android_kernel_xiaomi_sm8350/arch/x86/kernel/process_32.c

876 lines
21 KiB
C
Raw Normal View History

/*
* Copyright (C) 1995 Linus Torvalds
*
* Pentium III FXSR, SSE support
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
/*
* This file handles the architecture-dependent parts of process handling..
*/
#include <stdarg.h>
[PATCH] i386 CPU hotplug (The i386 CPU hotplug patch provides infrastructure for some work which Pavel is doing as well as for ACPI S3 (suspend-to-RAM) work which Li Shaohua <shaohua.li@intel.com> is doing) The following provides i386 architecture support for safely unregistering and registering processors during runtime, updated for the current -mm tree. In order to avoid dumping cpu hotplug code into kernel/irq/* i dropped the cpu_online check in do_IRQ() by modifying fixup_irqs(). The difference being that on cpu offline, fixup_irqs() is called before we clear the cpu from cpu_online_map and a long delay in order to ensure that we never have any queued external interrupts on the APICs. There are additional changes to s390 and ppc64 to account for this change. 1) Add CONFIG_HOTPLUG_CPU 2) disable local APIC timer on dead cpus. 3) Disable preempt around irq balancing to prevent CPUs going down. 4) Print irq stats for all possible cpus. 5) Debugging check for interrupts on offline cpus. 6) Hacky fixup_irqs() to redirect irqs when cpus go off/online. 7) play_dead() for offline cpus to spin inside. 8) Handle offline cpus set in flush_tlb_others(). 9) Grab lock earlier in smp_call_function() to prevent CPUs going down. 10) Implement __cpu_disable() and __cpu_die(). 11) Enable local interrupts in cpu_enable() after fixup_irqs() 12) Don't fiddle with NMI on dead cpu, but leave intact on other cpus. 13) Program IRQ affinity whilst cpu is still in cpu_online_map on offline. Signed-off-by: Zwane Mwaikambo <zwane@linuxpower.ca> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 17:54:50 -04:00
#include <linux/cpu.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/elfcore.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/user.h>
#include <linux/interrupt.h>
#include <linux/utsname.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/init.h>
#include <linux/mc146818rtc.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/ptrace.h>
#include <linux/random.h>
#include <linux/personality.h>
#include <linux/tick.h>
#include <linux/percpu.h>
#include <linux/prctl.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/ldt.h>
#include <asm/processor.h>
#include <asm/i387.h>
#include <asm/desc.h>
#ifdef CONFIG_MATH_EMULATION
#include <asm/math_emu.h>
#endif
#include <linux/err.h>
[PATCH] i386 CPU hotplug (The i386 CPU hotplug patch provides infrastructure for some work which Pavel is doing as well as for ACPI S3 (suspend-to-RAM) work which Li Shaohua <shaohua.li@intel.com> is doing) The following provides i386 architecture support for safely unregistering and registering processors during runtime, updated for the current -mm tree. In order to avoid dumping cpu hotplug code into kernel/irq/* i dropped the cpu_online check in do_IRQ() by modifying fixup_irqs(). The difference being that on cpu offline, fixup_irqs() is called before we clear the cpu from cpu_online_map and a long delay in order to ensure that we never have any queued external interrupts on the APICs. There are additional changes to s390 and ppc64 to account for this change. 1) Add CONFIG_HOTPLUG_CPU 2) disable local APIC timer on dead cpus. 3) Disable preempt around irq balancing to prevent CPUs going down. 4) Print irq stats for all possible cpus. 5) Debugging check for interrupts on offline cpus. 6) Hacky fixup_irqs() to redirect irqs when cpus go off/online. 7) play_dead() for offline cpus to spin inside. 8) Handle offline cpus set in flush_tlb_others(). 9) Grab lock earlier in smp_call_function() to prevent CPUs going down. 10) Implement __cpu_disable() and __cpu_die(). 11) Enable local interrupts in cpu_enable() after fixup_irqs() 12) Don't fiddle with NMI on dead cpu, but leave intact on other cpus. 13) Program IRQ affinity whilst cpu is still in cpu_online_map on offline. Signed-off-by: Zwane Mwaikambo <zwane@linuxpower.ca> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 17:54:50 -04:00
#include <asm/tlbflush.h>
#include <asm/cpu.h>
#include <asm/kdebug.h>
[PATCH] i386 CPU hotplug (The i386 CPU hotplug patch provides infrastructure for some work which Pavel is doing as well as for ACPI S3 (suspend-to-RAM) work which Li Shaohua <shaohua.li@intel.com> is doing) The following provides i386 architecture support for safely unregistering and registering processors during runtime, updated for the current -mm tree. In order to avoid dumping cpu hotplug code into kernel/irq/* i dropped the cpu_online check in do_IRQ() by modifying fixup_irqs(). The difference being that on cpu offline, fixup_irqs() is called before we clear the cpu from cpu_online_map and a long delay in order to ensure that we never have any queued external interrupts on the APICs. There are additional changes to s390 and ppc64 to account for this change. 1) Add CONFIG_HOTPLUG_CPU 2) disable local APIC timer on dead cpus. 3) Disable preempt around irq balancing to prevent CPUs going down. 4) Print irq stats for all possible cpus. 5) Debugging check for interrupts on offline cpus. 6) Hacky fixup_irqs() to redirect irqs when cpus go off/online. 7) play_dead() for offline cpus to spin inside. 8) Handle offline cpus set in flush_tlb_others(). 9) Grab lock earlier in smp_call_function() to prevent CPUs going down. 10) Implement __cpu_disable() and __cpu_die(). 11) Enable local interrupts in cpu_enable() after fixup_irqs() 12) Don't fiddle with NMI on dead cpu, but leave intact on other cpus. 13) Program IRQ affinity whilst cpu is still in cpu_online_map on offline. Signed-off-by: Zwane Mwaikambo <zwane@linuxpower.ca> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 17:54:50 -04:00
asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
static int hlt_counter;
unsigned long boot_option_idle_override = 0;
EXPORT_SYMBOL(boot_option_idle_override);
DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
EXPORT_PER_CPU_SYMBOL(current_task);
DEFINE_PER_CPU(int, cpu_number);
EXPORT_PER_CPU_SYMBOL(cpu_number);
/*
* Return saved PC of a blocked thread.
*/
unsigned long thread_saved_pc(struct task_struct *tsk)
{
return ((unsigned long *)tsk->thread.sp)[3];
}
/*
* Powermanagement idle function, if any..
*/
void (*pm_idle)(void);
EXPORT_SYMBOL(pm_idle);
void disable_hlt(void)
{
hlt_counter++;
}
EXPORT_SYMBOL(disable_hlt);
void enable_hlt(void)
{
hlt_counter--;
}
EXPORT_SYMBOL(enable_hlt);
/*
* We use this if we don't have any better
* idle routine..
