android_kernel_xiaomi_sm8350/drivers/message/i2o/device.c

556 lines
14 KiB
C
Raw Normal View History

/*
* Functions to handle I2O devices
*
* Copyright (C) 2004 Markus Lidel <Markus.Lidel@shadowconnect.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* Fixes/additions:
* Markus Lidel <Markus.Lidel@shadowconnect.com>
* initial version.
*/
#include <linux/module.h>
#include <linux/i2o.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/slab.h>
#include "core.h"
/**
* i2o_device_issue_claim - claim or release a device
* @dev: I2O device to claim or release
* @cmd: claim or release command
* @type: type of claim
*
* Issue I2O UTIL_CLAIM or UTIL_RELEASE messages. The message to be sent
* is set by cmd. dev is the I2O device which should be claim or
* released and the type is the claim type (see the I2O spec).
*
* Returs 0 on success or negative error code on failure.
*/
static inline int i2o_device_issue_claim(struct i2o_device *dev, u32 cmd,
u32 type)
{
struct i2o_message *msg;
msg = i2o_msg_get_wait(dev->iop, I2O_TIMEOUT_MESSAGE_GET);
if (IS_ERR(msg))
return PTR_ERR(msg);
msg->u.head[0] = cpu_to_le32(FIVE_WORD_MSG_SIZE | SGL_OFFSET_0);
msg->u.head[1] =
cpu_to_le32(cmd << 24 | HOST_TID << 12 | dev->lct_data.tid);
msg->body[0] = cpu_to_le32(type);
return i2o_msg_post_wait(dev->iop, msg, 60);
}
/**
* i2o_device_claim - claim a device for use by an OSM
* @dev: I2O device to claim
* @drv: I2O driver which wants to claim the device
*
* Do the leg work to assign a device to a given OSM. If the claim succeed
* the owner of the rimary. If the attempt fails a negative errno code
* is returned. On success zero is returned.
*/
int i2o_device_claim(struct i2o_device *dev)
{
int rc = 0;
down(&dev->lock);
rc = i2o_device_issue_claim(dev, I2O_CMD_UTIL_CLAIM, I2O_CLAIM_PRIMARY);
if (!rc)
pr_debug("i2o: claim of device %d succeded\n",
dev->lct_data.tid);
else
pr_debug("i2o: claim of device %d failed %d\n",
dev->lct_data.tid, rc);
up(&dev->lock);
return rc;
}
/**
* i2o_device_claim_release - release a device that the OSM is using
* @dev: device to release
* @drv: driver which claimed the device
*
* Drop a claim by an OSM on a given I2O device.
*
* AC - some devices seem to want to refuse an unclaim until they have
* finished internal processing. It makes sense since you don't want a
* new device to go reconfiguring the entire system until you are done.
* Thus we are prepared to wait briefly.
*
* Returns 0 on success or negative error code on failure.
*/
int i2o_device_claim_release(struct i2o_device *dev)
{
int tries;
int rc = 0;
down(&dev->lock);
/*
* If the controller takes a nonblocking approach to
* releases we have to sleep/poll for a few times.
*/
for (tries = 0; tries < 10; tries++) {
rc = i2o_device_issue_claim(dev, I2O_CMD_UTIL_RELEASE,
I2O_CLAIM_PRIMARY);
if (!rc)
break;
ssleep(1);
}
if (!rc)
pr_debug("i2o: claim release of device %d succeded\n",
dev->lct_data.tid);
else
pr_debug("i2o: claim release of device %d failed %d\n",
dev->lct_data.tid, rc);
up(&dev->lock);
return rc;
}
/**
* i2o_device_release - release the memory for a I2O device
* @dev: I2O device which should be released
*
* Release the allocated memory. This function is called if refcount of
* device reaches 0 automatically.
*/
static void i2o_device_release(struct device *dev)
{
struct i2o_device *i2o_dev = to_i2o_device(dev);
pr_debug("i2o: device %s released\n", dev->bus_id);
kfree(i2o_dev);
}
/**
* i2o_device_show_class_id - Displays class id of I2O device
* @dev: device of which the class id should be displayed
* @attr: pointer to device attribute
* @buf: buffer into which the class id should be printed
*
* Returns the number of bytes which are printed into the buffer.
