MACEISA_MOUSE_INT | \
MACEISA_MOUSE_POLL_INT | \
MACEISA_TIMER0_INT | \
MACEISA_TIMER1_INT | \
MACEISA_TIMER2_INT)
#define MACEISA_SUPERIO_INT (MACEISA_PARALLEL_INT | \
MACEISA_PAR_CTXA_INT | \
MACEISA_PAR_CTXB_INT | \
MACEISA_PAR_MERR_INT | \
MACEISA_SERIAL1_INT | \
MACEISA_SERIAL1_TDMAT_INT | \
MACEISA_SERIAL1_TDMAPR_INT | \
MACEISA_SERIAL1_TDMAME_INT | \
MACEISA_SERIAL1_RDMAT_INT | \
MACEISA_SERIAL1_RDMAOR_INT | \
MACEISA_SERIAL2_INT | \
MACEISA_SERIAL2_TDMAT_INT | \
MACEISA_SERIAL2_TDMAPR_INT | \
MACEISA_SERIAL2_TDMAME_INT | \
MACEISA_SERIAL2_RDMAT_INT | \
MACEISA_SERIAL2_RDMAOR_INT)
static unsigned long maceisa_mask;
static void enable_maceisa_irq (unsigned int irq)
{
unsigned int crime_int = 0;
unsigned long flags;
DBG ("maceisa enable: %u\n", irq);
switch (irq) {
case MACEISA_AUDIO_SW_IRQ ... MACEISA_AUDIO3_MERR_IRQ:
crime_int = MACE_AUDIO_INT;
break;
case MACEISA_RTC_IRQ ... MACEISA_TIMER2_IRQ:
crime_int = MACE_MISC_INT;
break;
case MACEISA_PARALLEL_IRQ ... MACEISA_SERIAL2_RDMAOR_IRQ:
crime_int = MACE_SUPERIO_INT;
break;
}
DBG ("crime_int %08x enabled\n", crime_int);
spin_lock_irqsave(&ip32_irq_lock, flags);
crime_mask |= crime_int;
crime->imask = crime_mask;
maceisa_mask |= 1 << (irq - 33);
mace->perif.ctrl.imask = maceisa_mask;
spin_unlock_irqrestore(&ip32_irq_lock, flags);
}
static unsigned int startup_maceisa_irq(unsigned int irq)
{
enable_maceisa_irq(irq);
return 0;
}
static void disable_maceisa_irq(unsigned int irq)
{
unsigned int crime_int = 0;
unsigned long flags;
spin_lock_irqsave(&ip32_irq_lock, flags);
maceisa_mask &= ~(1 << (irq - 33));
if(!(maceisa_mask & MACEISA_AUDIO_INT))
crime_int |= MACE_AUDIO_INT;
if(!(maceisa_mask & MACEISA_MISC_INT))
crime_int |= MACE_MISC_INT;
if(!(maceisa_mask & MACEISA_SUPERIO_INT))
crime_int |= MACE_SUPERIO_INT;
crime_mask &= ~crime_int;
crime->imask = crime_mask;
flush_crime_bus();
mace->perif.ctrl.imask = maceisa_mask;
flush_mace_bus();
spin_unlock_irqrestore(&ip32_irq_lock, flags);
}
static void mask_and_ack_maceisa_irq(unsigned int irq)
{
unsigned long mace_int, flags;
switch (irq) {
case MACEISA_PARALLEL_IRQ:
case MACEISA_SERIAL1_TDMAPR_IRQ:
case MACEISA_SERIAL2_TDMAPR_IRQ:
/* edge triggered */
spin_lock_irqsave(&ip32_irq_lock, flags);
mace_int = mace->perif.ctrl.istat;
mace_int &= ~(1 << (irq - 33));
mace->perif.ctrl.istat = mace_int;
spin_unlock_irqrestore(&ip32_irq_lock, flags);
break;
}
disable_maceisa_irq(irq);
}
static void end_maceisa_irq(unsigned irq)
{
if (!(irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS)))
enable_maceisa_irq(irq);
}
#define shutdown_maceisa_irq disable_maceisa_irq
static struct hw_interrupt_type ip32_maceisa_interrupt = {
"IP32 MACE ISA",
startup_maceisa_irq,
shutdown_maceisa_irq,
enable_maceisa_irq,
disable_maceisa_irq,
mask_and_ack_maceisa_irq,
end_maceisa_irq,
NULL
};
/* This is used for regular non-ISA, non-PCI MACE interrupts. That means
* bits 0-3 and 7 in the CRIME register.