*/
void default_idle(void)
{
if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
current_thread_info()->status &= ~TS_POLLING;
[PATCH] sched: fix bad missed wakeups in the i386, x86_64, ia64, ACPI and APM idle code Fernando Lopez-Lezcano reported frequent scheduling latencies and audio xruns starting at the 2.6.18-rt kernel, and those problems persisted all until current -rt kernels. The latencies were serious and unjustified by system load, often in the milliseconds range. After a patient and heroic multi-month effort of Fernando, where he tested dozens of kernels, tried various configs, boot options, test-patches of mine and provided latency traces of those incidents, the following 'smoking gun' trace was captured by him: _------=> CPU# / _-----=> irqs-off | / _----=> need-resched || / _---=> hardirq/softirq ||| / _--=> preempt-depth |||| / ||||| delay cmd pid ||||| time | caller \ / ||||| \ | / IRQ_19-1479 1D..1 0us : __trace_start_sched_wakeup (try_to_wake_up) IRQ_19-1479 1D..1 0us : __trace_start_sched_wakeup <<...>-5856> (37 0) IRQ_19-1479 1D..1 0us : __trace_start_sched_wakeup (c01262ba 0 0) IRQ_19-1479 1D..1 0us : resched_task (try_to_wake_up) IRQ_19-1479 1D..1 0us : __spin_unlock_irqrestore (try_to_wake_up) ... <idle>-0 1...1 11us!: default_idle (cpu_idle) ... <idle>-0 0Dn.1 602us : smp_apic_timer_interrupt (c0103baf 1 0) ... <...>-5856 0D..2 618us : __switch_to (__schedule) <...>-5856 0D..2 618us : __schedule <<idle>-0> (20 162) <...>-5856 0D..2 619us : __spin_unlock_irq (__schedule) <...>-5856 0...1 619us : trace_stop_sched_switched (__schedule) <...>-5856 0D..1 619us : trace_stop_sched_switched <<...>-5856> (37 0) what is visible in this trace is that CPU#1 ran try_to_wake_up() for PID:5856, it placed PID:5856 on CPU#0's runqueue and ran resched_task() for CPU#0. But it decided to not send an IPI that no CPU - due to TS_POLLING. But CPU#0 never woke up after its NEED_RESCHED bit was set, and only rescheduled to PID:5856 upon the next lapic timer IRQ. The result was a 600+ usecs latency and a missed wakeup! the bug turned out to be an idle-wakeup bug introduced into the mainline kernel this summer via an optimization in the x86_64 tree: commit 495ab9c045e1b0e5c82951b762257fe1c9d81564 Author: Andi Kleen <ak@suse.de> Date: Mon Jun 26 13:59:11 2006 +0200 [PATCH] i386/x86-64/ia64: Move polling flag into thread_info_status During some profiling I noticed that default_idle causes a lot of memory traffic. I think that is caused by the atomic operations to clear/set the polling flag in thread_info. There is actually no reason to make this atomic - only the idle thread does it to itself, other CPUs only read it. So I moved it into ti->status. the problem is this type of change: if (!hlt_counter && boot_cpu_data.hlt_works_ok) { - clear_thread_flag(TIF_POLLING_NRFLAG); + current_thread_info()->status &= ~TS_POLLING; smp_mb__after_clear_bit(); while (!need_resched()) { local_irq_disable(); this changes clear_thread_flag() to an explicit clearing of TS_POLLING. clear_thread_flag() is defined as: clear_bit(flag, &ti->flags); and clear_bit() is a LOCK-ed atomic instruction on all x86 platforms: static inline void clear_bit(int nr, volatile unsigned long * addr) { __asm__ __volatile__( LOCK_PREFIX "btrl %1,%0" hence smp_mb__after_clear_bit() is defined as a simple compile barrier: #define smp_mb__after_clear_bit() barrier() but the explicit TS_POLLING clearing introduced by the patch: + current_thread_info()->status &= ~TS_POLLING; is not an atomic op! So the clearing of the TS_POLLING bit is freely reorderable with the reading of the NEED_RESCHED bit - and both now reside in different memory addresses. CPU idle wakeup very much depends on ordered memory ops, the clearing of the TS_POLLING flag must always be done before we test need_resched() and hit the idle instruction(s). [Symmetrically, the wakeup code needs to set NEED_RESCHED before it tests the TS_POLLING flag, so memory ordering is paramount.] Fernando's dual-core Athlon64 system has a sufficiently advanced memory ordering model so that it triggered this scenario very often. ( And it also turned out that the reason why these latencies never triggered on my testsystems is that i routinely use idle=poll, which was the only idle variant not affected by this bug. ) The fix is to change the smp_mb__after_clear_bit() to an smp_mb(), to act as an absolute barrier between the TS_POLLING write and the NEED_RESCHED read. This affects almost all idling methods (default, ACPI, APM), on all 3 x86 architectures: i386, x86_64, ia64. Signed-off-by: Ingo Molnar <mingo@elte.hu> Tested-by: Fernando Lopez-Lezcano <nando@ccrma.Stanford.EDU> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-22 04:11:56 -05:00
/*
* TS_POLLING-cleared state must be visible before we
* test NEED_RESCHED:
*/
smp_mb();
local_irq_disable();
if (!need_resched()) {
safe_halt(); /* enables interrupts racelessly */
local_irq_disable();
}
local_irq_enable();
current_thread_info()->status |= TS_POLLING;
} else {
local_irq_enable();
/* loop is done by the caller */
cpu_relax();
}
}
#ifdef CONFIG_APM_MODULE
EXPORT_SYMBOL(default_idle);
#endif
/*
* On SMP it's slightly faster (but much more power-consuming!)
* to poll the ->work.need_resched flag instead of waiting for the
* cross-CPU IPI to arrive. Use this option with caution.