*/
static ssize_t i2o_device_show_class_id(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct i2o_device *i2o_dev = to_i2o_device(dev);
sprintf(buf, "0x%03x\n", i2o_dev->lct_data.class_id);
return strlen(buf) + 1;
}
/**
* i2o_device_show_tid - Displays TID of I2O device
* @dev: device of which the TID should be displayed
* @attr: pointer to device attribute
* @buf: buffer into which the TID should be printed
*
* Returns the number of bytes which are printed into the buffer.
*/
static ssize_t i2o_device_show_tid(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct i2o_device *i2o_dev = to_i2o_device(dev);
sprintf(buf, "0x%03x\n", i2o_dev->lct_data.tid);
return strlen(buf) + 1;
}
struct device_attribute i2o_device_attrs[] = {
__ATTR(class_id, S_IRUGO, i2o_device_show_class_id, NULL),
__ATTR(tid, S_IRUGO, i2o_device_show_tid, NULL),
__ATTR_NULL
};
/**
* i2o_device_alloc - Allocate a I2O device and initialize it
*
* Allocate the memory for a I2O device and initialize locks and lists
*
* Returns the allocated I2O device or a negative error code if the device
* could not be allocated.
*/
static struct i2o_device *i2o_device_alloc(void)
{
struct i2o_device *dev;
dev = kmalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return ERR_PTR(-ENOMEM);
memset(dev, 0, sizeof(*dev));
INIT_LIST_HEAD(&dev->list);
init_MUTEX(&dev->lock);
dev->device.bus = &i2o_bus_type;
dev->device.release = &i2o_device_release;
return dev;
}
/**
* i2o_device_add - allocate a new I2O device and add it to the IOP
* @iop: I2O controller where the device is on
* @entry: LCT entry of the I2O device
*
* Allocate a new I2O device and initialize it with the LCT entry. The
* device is appended to the device list of the controller.
*
* Returns a pointer to the I2O device on success or negative error code
* on failure.
*/
static struct i2o_device *i2o_device_add(struct i2o_controller *c,
i2o_lct_entry * entry)
{
struct i2o_device *i2o_dev, *tmp;
i2o_dev = i2o_device_alloc();
if (IS_ERR(i2o_dev)) {
printk(KERN_ERR "i2o: unable to allocate i2o device\n");
return i2o_dev;
}
i2o_dev->lct_data = *entry;
snprintf(i2o_dev->device.bus_id, BUS_ID_SIZE, "%d:%03x", c->unit,
i2o_dev->lct_data.tid);
i2o_dev->iop = c;
i2o_dev->device.parent = &c->device;
device_register(&i2o_dev->device);
list_add_tail(&i2o_dev->list, &c->devices);
/* create user entries for this device */
tmp = i2o_iop_find_device(i2o_dev->iop, i2o_dev->lct_data.user_tid);
if (tmp && (tmp != i2o_dev))
sysfs_create_link(&i2o_dev->device.kobj, &tmp->device.kobj,
"user");
/* create user entries refering to this device */
list_for_each_entry(tmp, &c->devices, list)
if ((tmp->lct_data.user_tid == i2o_dev->lct_data.tid)
&& (tmp != i2o_dev))
sysfs_create_link(&tmp->device.kobj,
&i2o_dev->device.kobj, "user");
/* create parent entries for this device */
tmp = i2o_iop_find_device(i2o_dev->iop, i2o_dev->lct_data.parent_tid);
if (tmp && (tmp != i2o_dev))
sysfs_create_link(&i2o_dev->device.kobj, &tmp->device.kobj,
"parent");
/* create parent entries refering to this device */
list_for_each_entry(tmp, &c->devices, list)
if ((tmp->lct_data.parent_tid == i2o_dev->lct_data.tid)
&& (tmp != i2o_dev))
sysfs_create_link(&tmp->device.kobj,
&i2o_dev->device.kobj, "parent");
i2o_driver_notify_device_add_all(i2o_dev);
pr_debug("i2o: device %s added\n", i2o_dev->device.bus_id);
return i2o_dev;
}
/**
* i2o_device_remove - remove an I2O device from the I2O core
* @dev: I2O device which should be released
*
* Is used on I2O controller removal or LCT modification, when the device
* is removed from the system. Note that the device could still hang
* around until the refcount reaches 0.