*/
static void enable_mace_irq(unsigned int irq)
{
unsigned long flags;
spin_lock_irqsave(&ip32_irq_lock, flags);
crime_mask |= 1 << (irq - 1);
crime->imask = crime_mask;
spin_unlock_irqrestore(&ip32_irq_lock, flags);
}
static unsigned int startup_mace_irq(unsigned int irq)
{
enable_mace_irq(irq);
return 0;
}
static void disable_mace_irq(unsigned int irq)
{
unsigned long flags;
spin_lock_irqsave(&ip32_irq_lock, flags);
crime_mask &= ~(1 << (irq - 1));
crime->imask = crime_mask;
flush_crime_bus();
spin_unlock_irqrestore(&ip32_irq_lock, flags);
}
static void end_mace_irq(unsigned int irq)
{
if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)))
enable_mace_irq(irq);
}
#define shutdown_mace_irq disable_mace_irq
#define mask_and_ack_mace_irq disable_mace_irq
static struct hw_interrupt_type ip32_mace_interrupt = {
"IP32 MACE",
startup_mace_irq,
shutdown_mace_irq,
enable_mace_irq,
disable_mace_irq,
mask_and_ack_mace_irq,
end_mace_irq,
NULL
};
static void ip32_unknown_interrupt(struct pt_regs *regs)
{
printk ("Unknown interrupt occurred!\n");
printk ("cp0_status: %08x\n", read_c0_status());
printk ("cp0_cause: %08x\n", read_c0_cause());
printk ("CRIME intr mask: %016lx\n", crime->imask);
printk ("CRIME intr status: %016lx\n", crime->istat);
printk ("CRIME hardware intr register: %016lx\n", crime->hard_int);
printk ("MACE ISA intr mask: %08lx\n", mace->perif.ctrl.imask);
printk ("MACE ISA intr status: %08lx\n", mace->perif.ctrl.istat);
printk ("MACE PCI control register: %08x\n", mace->pci.control);
printk("Register dump:\n");
show_regs(regs);
printk("Please mail this report to linux-mips@linux-mips.org\n");
printk("Spinning...");
while(1) ;
}
/* CRIME 1.1 appears to deliver all interrupts to this one pin. */
/* change this to loop over all edge-triggered irqs, exception masked out ones */
void ip32_irq0(struct pt_regs *regs)
{
uint64_t crime_int;
int irq = 0;
crime_int = crime->istat & crime_mask;
irq = ffs(crime_int);
crime_int = 1 << (irq - 1);
if (crime_int & CRIME_MACEISA_INT_MASK) {
unsigned long mace_int = mace->perif.ctrl.istat;
irq = ffs(mace_int & maceisa_mask) + 32;
}
DBG("*irq %u*\n", irq);
do_IRQ(irq, regs);
}
void ip32_irq1(struct pt_regs *regs)
{
ip32_unknown_interrupt(regs);
}
void ip32_irq2(struct pt_regs *regs)
{
ip32_unknown_interrupt(regs);
}
void ip32_irq3(struct pt_regs *regs)
{
ip32_unknown_interrupt(regs);
}
void ip32_irq4(struct pt_regs *regs)
{
ip32_unknown_interrupt(regs);
}
void ip32_irq5(struct pt_regs *regs)
{
ll_timer_interrupt(IP32_R4K_TIMER_IRQ, regs);
}
void __init arch_init_irq(void)
{
unsigned int irq;
/* Install our interrupt handler, then clear and disable all
* CRIME and MACE interrupts. */
crime->imask = 0;
crime->hard_int = 0;
crime->soft_int = 0;
mace->perif.ctrl.istat = 0;
mace->perif.ctrl.imask = 0;
set_except_vector(0, ip32_handle_int);
for (irq = 0; irq <= IP32_IRQ_MAX; irq++) {
hw_irq_controller *controller;
if (irq == IP32_R4K_TIMER_IRQ)
controller = &ip32_cpu_interrupt;
else if (irq <= MACE_PCI_BRIDGE_IRQ && irq >= MACE_VID_IN1_IRQ)
controller = &ip32_mace_interrupt;
else if (irq <= MACEPCI_SHARED2_IRQ && irq >= MACEPCI_SCSI0_IRQ)
controller = &ip32_macepci_interrupt;
else if (irq <= CRIME_VICE_IRQ && irq >= CRIME_GBE0_IRQ)
controller = &ip32_crime_interrupt;
else
controller = &ip32_maceisa_interrupt;
irq_desc[irq].status = IRQ_DISABLED;
irq_desc[irq].action = 0;
irq_desc[irq].depth = 0;
irq_desc[irq].handler = controller;
}
setup_irq(CRIME_MEMERR_IRQ, &memerr_irq);
setup_irq(CRIME_CPUERR_IRQ, &cpuerr_irq);
#define ALLINTS (IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3 | IE_IRQ4 | IE_IRQ5)
change_c0_status(ST0_IM, ALLINTS);
}