*/
static void poll_idle(void)
{
local_irq_enable();
cpu_relax();
}
[PATCH] i386 CPU hotplug (The i386 CPU hotplug patch provides infrastructure for some work which Pavel is doing as well as for ACPI S3 (suspend-to-RAM) work which Li Shaohua <shaohua.li@intel.com> is doing) The following provides i386 architecture support for safely unregistering and registering processors during runtime, updated for the current -mm tree. In order to avoid dumping cpu hotplug code into kernel/irq/* i dropped the cpu_online check in do_IRQ() by modifying fixup_irqs(). The difference being that on cpu offline, fixup_irqs() is called before we clear the cpu from cpu_online_map and a long delay in order to ensure that we never have any queued external interrupts on the APICs. There are additional changes to s390 and ppc64 to account for this change. 1) Add CONFIG_HOTPLUG_CPU 2) disable local APIC timer on dead cpus. 3) Disable preempt around irq balancing to prevent CPUs going down. 4) Print irq stats for all possible cpus. 5) Debugging check for interrupts on offline cpus. 6) Hacky fixup_irqs() to redirect irqs when cpus go off/online. 7) play_dead() for offline cpus to spin inside. 8) Handle offline cpus set in flush_tlb_others(). 9) Grab lock earlier in smp_call_function() to prevent CPUs going down. 10) Implement __cpu_disable() and __cpu_die(). 11) Enable local interrupts in cpu_enable() after fixup_irqs() 12) Don't fiddle with NMI on dead cpu, but leave intact on other cpus. 13) Program IRQ affinity whilst cpu is still in cpu_online_map on offline. Signed-off-by: Zwane Mwaikambo <zwane@linuxpower.ca> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 17:54:50 -04:00
#ifdef CONFIG_HOTPLUG_CPU
#include <asm/nmi.h>
/* We don't actually take CPU down, just spin without interrupts. */
static inline void play_dead(void)
{
/* This must be done before dead CPU ack */
cpu_exit_clear();
wbinvd();
mb();
[PATCH] i386 CPU hotplug (The i386 CPU hotplug patch provides infrastructure for some work which Pavel is doing as well as for ACPI S3 (suspend-to-RAM) work which Li Shaohua <shaohua.li@intel.com> is doing) The following provides i386 architecture support for safely unregistering and registering processors during runtime, updated for the current -mm tree. In order to avoid dumping cpu hotplug code into kernel/irq/* i dropped the cpu_online check in do_IRQ() by modifying fixup_irqs(). The difference being that on cpu offline, fixup_irqs() is called before we clear the cpu from cpu_online_map and a long delay in order to ensure that we never have any queued external interrupts on the APICs. There are additional changes to s390 and ppc64 to account for this change. 1) Add CONFIG_HOTPLUG_CPU 2) disable local APIC timer on dead cpus. 3) Disable preempt around irq balancing to prevent CPUs going down. 4) Print irq stats for all possible cpus. 5) Debugging check for interrupts on offline cpus. 6) Hacky fixup_irqs() to redirect irqs when cpus go off/online. 7) play_dead() for offline cpus to spin inside. 8) Handle offline cpus set in flush_tlb_others(). 9) Grab lock earlier in smp_call_function() to prevent CPUs going down. 10) Implement __cpu_disable() and __cpu_die(). 11) Enable local interrupts in cpu_enable() after fixup_irqs() 12) Don't fiddle with NMI on dead cpu, but leave intact on other cpus. 13) Program IRQ affinity whilst cpu is still in cpu_online_map on offline. Signed-off-by: Zwane Mwaikambo <zwane@linuxpower.ca> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 17:54:50 -04:00
/* Ack it */
__get_cpu_var(cpu_state) = CPU_DEAD;
/*
* With physical CPU hotplug, we should halt the cpu
*/
[PATCH] i386 CPU hotplug (The i386 CPU hotplug patch provides infrastructure for some work which Pavel is doing as well as for ACPI S3 (suspend-to-RAM) work which Li Shaohua <shaohua.li@intel.com> is doing) The following provides i386 architecture support for safely unregistering and registering processors during runtime, updated for the current -mm tree. In order to avoid dumping cpu hotplug code into kernel/irq/* i dropped the cpu_online check in do_IRQ() by modifying fixup_irqs(). The difference being that on cpu offline, fixup_irqs() is called before we clear the cpu from cpu_online_map and a long delay in order to ensure that we never have any queued external interrupts on the APICs. There are additional changes to s390 and ppc64 to account for this change. 1) Add CONFIG_HOTPLUG_CPU 2) disable local APIC timer on dead cpus. 3) Disable preempt around irq balancing to prevent CPUs going down. 4) Print irq stats for all possible cpus. 5) Debugging check for interrupts on offline cpus. 6) Hacky fixup_irqs() to redirect irqs when cpus go off/online. 7) play_dead() for offline cpus to spin inside. 8) Handle offline cpus set in flush_tlb_others(). 9) Grab lock earlier in smp_call_function() to prevent CPUs going down. 10) Implement __cpu_disable() and __cpu_die(). 11) Enable local interrupts in cpu_enable() after fixup_irqs() 12) Don't fiddle with NMI on dead cpu, but leave intact on other cpus. 13) Program IRQ affinity whilst cpu is still in cpu_online_map on offline. Signed-off-by: Zwane Mwaikambo <zwane@linuxpower.ca> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 17:54:50 -04:00
local_irq_disable();
while (1)
halt();
[PATCH] i386 CPU hotplug (The i386 CPU hotplug patch provides infrastructure for some work which Pavel is doing as well as for ACPI S3 (suspend-to-RAM) work which Li Shaohua <shaohua.li@intel.com> is doing) The following provides i386 architecture support for safely unregistering and registering processors during runtime, updated for the current -mm tree. In order to avoid dumping cpu hotplug code into kernel/irq/* i dropped the cpu_online check in do_IRQ() by modifying fixup_irqs(). The difference being that on cpu offline, fixup_irqs() is called before we clear the cpu from cpu_online_map and a long delay in order to ensure that we never have any queued external interrupts on the APICs. There are additional changes to s390 and ppc64 to account for this change. 1) Add CONFIG_HOTPLUG_CPU 2) disable local APIC timer on dead cpus. 3) Disable preempt around irq balancing to prevent CPUs going down. 4) Print irq stats for all possible cpus. 5) Debugging check for interrupts on offline cpus. 6) Hacky fixup_irqs() to redirect irqs when cpus go off/online. 7) play_dead() for offline cpus to spin inside. 8) Handle offline cpus set in flush_tlb_others(). 9) Grab lock earlier in smp_call_function() to prevent CPUs going down. 10) Implement __cpu_disable() and __cpu_die(). 11) Enable local interrupts in cpu_enable() after fixup_irqs() 12) Don't fiddle with NMI on dead cpu, but leave intact on other cpus. 13) Program IRQ affinity whilst cpu is still in cpu_online_map on offline. Signed-off-by: Zwane Mwaikambo <zwane@linuxpower.ca> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 17:54:50 -04:00
}
#else
static inline void play_dead(void)
{
BUG();
}
#endif /* CONFIG_HOTPLUG_CPU */
/*
* The idle thread. There's no useful work to be
* done, so just try to conserve power and have a
* low exit latency (ie sit in a loop waiting for
* somebody to say that they'd like to reschedule)
*/