*/
void i2o_device_remove(struct i2o_device *i2o_dev)
{
struct i2o_device *tmp;
struct i2o_controller *c = i2o_dev->iop;
i2o_driver_notify_device_remove_all(i2o_dev);
sysfs_remove_link(&i2o_dev->device.kobj, "parent");
sysfs_remove_link(&i2o_dev->device.kobj, "user");
list_for_each_entry(tmp, &c->devices, list) {
if (tmp->lct_data.parent_tid == i2o_dev->lct_data.tid)
sysfs_remove_link(&tmp->device.kobj, "parent");
if (tmp->lct_data.user_tid == i2o_dev->lct_data.tid)
sysfs_remove_link(&tmp->device.kobj, "user");
}
list_del(&i2o_dev->list);
device_unregister(&i2o_dev->device);
}
/**
* i2o_device_parse_lct - Parse a previously fetched LCT and create devices
* @c: I2O controller from which the LCT should be parsed.
*
* The Logical Configuration Table tells us what we can talk to on the
* board. For every entry we create an I2O device, which is registered in
* the I2O core.
*
* Returns 0 on success or negative error code on failure.
*/
int i2o_device_parse_lct(struct i2o_controller *c)
{
struct i2o_device *dev, *tmp;
i2o_lct *lct;
u32 *dlct = c->dlct.virt;
int max = 0, i = 0;
u16 table_size;
u32 buf;
down(&c->lct_lock);
kfree(c->lct);
buf = le32_to_cpu(*dlct++);
table_size = buf & 0xffff;
lct = c->lct = kmalloc(table_size * 4, GFP_KERNEL);
if (!lct) {
up(&c->lct_lock);
return -ENOMEM;
}
lct->lct_ver = buf >> 28;
lct->boot_tid = buf >> 16 & 0xfff;
lct->table_size = table_size;
lct->change_ind = le32_to_cpu(*dlct++);
lct->iop_flags = le32_to_cpu(*dlct++);
table_size -= 3;
pr_debug("%s: LCT has %d entries (LCT size: %d)\n", c->name, max,
lct->table_size);
while (table_size > 0) {
i2o_lct_entry *entry = &lct->lct_entry[max];
int found = 0;
buf = le32_to_cpu(*dlct++);
entry->entry_size = buf & 0xffff;
entry->tid = buf >> 16 & 0xfff;
entry->change_ind = le32_to_cpu(*dlct++);
entry->device_flags = le32_to_cpu(*dlct++);
buf = le32_to_cpu(*dlct++);
entry->class_id = buf & 0xfff;
entry->version = buf >> 12 & 0xf;
entry->vendor_id = buf >> 16;
entry->sub_class = le32_to_cpu(*dlct++);
buf = le32_to_cpu(*dlct++);
entry->user_tid = buf & 0xfff;
entry->parent_tid = buf >> 12 & 0xfff;
entry->bios_info = buf >> 24;
memcpy(&entry->identity_tag, dlct, 8);
dlct += 2;
entry->event_capabilities = le32_to_cpu(*dlct++);
/* add new devices, which are new in the LCT */
list_for_each_entry_safe(dev, tmp, &c->devices, list) {
if (entry->tid == dev->lct_data.tid) {
found = 1;
break;
}
}
if (!found)
i2o_device_add(c, entry);
table_size -= 9;
max++;
}
/* remove devices, which are not in the LCT anymore */
list_for_each_entry_safe(dev, tmp, &c->devices, list) {
int found = 0;
for (i = 0; i < max; i++) {
if (lct->lct_entry[i].tid == dev->lct_data.tid) {
found = 1;
break;
}
}
if (!found)
i2o_device_remove(dev);
}
up(&c->lct_lock);
return 0;
}
/*
* Run time support routines
*/
/* Issue UTIL_PARAMS_GET or UTIL_PARAMS_SET
*
* This function can be used for all UtilParamsGet/Set operations.
* The OperationList is given in oplist-buffer,
* and results are returned in reslist-buffer.
* Note that the minimum sized reslist is 8 bytes and contains
* ResultCount, ErrorInfoSize, BlockStatus and BlockSize.