[PATCH] i386 CPU hotplug (The i386 CPU hotplug patch provides infrastructure for some work which Pavel is doing as well as for ACPI S3 (suspend-to-RAM) work which Li Shaohua <shaohua.li@intel.com> is doing) The following provides i386 architecture support for safely unregistering and registering processors during runtime, updated for the current -mm tree. In order to avoid dumping cpu hotplug code into kernel/irq/* i dropped the cpu_online check in do_IRQ() by modifying fixup_irqs(). The difference being that on cpu offline, fixup_irqs() is called before we clear the cpu from cpu_online_map and a long delay in order to ensure that we never have any queued external interrupts on the APICs. There are additional changes to s390 and ppc64 to account for this change. 1) Add CONFIG_HOTPLUG_CPU 2) disable local APIC timer on dead cpus. 3) Disable preempt around irq balancing to prevent CPUs going down. 4) Print irq stats for all possible cpus. 5) Debugging check for interrupts on offline cpus. 6) Hacky fixup_irqs() to redirect irqs when cpus go off/online. 7) play_dead() for offline cpus to spin inside. 8) Handle offline cpus set in flush_tlb_others(). 9) Grab lock earlier in smp_call_function() to prevent CPUs going down. 10) Implement __cpu_disable() and __cpu_die(). 11) Enable local interrupts in cpu_enable() after fixup_irqs() 12) Don't fiddle with NMI on dead cpu, but leave intact on other cpus. 13) Program IRQ affinity whilst cpu is still in cpu_online_map on offline. Signed-off-by: Zwane Mwaikambo <zwane@linuxpower.ca> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 17:54:50 -04:00
void cpu_idle(void)
{
int cpu = smp_processor_id();
[PATCH] i386 CPU hotplug (The i386 CPU hotplug patch provides infrastructure for some work which Pavel is doing as well as for ACPI S3 (suspend-to-RAM) work which Li Shaohua <shaohua.li@intel.com> is doing) The following provides i386 architecture support for safely unregistering and registering processors during runtime, updated for the current -mm tree. In order to avoid dumping cpu hotplug code into kernel/irq/* i dropped the cpu_online check in do_IRQ() by modifying fixup_irqs(). The difference being that on cpu offline, fixup_irqs() is called before we clear the cpu from cpu_online_map and a long delay in order to ensure that we never have any queued external interrupts on the APICs. There are additional changes to s390 and ppc64 to account for this change. 1) Add CONFIG_HOTPLUG_CPU 2) disable local APIC timer on dead cpus. 3) Disable preempt around irq balancing to prevent CPUs going down. 4) Print irq stats for all possible cpus. 5) Debugging check for interrupts on offline cpus. 6) Hacky fixup_irqs() to redirect irqs when cpus go off/online. 7) play_dead() for offline cpus to spin inside. 8) Handle offline cpus set in flush_tlb_others(). 9) Grab lock earlier in smp_call_function() to prevent CPUs going down. 10) Implement __cpu_disable() and __cpu_die(). 11) Enable local interrupts in cpu_enable() after fixup_irqs() 12) Don't fiddle with NMI on dead cpu, but leave intact on other cpus. 13) Program IRQ affinity whilst cpu is still in cpu_online_map on offline. Signed-off-by: Zwane Mwaikambo <zwane@linuxpower.ca> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 17:54:50 -04:00
current_thread_info()->status |= TS_POLLING;
[PATCH] sched: resched and cpu_idle rework Make some changes to the NEED_RESCHED and POLLING_NRFLAG to reduce confusion, and make their semantics rigid. Improves efficiency of resched_task and some cpu_idle routines. * In resched_task: - TIF_NEED_RESCHED is only cleared with the task's runqueue lock held, and as we hold it during resched_task, then there is no need for an atomic test and set there. The only other time this should be set is when the task's quantum expires, in the timer interrupt - this is protected against because the rq lock is irq-safe. - If TIF_NEED_RESCHED is set, then we don't need to do anything. It won't get unset until the task get's schedule()d off. - If we are running on the same CPU as the task we resched, then set TIF_NEED_RESCHED and no further action is required. - If we are running on another CPU, and TIF_POLLING_NRFLAG is *not* set after TIF_NEED_RESCHED has been set, then we need to send an IPI. Using these rules, we are able to remove the test and set operation in resched_task, and make clear the previously vague semantics of POLLING_NRFLAG. * In idle routines: - Enter cpu_idle with preempt disabled. When the need_resched() condition becomes true, explicitly call schedule(). This makes things a bit clearer (IMO), but haven't updated all architectures yet. - Many do a test and clear of TIF_NEED_RESCHED for some reason. According to the resched_task rules, this isn't needed (and actually breaks the assumption that TIF_NEED_RESCHED is only cleared with the runqueue lock held). So remove that. Generally one less locked memory op when switching to the idle thread. - Many idle routines clear TIF_POLLING_NRFLAG, and only set it in the inner most polling idle loops. The above resched_task semantics allow it to be set until before the last time need_resched() is checked before going into a halt requiring interrupt wakeup. Many idle routines simply never enter such a halt, and so POLLING_NRFLAG can be always left set, completely eliminating resched IPIs when rescheduling the idle task. POLLING_NRFLAG width can be increased, to reduce the chance of resched IPIs. Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Con Kolivas <kernel@kolivas.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-09 00:39:04 -05:00
/* endless idle loop with no priority at all */
while (1) {
tick_nohz_stop_sched_tick();
while (!need_resched()) {
void (*idle)(void);
check_pgt_cache();
rmb();
idle = pm_idle;
if (rcu_pending(cpu))
rcu_check_callbacks(cpu, 0);
if (!idle)
idle = default_idle;
[PATCH] i386 CPU hotplug (The i386 CPU hotplug patch provides infrastructure for some work which Pavel is doing as well as for ACPI S3 (suspend-to-RAM) work which Li Shaohua <shaohua.li@intel.com> is doing) The following provides i386 architecture support for safely unregistering and registering processors during runtime, updated for the current -mm tree. In order to avoid dumping cpu hotplug code into kernel/irq/* i dropped the cpu_online check in do_IRQ() by modifying fixup_irqs(). The difference being that on cpu offline, fixup_irqs() is called before we clear the cpu from cpu_online_map and a long delay in order to ensure that we never have any queued external interrupts on the APICs. There are additional changes to s390 and ppc64 to account for this change. 1) Add CONFIG_HOTPLUG_CPU 2) disable local APIC timer on dead cpus. 3) Disable preempt around irq balancing to prevent CPUs going down. 4) Print irq stats for all possible cpus. 5) Debugging check for interrupts on offline cpus. 6) Hacky fixup_irqs() to redirect irqs when cpus go off/online. 7) play_dead() for offline cpus to spin inside. 8) Handle offline cpus set in flush_tlb_others(). 9) Grab lock earlier in smp_call_function() to prevent CPUs going down. 10) Implement __cpu_disable() and __cpu_die(). 11) Enable local interrupts in cpu_enable() after fixup_irqs() 12) Don't fiddle with NMI on dead cpu, but leave intact on other cpus. 13) Program IRQ affinity whilst cpu is still in cpu_online_map on offline. Signed-off-by: Zwane Mwaikambo <zwane@linuxpower.ca> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 17:54:50 -04:00
if (cpu_is_offline(cpu))
play_dead();
__get_cpu_var(irq_stat).idle_timestamp = jiffies;
idle();
}
tick_nohz_restart_sched_tick();
preempt_enable_no_resched();
schedule();
preempt_disable();
}
}
Kick CPUS that might be sleeping in cpus_idle_wait Sometimes cpu_idle_wait gets stuck because it might miss CPUS that are already in idle, have no tasks waiting to run and have no interrupts going to them. This is common on bootup when switching cpu idle governors. This patch gives those CPUS that don't check in an IPI kick. Background: ----------- I notice this while developing the mcount patches, that every once in a while the system would hang. Looking deeper, the hang was always at boot up when registering init_menu of the cpu_idle menu governor. Talking with Thomas Gliexner, we discovered that one of the CPUS had no timer events scheduled for it and it was in idle (running with NO_HZ). So the CPU would not set the cpu_idle_state bit. Hitting sysrq-t a few times would eventually route the interrupt to the stuck CPU and the system would continue. Note, I would have used the PDA isidle but that is set after the cpu_idle_state bit is cleared, and would leave a window open where we may miss being kicked. hmm, looking closer at this, we still have a small race window between clearing the cpu_idle_state and disabling interrupts (hence the RFC). CPU0: CPU 1: --------- --------- cpu_idle_wait(): cpu_idle(): | __cpu_cpu_var(is_idle) = 1; | if (__get_cpu_var(cpu_idle_state)) /* == 0 */ per_cpu(cpu_idle_state, 1) = 1; | if (per_cpu(is_idle, 1)) /* == 1 */ | smp_call_function(1) | | receives ipi and runs do_nothing. wait on map == empty idle(); /* waits forever */ So really we need interrupts off for most of this then. One might think that we could simply clear the cpu_idle_state from do_nothing, but I'm assuming that cpu_idle governors can be removed, and this might cause a race that a governor might be used after the module was removed. Venki said: I think your RFC patch is the right solution here. As I see it, there is no race with your RFC patch. As long as you call a dummy smp_call_function on all CPUs, we should be OK. We can get rid of cpu_idle_state and the current wait forever logic altogether with dummy smp_call_function. And so there wont be any wait forever scenario. The whole point of cpu_idle_wait() is to make all CPUs come out of idle loop atleast once. The caller will use cpu_idle_wait something like this. // Want to change idle handler - Switch global idle handler to always present default_idle - call cpu_idle_wait so that all cpus come out of idle for an instant and stop using old idle pointer and start using default idle - Change the idle handler to a new handler - optional cpu_idle_wait if you want all cpus to start using the new handler immediately. Maybe the below 1s patch is safe bet for .24. But for .25, I would say we just replace all complicated logic by simple dummy smp_call_function and remove cpu_idle_state altogether. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Cc: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> Acked-by: Ingo Molnar <mingo@elte.hu> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andi Kleen <ak@suse.de> Cc: Len Brown <lenb@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-01-14 03:55:10 -05:00
static void do_nothing(void *unused)
{
}
/*
* cpu_idle_wait - Used to ensure that all the CPUs discard old value of
* pm_idle and update to new pm_idle value. Required while changing pm_idle
* handler on SMP systems.
*
* Caller must have changed pm_idle to the new value before the call. Old
* pm_idle value will not be used by any CPU after the return of this function.
*/
void cpu_idle_wait(void)
{
smp_mb();
/* kick all the CPUs so that they exit out of pm_idle */
smp_call_function(do_nothing, NULL, 0, 1);
}
EXPORT_SYMBOL_GPL(cpu_idle_wait);
/*
* This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
* which can obviate IPI to trigger checking of need_resched.
* We execute MONITOR against need_resched and enter optimized wait state
* through MWAIT. Whenever someone changes need_resched, we would be woken
* up from MWAIT (without an IPI).
*
* New with Core Duo processors, MWAIT can take some hints based on CPU
* capability.
*/
void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
{
if (!need_resched()) {
[PATCH] sched: resched and cpu_idle rework Make some changes to the NEED_RESCHED and POLLING_NRFLAG to reduce confusion, and make their semantics rigid. Improves efficiency of resched_task and some cpu_idle routines. * In resched_task: - TIF_NEED_RESCHED is only cleared with the task's runqueue lock held, and as we hold it during resched_task, then there is no need for an atomic test and set there. The only other time this should be set is when the task's quantum expires, in the timer interrupt - this is protected against because the rq lock is irq-safe. - If TIF_NEED_RESCHED is set, then we don't need to do anything. It won't get unset until the task get's schedule()d off. - If we are running on the same CPU as the task we resched, then set TIF_NEED_RESCHED and no further action is required. - If we are running on another CPU, and TIF_POLLING_NRFLAG is *not* set after TIF_NEED_RESCHED has been set, then we need to send an IPI. Using these rules, we are able to remove the test and set operation in resched_task, and make clear the previously vague semantics of POLLING_NRFLAG. * In idle routines: - Enter cpu_idle with preempt disabled. When the need_resched() condition becomes true, explicitly call schedule(). This makes things a bit clearer (IMO), but haven't updated all architectures yet. - Many do a test and clear of TIF_NEED_RESCHED for some reason. According to the resched_task rules, this isn't needed (and actually breaks the assumption that TIF_NEED_RESCHED is only cleared with the runqueue lock held). So remove that. Generally one less locked memory op when switching to the idle thread. - Many idle routines clear TIF_POLLING_NRFLAG, and only set it in the inner most polling idle loops. The above resched_task semantics allow it to be set until before the last time need_resched() is checked before going into a halt requiring interrupt wakeup. Many idle routines simply never enter such a halt, and so POLLING_NRFLAG can be always left set, completely eliminating resched IPIs when rescheduling the idle task. POLLING_NRFLAG width can be increased, to reduce the chance of resched IPIs. Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Con Kolivas <kernel@kolivas.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-09 00:39:04 -05:00
__monitor((void *)&current_thread_info()->flags, 0, 0);
smp_mb();
if (!need_resched())
__sti_mwait(ax, cx);
else
local_irq_enable();
} else
local_irq_enable();
}
/* Default MONITOR/MWAIT with no hints, used for default C1 state */
static void mwait_idle(void)
{
local_irq_enable();
mwait_idle_with_hints(0, 0);
}
static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
{
if (force_mwait)
return 1;
/* Any C1 states supported? */
return c->cpuid_level >= 5 && ((cpuid_edx(5) >> 4) & 0xf) > 0;
}
void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
{
static int selected;
if (selected)
return;
#ifdef CONFIG_X86_SMP
if (pm_idle == poll_idle && smp_num_siblings > 1) {
printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
" performance may degrade.\n");
}
#endif
if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
/*
* Skip, if setup has overridden idle.