*/
int i2o_parm_issue(struct i2o_device *i2o_dev, int cmd, void *oplist,
int oplen, void *reslist, int reslen)
{
struct i2o_message *msg;
int i = 0;
int rc;
struct i2o_dma res;
struct i2o_controller *c = i2o_dev->iop;
struct device *dev = &c->pdev->dev;
res.virt = NULL;
if (i2o_dma_alloc(dev, &res, reslen, GFP_KERNEL))
return -ENOMEM;
msg = i2o_msg_get_wait(c, I2O_TIMEOUT_MESSAGE_GET);
if (IS_ERR(msg)) {
i2o_dma_free(dev, &res);
return PTR_ERR(msg);
}
i = 0;
msg->u.head[1] =
cpu_to_le32(cmd << 24 | HOST_TID << 12 | i2o_dev->lct_data.tid);
msg->body[i++] = cpu_to_le32(0x00000000);
msg->body[i++] = cpu_to_le32(0x4C000000 | oplen); /* OperationList */
memcpy(&msg->body[i], oplist, oplen);
i += (oplen / 4 + (oplen % 4 ? 1 : 0));
msg->body[i++] = cpu_to_le32(0xD0000000 | res.len); /* ResultList */
msg->body[i++] = cpu_to_le32(res.phys);
msg->u.head[0] =
cpu_to_le32(I2O_MESSAGE_SIZE(i + sizeof(struct i2o_message) / 4) |
SGL_OFFSET_5);
rc = i2o_msg_post_wait_mem(c, msg, 10, &res);
/* This only looks like a memory leak - don't "fix" it. */
if (rc == -ETIMEDOUT)
return rc;
memcpy(reslist, res.virt, res.len);
i2o_dma_free(dev, &res);
return rc;
}
/*
* Query one field group value or a whole scalar group.
*/
int i2o_parm_field_get(struct i2o_device *i2o_dev, int group, int field,
void *buf, int buflen)
{
u32 opblk[] = { cpu_to_le32(0x00000001),
cpu_to_le32((u16) group << 16 | I2O_PARAMS_FIELD_GET),
cpu_to_le32((s16) field << 16 | 0x00000001)
};
u8 *resblk; /* 8 bytes for header */
int rc;
resblk = kmalloc(buflen + 8, GFP_KERNEL | GFP_ATOMIC);
if (!resblk)
return -ENOMEM;
rc = i2o_parm_issue(i2o_dev, I2O_CMD_UTIL_PARAMS_GET, opblk,
sizeof(opblk), resblk, buflen + 8);
memcpy(buf, resblk + 8, buflen); /* cut off header */
kfree(resblk);
return rc;
}
/*
* if oper == I2O_PARAMS_TABLE_GET, get from all rows
* if fieldcount == -1 return all fields
* ibuf and ibuflen are unused (use NULL, 0)
* else return specific fields
* ibuf contains fieldindexes
*
* if oper == I2O_PARAMS_LIST_GET, get from specific rows
* if fieldcount == -1 return all fields
* ibuf contains rowcount, keyvalues
* else return specific fields
* fieldcount is # of fieldindexes
* ibuf contains fieldindexes, rowcount, keyvalues
*
* You could also use directly function i2o_issue_params().
*/
int i2o_parm_table_get(struct i2o_device *dev, int oper, int group,
int fieldcount, void *ibuf, int ibuflen, void *resblk,
int reslen)
{
u16 *opblk;
int size;
size = 10 + ibuflen;
if (size % 4)
size += 4 - size % 4;
opblk = kmalloc(size, GFP_KERNEL);
if (opblk == NULL) {
printk(KERN_ERR "i2o: no memory for query buffer.\n");
return -ENOMEM;
}
opblk[0] = 1; /* operation count */
opblk[1] = 0; /* pad */
opblk[2] = oper;
opblk[3] = group;
opblk[4] = fieldcount;
memcpy(opblk + 5, ibuf, ibuflen); /* other params */
size = i2o_parm_issue(dev, I2O_CMD_UTIL_PARAMS_GET, opblk,
size, resblk, reslen);
kfree(opblk);
if (size > reslen)
return reslen;
return size;
}
EXPORT_SYMBOL(i2o_device_claim);
EXPORT_SYMBOL(i2o_device_claim_release);
EXPORT_SYMBOL(i2o_parm_field_get);
EXPORT_SYMBOL(i2o_parm_table_get);
EXPORT_SYMBOL(i2o_parm_issue);