* One CPU supports mwait => All CPUs supports mwait
*/
if (!pm_idle) {
printk(KERN_INFO "using mwait in idle threads.\n");
pm_idle = mwait_idle;
}
}
selected = 1;
}
static int __init idle_setup(char *str)
{
if (!strcmp(str, "poll")) {
printk("using polling idle threads.\n");
pm_idle = poll_idle;
} else if (!strcmp(str, "mwait"))
force_mwait = 1;
else
return -1;
boot_option_idle_override = 1;
return 0;
}
early_param("idle", idle_setup);
void __show_registers(struct pt_regs *regs, int all)
{
unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
unsigned long d0, d1, d2, d3, d6, d7;
unsigned long sp;
unsigned short ss, gs;
if (user_mode_vm(regs)) {
sp = regs->sp;
ss = regs->ss & 0xffff;
savesegment(gs, gs);
} else {
sp = (unsigned long) (&regs->sp);
savesegment(ss, ss);
savesegment(gs, gs);
}
printk("\n");
printk("Pid: %d, comm: %s %s (%s %.*s)\n",
task_pid_nr(current), current->comm,
print_tainted(), init_utsname()->release,
(int)strcspn(init_utsname()->version, " "),
init_utsname()->version);
printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
(u16)regs->cs, regs->ip, regs->flags,
smp_processor_id());
print_symbol("EIP is at %s\n", regs->ip);
printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
regs->ax, regs->bx, regs->cx, regs->dx);
printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
regs->si, regs->di, regs->bp, sp);
printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
(u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
if (!all)
return;
cr0 = read_cr0();
cr2 = read_cr2();
cr3 = read_cr3();
cr4 = read_cr4_safe();
printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
cr0, cr2, cr3, cr4);
get_debugreg(d0, 0);
get_debugreg(d1, 1);
get_debugreg(d2, 2);
get_debugreg(d3, 3);
printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
d0, d1, d2, d3);
get_debugreg(d6, 6);
get_debugreg(d7, 7);
printk("DR6: %08lx DR7: %08lx\n",
d6, d7);
}
void show_regs(struct pt_regs *regs)
{
__show_registers(regs, 1);
show_trace(NULL, regs, &regs->sp, regs->bp);
}
/*
* This gets run with %bx containing the
* function to call, and %dx containing
* the "args".
*/
extern void kernel_thread_helper(void);
/*
* Create a kernel thread
*/
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
struct pt_regs regs;
memset(&regs, 0, sizeof(regs));
regs.bx = (unsigned long) fn;
regs.dx = (unsigned long) arg;
regs.ds = __USER_DS;
regs.es = __USER_DS;
regs.fs = __KERNEL_PERCPU;
regs.orig_ax = -1;
regs.ip = (unsigned long) kernel_thread_helper;
regs.cs = __KERNEL_CS | get_kernel_rpl();
regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
/* Ok, create the new process.. */
return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
}
EXPORT_SYMBOL(kernel_thread);
/*
* Free current thread data structures etc..
*/
void exit_thread(void)
{
/* The process may have allocated an io port bitmap... nuke it. */
if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
struct task_struct *tsk = current;
struct thread_struct *t = &tsk->thread;
int cpu = get_cpu();
struct tss_struct *tss = &per_cpu(init_tss, cpu);
kfree(t->io_bitmap_ptr);
t->io_bitmap_ptr = NULL;
clear_thread_flag(TIF_IO_BITMAP);
/*
* Careful, clear this in the TSS too:
*/
memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
t->io_bitmap_max = 0;
tss->io_bitmap_owner = NULL;
tss->io_bitmap_max = 0;
tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
put_cpu();
}
}
void flush_thread(void)
{
struct task_struct *tsk = current;
tsk->thread.debugreg0 = 0;
tsk->thread.debugreg1 = 0;
tsk->thread.debugreg2 = 0;
tsk->thread.debugreg3 = 0;
tsk->thread.debugreg6 = 0;
tsk->thread.debugreg7 = 0;
memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
clear_tsk_thread_flag(tsk, TIF_DEBUG);
/*
* Forget coprocessor state..
*/
clear_fpu(tsk);
clear_used_math();
}
void release_thread(struct task_struct *dead_task)
{
BUG_ON(dead_task->mm);
release_vm86_irqs(dead_task);
}
/*
* This gets called before we allocate a new thread and copy
* the current task into it.
*/
void prepare_to_copy(struct task_struct *tsk)
{
unlazy_fpu(tsk);
}
int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
unsigned long unused,
struct task_struct * p, struct pt_regs * regs)
{
struct pt_regs * childregs;
struct task_struct *tsk;
int err;
childregs = task_pt_regs(p);
[PATCH] x86 stack initialisation fix The recent change fix-crash-in-entrys-restore_all.patch childregs->esp = esp; p->thread.esp = (unsigned long) childregs; - p->thread.esp0 = (unsigned long) (childregs+1); + p->thread.esp0 = (unsigned long) (childregs+1) - 8; p->thread.eip = (unsigned long) ret_from_fork; introduces an inconsistency between esp and esp0 before the task is run the first time. esp0 is no longer the actual start of the stack, but 8 bytes off. This shows itself clearly in a scenario when a ptracer that is set to also ptrace eventual children traces program1 which then clones thread1. Now the ptracer wants to modify the registers of thread1. The x86 ptrace implementation bases it's knowledge about saved user-space registers upon p->thread.esp0. But this will be a few bytes off causing certain writes to the kernel stack to overwrite a saved kernel function address making the kernel when actually running thread1 jump out into user-space. Very spectacular. The testcase I've used is: /* start with strace -f ./a.out */ #include <pthread.h> #include <stdio.h> void *do_thread(void *p) { for (;;); } int main() { pthread_t one; pthread_create(&one, NULL, &do_thread, NULL); for (;;); return 0; } So, my solution is to instead of just adjusting esp0 that creates an inconsitent state I adjust where the user-space registers are saved with -8 bytes. This gives us the wanted extra bytes on the start of the stack and esp0 is now correct. This solves the issues I saw from the original testcase from Mateusz Berezecki and has survived testing here. I think this should go into -mm a round or two first however as there might be some cruft around depending on pt_regs lying on the start of the stack. That however would have broken with the first change too! It's actually a 2-line diff but I had to move the comment of why the -8 bytes are there a few lines up. Thanks to Zwane for helping me with this. Signed-off-by: Alexander Nyberg <alexn@telia.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-05 19:15:03 -04:00
*childregs = *regs;
childregs->ax = 0;
childregs->sp = sp;
[PATCH] x86 stack initialisation fix The recent change fix-crash-in-entrys-restore_all.patch childregs->esp = esp; p->thread.esp = (unsigned long) childregs; - p->thread.esp0 = (unsigned long) (childregs+1); + p->thread.esp0 = (unsigned long) (childregs+1) - 8; p->thread.eip = (unsigned long) ret_from_fork; introduces an inconsistency between esp and esp0 before the task is run the first time. esp0 is no longer the actual start of the stack, but 8 bytes off. This shows itself clearly in a scenario when a ptracer that is set to also ptrace eventual children traces program1 which then clones thread1. Now the ptracer wants to modify the registers of thread1. The x86 ptrace implementation bases it's knowledge about saved user-space registers upon p->thread.esp0. But this will be a few bytes off causing certain writes to the kernel stack to overwrite a saved kernel function address making the kernel when actually running thread1 jump out into user-space. Very spectacular. The testcase I've used is: /* start with strace -f ./a.out */ #include <pthread.h> #include <stdio.h> void *do_thread(void *p) { for (;;); } int main() { pthread_t one; pthread_create(&one, NULL, &do_thread, NULL); for (;;); return 0; } So, my solution is to instead of just adjusting esp0 that creates an inconsitent state I adjust where the user-space registers are saved with -8 bytes. This gives us the wanted extra bytes on the start of the stack and esp0 is now correct. This solves the issues I saw from the original testcase from Mateusz Berezecki and has survived testing here. I think this should go into -mm a round or two first however as there might be some cruft around depending on pt_regs lying on the start of the stack. That however would have broken with the first change too! It's actually a 2-line diff but I had to move the comment of why the -8 bytes are there a few lines up. Thanks to Zwane for helping me with this. Signed-off-by: Alexander Nyberg <alexn@telia.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-05 19:15:03 -04:00
p->thread.sp = (unsigned long) childregs;
p->thread.sp0 = (unsigned long) (childregs+1);
p->thread.ip = (unsigned long) ret_from_fork;
savesegment(gs, p->thread.gs);
tsk = current;
if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
IO_BITMAP_BYTES, GFP_KERNEL);
if (!p->thread.io_bitmap_ptr) {
p->thread.io_bitmap_max = 0;
return -ENOMEM;
}
set_tsk_thread_flag(p, TIF_IO_BITMAP);
}
err = 0;
/*
* Set a new TLS for the child thread?
*/
if (clone_flags & CLONE_SETTLS)
err = do_set_thread_area(p, -1,
(struct user_desc __user *)childregs->si, 0);
if (err && p->thread.io_bitmap_ptr) {
kfree(p->thread.io_bitmap_ptr);
p->thread.io_bitmap_max = 0;
}
return err;
}
void
start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
{
__asm__("movl %0, %%gs" :: "r"(0));
regs->fs = 0;
set_fs(USER_DS);
regs->ds = __USER_DS;
regs->es = __USER_DS;
regs->ss = __USER_DS;
regs->cs = __USER_CS;
regs->ip = new_ip;
regs->sp = new_sp;
/*
* Free the old FP and other extended state
*/
free_thread_xstate(current);
}
EXPORT_SYMBOL_GPL(start_thread);
static void hard_disable_TSC(void)
{
write_cr4(read_cr4() | X86_CR4_TSD);
}
void disable_TSC(void)
{
preempt_disable();
if (!test_and_set_thread_flag(TIF_NOTSC))
/*
* Must flip the CPU state synchronously with
* TIF_NOTSC in the current running context.
*/
hard_disable_TSC();
preempt_enable();
}
static void hard_enable_TSC(void)
{
write_cr4(read_cr4() & ~X86_CR4_TSD);
}
static void enable_TSC(void)
{
preempt_disable();
if (test_and_clear_thread_flag(TIF_NOTSC))
/*
* Must flip the CPU state synchronously with
* TIF_NOTSC in the current running context.
*/
hard_enable_TSC();
preempt_enable();
}
int get_tsc_mode(unsigned long adr)
{
unsigned int val;
if (test_thread_flag(TIF_NOTSC))
val = PR_TSC_SIGSEGV;
else
val = PR_TSC_ENABLE;
return put_user(val, (unsigned int __user *)adr);
}
int set_tsc_mode(unsigned int val)
{
if (val == PR_TSC_SIGSEGV)
disable_TSC();
else if (val == PR_TSC_ENABLE)
enable_TSC();
else
return -EINVAL;
return 0;
}
static noinline void
__switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
struct tss_struct *tss)
{
struct thread_struct *prev, *next;
unsigned long debugctl;
prev = &prev_p->thread;
next = &next_p->thread;
debugctl = prev->debugctlmsr;
if (next->ds_area_msr != prev->ds_area_msr) {
/* we clear debugctl to make sure DS
* is not in use when we change it */
debugctl = 0;
update_debugctlmsr(0);
wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
}
if (next->debugctlmsr != debugctl)
update_debugctlmsr(next->debugctlmsr);
if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
set_debugreg(next->debugreg0, 0);
set_debugreg(next->debugreg1, 1);
set_debugreg(next->debugreg2, 2);
set_debugreg(next->debugreg3, 3);
/* no 4 and 5 */
set_debugreg(next->debugreg6, 6);
set_debugreg(next->debugreg7, 7);
}
if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
test_tsk_thread_flag(next_p, TIF_NOTSC)) {
/* prev and next are different */
if (test_tsk_thread_flag(next_p, TIF_NOTSC))
hard_disable_TSC();
else
hard_enable_TSC();
}
#ifdef X86_BTS
if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
#endif
if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
/*
* Disable the bitmap via an invalid offset. We still cache
* the previous bitmap owner and the IO bitmap contents:
*/
tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
return;
}
if (likely(next == tss->io_bitmap_owner)) {
/*
* Previous owner of the bitmap (hence the bitmap content)
* matches the next task, we dont have to do anything but
* to set a valid offset in the TSS:
*/
tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
return;
}
/*
* Lazy TSS's I/O bitmap copy. We set an invalid offset here
* and we let the task to get a GPF in case an I/O instruction
* is performed. The handler of the GPF will verify that the
* faulting task has a valid I/O bitmap and, it true, does the
* real copy and restart the instruction. This will save us
* redundant copies when the currently switched task does not
* perform any I/O during its timeslice.
*/
tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
}
/*
* switch_to(x,yn) should switch tasks from x to y.
*
* We fsave/fwait so that an exception goes off at the right time
* (as a call from the fsave or fwait in effect) rather than to
* the wrong process. Lazy FP saving no longer makes any sense
* with modern CPU's, and this simplifies a lot of things (SMP
* and UP become the same).
*
* NOTE! We used to use the x86 hardware context switching. The
* reason for not using it any more becomes apparent when you
* try to recover gracefully from saved state that is no longer
* valid (stale segment register values in particular). With the
* hardware task-switch, there is no way to fix up bad state in
* a reasonable manner.
*
* The fact that Intel documents the hardware task-switching to
* be slow is a fairly red herring - this code is not noticeably
* faster. However, there _is_ some room for improvement here,
* so the performance issues may eventually be a valid point.
* More important, however, is the fact that this allows us much
* more flexibility.
*
* The return value (in %ax) will be the "prev" task after
* the task-switch, and shows up in ret_from_fork in entry.S,
* for example.
*/
struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
{
struct thread_struct *prev = &prev_p->thread,
*next = &next_p->thread;
int cpu = smp_processor_id();
struct tss_struct *tss = &per_cpu(init_tss, cpu);
/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
__unlazy_fpu(prev_p);
/* we're going to use this soon, after a few expensive things */
if (next_p->fpu_counter > 5)
prefetch(next->xstate);
/*
* Reload esp0.
*/
load_sp0(tss, next);
/*
* Save away %gs. No need to save %fs, as it was saved on the
* stack on entry. No need to save %es and %ds, as those are
* always kernel segments while inside the kernel. Doing this
* before setting the new TLS descriptors avoids the situation
* where we temporarily have non-reloadable segments in %fs
* and %gs. This could be an issue if the NMI handler ever
* used %fs or %gs (it does not today), or if the kernel is
* running inside of a hypervisor layer.
*/
savesegment(gs, prev->gs);
/*
* Load the per-thread Thread-Local Storage descriptor.
*/
load_TLS(next, cpu);
/*
* Restore IOPL if needed. In normal use, the flags restore
* in the switch assembly will handle this. But if the kernel
* is running virtualized at a non-zero CPL, the popf will
* not restore flags, so it must be done in a separate step.
*/
if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
set_iopl_mask(next->iopl);
/*
* Now maybe handle debug registers and/or IO bitmaps
*/
if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
__switch_to_xtra(prev_p, next_p, tss);
[PATCH] seccomp: tsc disable I believe at least for seccomp it's worth to turn off the tsc, not just for HT but for the L2 cache too. So it's up to you, either you turn it off completely (which isn't very nice IMHO) or I recommend to apply this below patch. This has been tested successfully on x86-64 against current cogito repository (i686 compiles so I didn't bother testing ;). People selling the cpu through cpushare may appreciate this bit for a peace of mind. There's no way to get any timing info anymore with this applied (gettimeofday is forbidden of course). The seccomp environment is completely deterministic so it can't be allowed to get timing info, it has to be deterministic so in the future I can enable a computing mode that does a parallel computing for each task with server side transparent checkpointing and verification that the output is the same from all the 2/3 seller computers for each task, without the buyer even noticing (for now the verification is left to the buyer client side and there's no checkpointing, since that would require more kernel changes to track the dirty bits but it'll be easy to extend once the basic mode is finished). Eliminating a cold-cache read of the cr4 global variable will save one cacheline during the tlb flush while making the code per-cpu-safe at the same time. Thanks to Mikael Pettersson for noticing the tlb flush wasn't per-cpu-safe. The global tlb flush can run from irq (IPI calling do_flush_tlb_all) but it'll be transparent to the switch_to code since the IPI won't make any change to the cr4 contents from the point of view of the interrupted code and since it's now all per-cpu stuff, it will not race. So no need to disable irqs in switch_to slow path. Signed-off-by: Andrea Arcangeli <andrea@cpushare.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 17:36:36 -04:00
/*
* Leave lazy mode, flushing any hypercalls made here.
* This must be done before restoring TLS segments so
* the GDT and LDT are properly updated, and must be
* done before math_state_restore, so the TS bit is up
* to date.
*/
arch_leave_lazy_cpu_mode();
/* If the task has used fpu the last 5 timeslices, just do a full
* restore of the math state immediately to avoid the trap; the
* chances of needing FPU soon are obviously high now
*/
if (next_p->fpu_counter > 5)
math_state_restore();
/*
* Restore %gs if needed (which is common)
*/
if (prev->gs | next->gs)
loadsegment(gs, next->gs);
x86_write_percpu(current_task, next_p);
return prev_p;
}
asmlinkage int sys_fork(struct pt_regs regs)
{
return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
}
asmlinkage int sys_clone(struct pt_regs regs)
{
unsigned long clone_flags;
unsigned long newsp;
int __user *parent_tidptr, *child_tidptr;
clone_flags = regs.bx;
newsp = regs.cx;
parent_tidptr = (int __user *)regs.dx;
child_tidptr = (int __user *)regs.di;
if (!newsp)
newsp = regs.sp;
return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
}
/*
* This is trivial, and on the face of it looks like it
* could equally well be done in user mode.
*
* Not so, for quite unobvious reasons - register pressure.
* In user mode vfork() cannot have a stack frame, and if
* done by calling the "clone()" system call directly, you
* do not have enough call-clobbered registers to hold all
* the information you need.
*/
asmlinkage int sys_vfork(struct pt_regs regs)
{
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
}
/*
* sys_execve() executes a new program.
*/
asmlinkage int sys_execve(struct pt_regs regs)
{
int error;
char * filename;
filename = getname((char __user *) regs.bx);
error = PTR_ERR(filename);
if (IS_ERR(filename))
goto out;
error = do_execve(filename,
(char __user * __user *) regs.cx,
(char __user * __user *) regs.dx,
&regs);
if (error == 0) {
/* Make sure we don't return using sysenter.. */
set_thread_flag(TIF_IRET);
}
putname(filename);
out:
return error;
}
#define top_esp (THREAD_SIZE - sizeof(unsigned long))
#define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
unsigned long get_wchan(struct task_struct *p)
{
unsigned long bp, sp, ip;
unsigned long stack_page;
int count = 0;
if (!p || p == current || p->state == TASK_RUNNING)
return 0;
stack_page = (unsigned long)task_stack_page(p);
sp = p->thread.sp;
if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
return 0;
/* include/asm-i386/system.h:switch_to() pushes bp last. */
bp = *(unsigned long *) sp;
do {
if (bp < stack_page || bp > top_ebp+stack_page)
return 0;
ip = *(unsigned long *) (bp+4);
if (!in_sched_functions(ip))
return ip;
bp = *(unsigned long *) bp;
} while (count++ < 16);
return 0;
}
unsigned long arch_align_stack(unsigned long sp)
{
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
sp -= get_random_int() % 8192;
return sp & ~0xf;
}
x86: randomize brk Randomize the location of the heap (brk) for i386 and x86_64. The range is randomized in the range starting at current brk location up to 0x02000000 offset for both architectures. This, together with pie-executable-randomization.patch and pie-executable-randomization-fix.patch, should make the address space randomization on i386 and x86_64 complete. Arjan says: This is known to break older versions of some emacs variants, whose dumper code assumed that the last variable declared in the program is equal to the start of the dynamically allocated memory region. (The dumper is the code where emacs effectively dumps core at the end of it's compilation stage; this coredump is then loaded as the main program during normal use) iirc this was 5 years or so; we found this way back when I was at RH and we first did the security stuff there (including this brk randomization). It wasn't all variants of emacs, and it got fixed as a result (I vaguely remember that emacs already had code to deal with it for other archs/oses, just ifdeffed wrongly). It's a rare and wrong assumption as a general thing, just on x86 it mostly happened to be true (but to be honest, it'll break too if gcc does something fancy or if the linker does a non-standard order). Still its something we should at least document. Note 2: afaik it only broke the emacs *build*. I'm not 100% sure about that (it IS 5 years ago) though. [ akpm@linux-foundation.org: deuglification ] Signed-off-by: Jiri Kosina <jkosina@suse.cz> Cc: Arjan van de Ven <arjan@infradead.org> Cc: Roland McGrath <roland@redhat.com> Cc: Jakub Jelinek <jakub@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 07:30:40 -05:00
unsigned long arch_randomize_brk(struct mm_struct *mm)
{
unsigned long range_end = mm->brk + 0x02000000;
return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
}